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Agenda

* Warehouse Scale Computing

* Request-level Parallelism

e.g. Web search

e Data-level Parallelism
— MapReduce
— Hadoop, Spark



New-School Machine Structures

Parallel Requests

Assigned to computer
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Google’s WSCs
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A Giant Computer

* Sunway TaihuLight
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Google Server Internals

.




\ 0 pen Compute Project

Share designs of data center products o I

— Facebook, Intel, Nokia, Google, Apple, )|
Microsoft, Seagate Technology, Dell, Cisco,
Goldman Sachs, Lenovo, ...

Design and enable the delivery of the

most efficient server, storage and data

center hardware designs for scalable

computing.

Openly sharing ideas, specifications and

other intellectual property is the key to

maximizing innovation and reducing

operational complexity

All Facebook Data Centers are 100% OCP {
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Warehouse-Scale Computers

Datacenter
— Collection of 10,000 to 100,000 servers
— Networks connecting them together
Single gigantic machine

Very large applications (Internet service):
search, email, video sharing, social networking

Very high availability

“...WSCs are no less worthy of the expertise of computer
systems architects than any other class of machines”
Barroso and Hoelzle, 2009
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Unique to WSCs

 Ample Parallelism
— Request-level Parallelism: e.g., web search
— Data-level Parallelism: e.g., image classifier training

* Scale and its Opportunities/Problems
— Scale of economy: low per-unit cost

— Cloud computing: rent computing power with low costs
(e.g., AWS)

— High # of failures 50000 X 4 X 4%

365 x 24~ 0913

e.g.: 4 disks/server, annual failure rate: 4%
- WSC of 50,000 servers: 1 disk fail/hour

* Operation Cost Count
— Longer life time (>10 years)
— Cost of equipment purchases << cost of ownership



WSC Architecture

—

1U Server:
8 cores,
16 GB DRAM,
Ax1 TB disk Array (aka cluster):
16-32 racks
Rack: Expensive switch
40-80 severs, (10X bandwidth = 100x cost)

Local Ethernet (1-10Gbps) switch
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WSC Storage Hierarchy

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

1U Server:
DRAM: 16GB, 0.1us, 20GB/s

Rack(80 severs):

DRAM: 1TB, 100MB/s

Array(30 racks):
DRAM: 30TB, 500us, 10MB/s

= Disk: 4.80PB, 12ms, 10MB/s
‘ .




Workload Variation

T 1
©
O
< 2X
=
v
Noon Midnight

* Online service: Peak usage 2X off-peak
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Impact on WSC software

Latency, bandwidth - Performance

— Independent data set within an array

— Locality of access within server or rack
High failure rate - Reliability, Availability

— Preventing failures is expensive

— Cope with failures gracefully

Varying workloads = Scalability, Availability
— Scale up and down gracefully

More challenging than software for single computers!
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Power Usage Effectiveness

* Energy efficiency

— Primary concern in the design of WSC

— Important component of the total cost of ownership

Power Usage Effectiveness (PUE):

Total Building Power

IT EQuipment Power

— A power efficiency measure for WSC

— Not considering efficiency of servers, networking
— Perfection=1.0

— Google WSC’s PUE =1.2
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PUE in the Wild (2007)
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FIGURE 5.1: LBNL survey of the power usage efficiency of 24 datacenters, 2007 (Greenberg et al.)
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Where Data Center Power Goes

Electricity Lighting, etc.
Transformer/ 3%
S )
10% \ /

Air Movement
12%

Cooling
25%

IT Equipment
50%
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Fraction of Time

Load Profile of WSCs
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CPU Utilization

* Average CPU utilization of 5,000 Google servers, 6 month period

* Servers rarely idle or fully utilized, operating most of the time at
10% to 50% of their maximum utilization
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Energy-Proportional Computing:
Design Goal of WSC

* Energy = Power x Time, Efficiency = Computation / Energy

* Desire:
— Consume almost no power when idle (“Doing nothing well”)
— Gradually consume more power as the activity level increases

