
Computer Architecture I 2024

Homework 7

Chinese Name:

Pinyin Name:

Student ID:

E-Mail (omit “@shanghaitech.edu.cn”):

1.10 Put T (True) or F (False) for each of following statement. [2 points each]

(1) () The size of the virtual address space accessible to the program cannot be larger than
the size of the physical address space.

(2) () There is no fragmentation of physical memory while using virtual memory.

(3) () Freeing applications from having to manage a shared memory space, granting the
ability to share memory used by libraries between processes, and increased security due
to memory isolation are all benefits of using virtual memory.

(4) () The two users will not use any same part of physical memory, as they have separate
virtual memory spaces.

(5) () Page table walk refers to the behavior of the TLB miss handler of the MMU, system
firmware, or operating system to look up the address mapping in the page table to see if
there is a mapping when the TLB misses.

Email: Homework 7, Page 2 of 7 Computer Architecture I 2024

2.23 Page Table Calculations [23 points]
Assume we have a computer with 16KB pages, 32-bit virtual addresses, and 32-bit PTEs (8
bits are reserved for protection and valid bit). We use two-level hierarchical page tables to
manage virtual address and the machine is byte-addressable.

(a)7 For this computer, how many virtual pages can be addressed per process? [7 points]

(b)8 What is the maximum size of the physical memory that can be supported by this com-
puter? Tips: the length of physical address is not restricted to 32 bits. [8 points]

(c)8 Suppose that a running program is currently using 300 MB of memory. What is the
smallest possible number of PTEs and PTPs that must be valid in the page table(s) of this
program? [8 points]

Email: Homework 7, Page 3 of 7 Computer Architecture I 2024

3.20 TLB Replacement [20 points]
A processor has 16-bit address, 256 byte pages, and an 8-entry fully associative TLB with LRU
replacement (the LRU field is 3 bits and encodes the order in which pages were accessed, 0
is the most recent). At some time instant, the TLB for the current process is the initial state
given in the Table 2. Assume that all current page table entries are in the initial TLB. Assume
also that all pages can be read from and written to.

Fill in the final state of the TLB in Table 3 according to the access pattern in Table 1. When
needed, the page fault handler will allocate free physical pages using the following order:
0x17, 0x18, 0x19.

Table 1: Access Pattern for Memory

No. Access Pattern
1 Write 0x2132
2 Read 0x12F0
3 Write 0x2032
4 Write 0x1104
5 Read 0x20AC
6 Write 0x1016
7 Read 0xAC08
8 Write 0x1216

Table 2: Initial TLB

VPN PPN Valid Dirty LRU
0x01 0x11 1 1 0
0x00 0x00 0 0 6
0x10 0x13 1 1 1
0x20 0x12 1 0 5
0x00 0x00 0 0 7
0x11 0x14 1 0 4
0xAC 0x15 1 1 2
0xFF 0x16 1 0 3

Table 3: Final TLB

VPN PPN Valid Dirty LRU

Email: Homework 7, Page 4 of 7 Computer Architecture I 2024

4.22 Virtual Memory and TLB [22 points]
Li Hua creates a machine which is byte-addressed with 20-bit virtual address and 16-bit phys-
ical address. The processor manual only specifies that the machine uses a 3-level page table
with the following virtual-address breakdown.

L1 Index L2 Index L3 Index Page Offset
4 bits 4 bits 4 bits 8 bits

(a)8 Physical Address [8 points]
What is the page size of Li Hua’s machine?

How many bits do physical page number (PPN) and page offset need in physical address,
respectively?

PPN: bits

Page offset: bits

(b)14 TLB [14 points]
Li Hua executes the following snippet of code on his new processor. Assume sizeof(int)
is 4, and the array elements are mapped to virtual addresses 0x6000 through physical ad-
dress 0x1FFC. Assume array and sum have been suitably initialized.

1 int List[4096] = {0};
2 for (i = 0; i < 2; i++) {
3 for (j = 0; j < 8; j++) {
4 sum += List[j * 512]
5 }
6 }

The processor manual states this machine has a TLB with 16 entries. Assume that vari-
ables i, j and sum are stored in registers, and ignore address translation for instruction
fetches; only accesses to array require address translation.
In the end, how many misses from the TLB and total memory accesses will Li Hua ob-
serve (Consider only the presence of the TLB, ignore other data cache such as L1D or L2
cache. Disregarding the effect of the initialization of the array in the line 1 on the TLB):

1. The TLB is direct-mapped

Misses from the TLB:

Total memory accesses:

Email: Homework 7, Page 5 of 7 Computer Architecture I 2024

2. The TLB is fully-associative (assume LRU replacement policy)

Misses from the TLB:

Total memory accesses:

Email: Homework 7, Page 6 of 7 Computer Architecture I 2024

5.25 Page Table Walk [25 points]
Consider a system which uses a two-level page-based virtual memory system.

• Page size is 16 bytes

• PTE size is 4 bytes

• Memory is byte-addressable

• The system is initialized with only the base page table allocated

• Physical pages are allocated from lower to higher PPNs incrementally. Note: all allo-
cation follows this rule, including but not limited to user data and PTE.

• The base page table is architecturally mandated to be at physical address 0x00, so a
PTE containing value 0x00 is effectively an “invalid” PTE (no valid bit is necessary)

• The PTE is entirely reserved for a PPN (no valid, status, or permission bits)

(a)6 1. Fill in the blank b with the corresponding index size and offset. Show your intermediate
steps.[6 points]

L1 Index L2 Index Page Offset
bits bits bits

Email: Homework 7, Page 7 of 7 Computer Architecture I 2024

(b)19 First write the value 0x2E to the virtual address 0x64, then write the value 0x94 to the
virtual address 0xC8 and fill in the contents of the physical memory. [19 points]

Table 4: Memory State

Address (PA) Value (From Lower Address to Higher Address)
0x00
0x04
0x08
0x0c
0x10
0x14
0x18
0x1c
0x20
0x24
0x28
0x2c
0x30
0x34
0x38
0x3c
0x40
0x44
0x48
0x4c

Example for From Lower Address to Higher Address: If you were to write 0x00 to 0x50,
0x00 to 0x51, 0xe1 to 0x52, and 0x00 to 0x53, then what we expect to see is 0x0000e100
(case insensitive). In another word, keep leading and trailing 0.

