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Digital Circuit & Simple Datapath

* Digital design starting from scratch

* Design the state machine (Mealy/Moore)

* Write down the truth table

* Simplify Boolean formulas (Boolean algebra laws)

* Implement with basic gates (AND, OR, NOT, NAND, NOR, XOR, ...)

* Exercise: modulo-3 machine based on 2-input NAND
* 1-bit stream input, 2-bit remainder output



Timing (Setup)

* Reg’s Q -> Combinational -> Reg’s D
* Critical path sets a lower bound of clock period
° t +tomp <= T

clk-to-q comb period ~ tsetup



Datapath & Controller

 Datapath serves as “railway tracks” of data
* Regfile, ALU, Memory, Imm

* Controller controls “turnouts”
* Should data be written back? Which data should be written to Rd?
* Which data sources should be selected for ALU operands?
* Which format should the immediate value be extracted from?
* And so many other decisions/switches



R-type, |-type, lw, sw, beq
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Datapath Timing

Control signals
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Instruction-Level Parallelism

* l[ron Law:
. Time __ Instructions v Cycles v Time
Program Program Instruction Cycle

* |[nstr. per program determined by ISA, compilers and programmers
* Digital circuit design limits min. time per cycle

* Wanna reduce cycles per instruction!
* Improves throughput, i.e., more instructions executed within some cycles
* Unchanged or worse latency, i.e., one instruction alone is not made faster.
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Classic 5-stage Pipeline
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Hazards

* A situation in which a planned instruction cannot execute in the
proper clock cycle (perfect pipelining fails)

e Structural: datapath unit not available
* Memory unit shared for both data and instruction (IF and MEM)
* Regfile that does not support simultaneous read and write (ID and WB)

* Data: RAW, WAW, WAR

* Forwarding may not always solve it (lw then add)

* Control: next PC not fully determined
e Stalling, speculation, forwarding



Multi-issue

* Static: Very Long Instruction Word

 Compilers or programmers carefully pack multiple instructions to be
executed in the same cycle and avoid hazards.

* Dynamic: Superscalar
* Hardware packs instructions and avoids hazards.

* E.g., each cycle has an arithmetic slot and a memory slot
* Require more resources to avoid structural hazard
* Orthogonal to multithreading, SIMD and pipelining



Cache

* Make use of locality to provide
fast memory access
* Temporal locality
* Ref this addr again soon

e Spatial locality
 Ref near this addr soon

* [f missed, then turn to
accessing main memory

* Basic unit to fetch and replace
Is cache line/block

Memory Address (one dot per access)

- Temporal

locality



Direct Mapped

tag index offset

* Each memory address is mapped to a fixed cache line

* Index field locates the cache entry

* Offset field locates the byte inside the entry

* Tag used to distinguish addresses mapped to the same line
* On conflict, replacementis involved



Set Associative

tag index offset

* Cache is divided into sets and each sets have multiple slots

* Each address is mapped to a fixed set but may reside in any slots.
* Index field locates the set

* Offset field locates the byte inside the entry

* Tag used to distinguish addresses mapped to the same set and
determine in which slot the address reside.

* On all slots used, replacement is involved to replace one slot



Fully Associative

tag offset

* The whole cache is essentially a set of slots
 Each address may reside in any slots.

* No need of index field

* Offset field locates the byte inside the entry

* Tag used to distinguish addresses and determine in which slot the
address reside.

* On all slots used, replacement is involved to replace one slot



Replacement Policy

* LRU: utilize temporal locality but complex in hardware
* MRU: easy hardware implementation
* FIFO, LIFO: reasonable approximation

e Random



Write Policy

* Write-back vs. write-through
* Write dirty on eviction vs. write to memory
* Whether a hit write updates the main memory
* Averagely shorter but variable latency vs. fixed longer latency

* Write-allocate vs. no-write-allocate (write-around)
* Whether a write allocates a cache line on miss
* No-write-allocate implies write-through (must write to memory)



Cache Implementation

* How many bits for one entry?
* General: data, tag, valid
» State bit(s) for replacement policy
* Dirty bit for write-back policy
* How many digital circuit components required?
* Direct Mapped: MUX for set and one {tag,valid} comparator

* Fully Associative: A great many {tag,valid} comparator
* Set Associative: MUX for set and N {tag,valid} comparator for N-way
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