IDEAL SYSTEM EFFICIENCY

Relative Povwer and Efficiency

0 20 40 &0 80 100

System Utilization



Cause of Poor Energy Proportionality

ECPU  mDRAM Disk Other

100.00
90.00
g 80.00 -
g 7000
«  60.00
0
< 50.00
= 4000 -
3000
2 3
& 2000
10.00 -
0.00_ T T T T T T T T T T T T
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Compute load (%)

* CPU:50% at peek, 30% at idle
 DRAM, disks, networking: 70% at idle!
* Need to improve the energy efficiency of peripherals
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Cloud Computing: Scale of Econom

Memory vCPUs Storage

Arch

Network

Performance

Linux On
Demand

M1 General Purpose Small 1.7GB 1 160 GB 32/64-bit Low $0.044 hourly
M1 General Purpose Medium  3.75GB 1 410 GB 32/64-bit  Moderate  $0.087 hourly
M1 General Purpose Extra

Large 150GB 4 1680GB  64-bit High $0.35 hourly
C1 High-CPU Medium 1.7GB 2 350 GB 32/64-bit  Moderate $0.13 hourly
C1 High-CPU Extra Large 7.0GB 8 1680 GB  64-bit High $0.52 hourly
12 Extra Large 305GB 4 800 GB  64-bit Moderate  $0.853 hourly
12 Double Extra Large 61.0GB 8 1600GB  64-bit Moderate  $1.705 hourly
M4 Large 80GB 2 EBSonly 64-bit Moderate  $0.108 hourly
M4 Extra Large 16.0GB 4 EBSonly 64-bit High $0.215 hourly
M4 16xlarge 256.0GB 64 EBSonly 64-bit 20 Gigabit  $3.447 hourly
General Purpose GPU Extra

Large 61.0GB 4 EBSonly 64-bit High $0.9 hourly
General Purpose GPU 16xlarge 732.0GB 64 EBSonly 64-bit 20 Gigabit  $14.4 hourly
X1 Extra High-Memory 16xlarge 976.0 GB 64 1920GB  64-bit 10 Gigabit  $6.669 hourly

* May 2017 AWS Instances & Prices
* Closest computer in WSC example is Standard Extra
* At these low rates, Amazon EC2 can make money!

— even if used only 50% of time

e Virtual Machine (VM) plays an important role



Agenda

* Request-level Parallelism

e.g. Web search
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Request-Level Parallelism (RLP)

 Hundreds of thousands of requests per sec.

— Popular Internet services like web search, social
networking, ...

— Such requests are largely independent
e Often involve read-mostly databases
* Rarely involve read-write sharing or synchronization
across requests
 Computation easily partitioned across different
requests and even within a request
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Google Query-Serving Architecture

:

Google Web server

-4—»= Spell checker

N

Ad server

K’/
5

i‘x\‘\\k ‘Lﬁl H\‘ I |
[

i

Index servers

Document servers

26



Google

Anatomy of a Web S

guardians of the galaxy 3

Q Al B News [ Videos [J Images : More

g

About 373,000,000 results (0.67 seconds) I

Guardians of the Galaxy Vol. 3

PG-13) 2023 - Adventure/Sci-fi - 2h 29m

Cast >

Chris Pratt Zoe Saldana Will Poulter Karen Gillan

Peter Quill / St... Gamora Adam Warlock Nebula
Wikipedia

https://fen.wikipedia.org » wiki » Guardians_of_the_G...

Guardians of the Galaxy Vol. 3

Guardians of the Galaxy Vol. 3 is a 2023 American superhero film based on the Marvel Comics
superhero team Guardians of the Galaxy, produced by Marvel ...

Budget: $250 million Based on: Marvel Comics
Production company: Marvel Studios Written by: James Gunn

Chukwudi Iwuji - Maria Bakalova - High Evolutionary - Pom Klementieff

People also ask :

Will there be Guardians 47

Does Guardians 3 have end credit scenes?

earch

Trailers & clips Behind the scenes

Marvel Studios’ Guardians of the Galaxy Vo...
o 2:22

8.3/10 82% 65%
IMDb Rotten Tomatoes Metacritic

95% liked this movie

Google users

G 9l

Still reeling from the loss of Gamora, Peter Quill must rally
his team to defend the universe and protect one of their
own. If the mission is not completely successful, it could
possibly lead to the end of the Guardians as we know them.

Release date: May 5, 2023 (USA)

Director: James Gunn

Music by: John Murphy

Distributed by: Walt Disney Studios Motion Pictures
Box office: $318.7 million

Produced by: Kevin Feige

Feedback

People also search for :

L TR AREE R A TS q/



Anatomy of a Web Search (1/3)

* Google “guardians of the galaxy 3”
— Direct request to “closest” Google WSC

— Front-end load balancer directs request to one of many
arrays (cluster of servers) within WSC

— Within array, select one of many Google Web Servers (GWS)
to handle the request and compose the response pages

— GWS communicates with Index Servers to find documents
that contains the search word, “guardians of the galaxy 3”

— Return document list with associated relevance score
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Anatomy of a Web Search (2/3)

* In parallel,

— Ad system: run ad auction for bidders on search terms
e Use docids (Document IDs) to access indexed documents
* Compose the page

— Result document extracts (with keyword in context)
ordered by relevance score

— Sponsored links (along the top) and advertisements (along
the sides)
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Anatomy of a Web Search (3/3)

* Implementation strategy
— Randomly distribute the entries
— Make many copies of data (a.k.a. “replicas”)

— Load balance requests across replicas

* Redundant copies of indices and documents
— Breaks up search hot spots, e.g., “guardians of the galaxy 3”
— Increases opportunities for request-level parallelism

— Makes the system more tolerant of failures
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Agenda

Data-level Parallelism
— MapReduce
— Hadoop, Spark
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Data-Level Parallelism (DLP)

SIMD
— Supports data-level parallelism in a single machine
— Additional instructions & hardware

e.g., Matrix multiplication in memory

DLP on WSC

— Supports data-level parallelism across multiple machines

— MapReduce & scalable file systems
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Problem Statement

 How to process large amounts of raw data (crawled
documents, request logs, ...) every day to compute
derived data (inverted indices, page popularity, ...),
when computation is conceptually simple but input
data is large and distributed across 100s to 1000s of
servers, so as to finish in reasonable time?

* Challenge: Parallelize computation, distribute data,
tolerate faults without obscuring simple computation
with complex code to deal with issues



Solution: MapReduce

Simple data-parallel programming model and

implementation for processing large datasets

Users specify the computation in terms of

— a map function, and

— a reduce function

Underlying runtime system

— Automatically parallelize the computation across large
scale clusters of machines

— Handles machine failure

— Schedule inter-machine communication to make efficient
use of the networks

34



What is MapReduce used for?

* At Google:

— Index construction for Google Search

— Article clustering for Google News

— Statistical machine translation

— For computing multi-layers street maps

At Yahoo!:

— “Web map” powering Yahoo! Search
— Spam detection for Yahoo! Mail

At Facebook:
— Data mining
— Ad optimization
— Spam detection

35



Map/Reduce Programming Model

Reduce

Key-Value
Pairs

— Map computation across many objects
* E.g., 100 Internet web pages

— Aggregate results in many different ways
— System deals with issues of resource allocation & reliability

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004
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Inspiration: Map & Reduce Functions,
ex: Python

4
o
Calculate: Qn® 1 2

3 4
"~ VU U Y

A =1, 2, 3, 4]

def square(x): 1 B - -
return X * X

def sum(x, y): @ ‘
return x + vy . e

reduce(sum, @
map(square, A))

30
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MapReduce Programming Model

* Map: (in_key, in_value) - list(interm key, interm_val)

map(in_key, in val):
// DO WORK HERE
emit(interm_key, interm_val)

— Slice data into “shards” or “splits” and distribute to workers
— Compute set of intermediate key/value pairs

* Reduce: (interm_key, list(interm value)) > list(out value)

reduce(interm_key, list(interm_val)):
// DO WORK HERE
emit(out key, out val)

— Combines all intermediate values for a particular key
— Produces a set of merged output values (usually just one)
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MapReduce Word Count Example

Distribute
that that is|is that that|is not is not|is that it it is
Map 1 Map 2 Map 3 Map 4
toat ihdbat dhds 1 Is1, that 1, thatl | is1, o1, hog 1,met 1 |is 1, that &1} it itthdt 1| Local Sort

L] -
e, - -
o, - -
Ya, - -
Ty -

e, -
——————————

Shuffle e S
is1,1,1,1,1,1 that1,1,1,1,1
itl,1 notl,1
Reduce 1 Reduce 2

is 6; it 2 not 2; that 5

Collect \ /

is 6; it 2; not 2; that 5
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Example: Sparse Matrices with
Map/Reduce

A B C

10 20 -1 -10 -80
30 40 X -2 -3 = -60 -250

50 60 70 -4 -170-460

— Task: Compute product C = A-B
— Assume most matrix entries are O

* Motivation
— Core problem in scientific computing
— Challenging for parallel execution
— Demonstrate expressiveness of Map/Reduce



Computing Sparse Matrix Product

A L B
- 1 131 - 17 01 =2
10 20 -1
1 io—m 2 Bz—n
30 40 -2 -3
2 Zio—»z 2 B3—>2
50 60 70 40 ~4 .

L - 2 A—PB L - 3 B—PZ

320—>1

3§O—>2

3210—»3

— Represent matrix as list of nonzero entries
(row, col, value, matrixID)
— Strategy
* Phase 1: Compute all products a; - b, ;
* Phase 2: Sum products for each entry i,j
* Each phase involves a Map/Reduce
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Phase 1 Map of Matrix Multiply

2 —p 3 | Key = col

Key = row

— Group values a;, and b, ; according to key k



Phase 1 “Reduce” of Matrix Multiply

— Generate all products a;, - by
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Phase 2 Map of Matrix Multiply

(1o £
C
2 ;Lbl
2 ;va Key = row,col
3 ;120 1
3 5180 5
1 =2
5 ;160 L 5
-280

10

Key=1,1 1 C_:—Pl
-80
Key=1,2 1 —PC 2

Key =2,1 2 Ll

— Group products g, - by ; with matching values of i and ]
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Phase 2 Reduce of Matrix Multiply

Key=1,1 1 C‘:L»l 1 C‘:L»l

Key = C‘fL»z 1 ;Lm

Key=21 o == 2 ———1 C

-10 -80

-60 -250

-170-460
-170 L -

— Sum products to get final entries



Lessons from Sparse Matrix Example

e Associative Matching is Powerful Communication
Primitive
— Intermediate step in Map/Reduce
e Similar Strategy Applies to Other Problems
— Shortest path in graph
— Database join
* Many Performance Considerations

— Pairwise Element Computation with MapReduce (HPDC '10)
— By Kiefer, Volk, Lehner from TU Dresden

— Should do systematic comparison to other sparse matrix
implementations
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Big Data Framework: Hadoop & Spark

* Apache Hadoop ,
— Open-source MapReduce Framework & DIDZIEJ

— Hadoop Distributed File System (HDFS)
— Hadoop YARN Resource Management

— MapReduce Java APIs
— more than half of the Fortune 50 used Hadoop (2013)&

* Apache Spark | SpQrK

— Fast and general engine for large-scale
data processing.
— Running on HDFS

— Provides Java, Scala, Python APIs for
* Database
* Machine learning
e Graph algorithm °°




And, in Conclusion ...

Warehouse-Scale Computers (WSCs)

— New class of computers

— Scalability, energy efficiency, high failure rate
Cloud Computing

— Benefits of WSC computing for third parties

— “Elastic” pay as you go resource allocation
Request-Level Parallelism

— High request volume, each largely independent of other
— Use replication for better request throughput, availability
MapReduce Data Parallelism
— Map: Divide large data set into pieces for independent parallel processing

— Reduce: Combine and process intermediate results to obtain final result
— Hadoop, Spark
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