
Midterm II Review
Yizhou Wang

<wangyzh2024>



Digital Circuit & Simple Datapath

• Digital design starting from scratch
• Design the state machine (Mealy/Moore)
• Write down the truth table
• Simplify Boolean formulas (Boolean algebra laws)
• Implement with basic gates (AND, OR, NOT, NAND, NOR, XOR, …)
• Exercise: modulo-3 machine based on 2-input NAND

• 1-bit stream input, 2-bit remainder output



Timing (Setup)

• Reg’s Q -> Combinational -> Reg’s D
• Critical path sets a lower bound of clock period
• tclk-to-q + tcomb <= Tperiod - tsetup



Datapath & Controller

• Datapath serves as “railway tracks” of data
• Regfile, ALU, Memory, Imm

• Controller controls “turnouts”
• Should data be written back? Which data should be written to Rd? 
• Which data sources should be selected for ALU operands?
• Which format should the immediate value be extracted from?
• And so many other decisions/switches



R-type, I-type, lw, sw, beq



Datapath Timing



Instruction-Level Parallelism

• Iron Law: 

•
𝑇𝑖𝑚𝑒

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
=

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×

𝑇𝑖𝑚𝑒

𝐶𝑦𝑐𝑙𝑒

• Instr. per program determined by ISA, compilers and programmers
• Digital circuit design limits min. time per cycle
• Wanna reduce cycles per instruction!

• Improves throughput, i.e., more instructions executed within some cycles
• Unchanged or worse latency, i.e., one instruction alone is not made faster.



Classic 5-stage Pipeline



Hazards

• A situation in which a planned instruction cannot execute in the 
proper clock cycle (perfect pipelining fails)

• Structural: datapath unit not available
• Memory unit shared for both data and instruction (IF and MEM)
• Regfile that does not support simultaneous read and write (ID and WB)

• Data: RAW, WAW, WAR
• Forwarding may not always solve it (lw then add)

• Control: next PC not fully determined
• Stalling, speculation, forwarding



Multi-issue

• Static: Very Long Instruction Word
• Compilers or programmers carefully pack multiple instructions to be 

executed in the same cycle and avoid hazards.

• Dynamic: Superscalar
• Hardware packs instructions and avoids hazards.

• E.g., each cycle has an arithmetic slot and a memory slot
• Require more resources to avoid structural hazard
• Orthogonal to multithreading, SIMD and pipelining



Cache

• Make use of locality to provide 
fast memory access
• Temporal locality

• Ref this addr again soon
• Spatial locality

• Ref near this addr soon

• If missed, then turn to 
accessing main memory

• Basic unit to fetch and replace 
is cache line/block



Direct Mapped

• Each memory address is mapped to a fixed cache line
• Index field locates the cache entry
• Offset field locates the byte inside the entry
• Tag used to distinguish addresses mapped to the same line
• On conflict, replacement is involved

index offsettag



Set Associative

• Cache is divided into sets and each sets have multiple slots
• Each address is mapped to a fixed set but may reside in any slots.
• Index field locates the set
• Offset field locates the byte inside the entry
• Tag used to distinguish addresses mapped to the same set and 

determine in which slot the address reside.
• On all slots used, replacement is involved to replace one slot

index offsettag



Fully Associative

• The whole cache is essentially a set of slots
• Each address may reside in any slots.
• No need of index field
• Offset field locates the byte inside the entry
• Tag used to distinguish addresses and determine in which slot the 

address reside.
• On all slots used, replacement is involved to replace one slot

offsettag



Replacement Policy

• LRU: utilize temporal locality but complex in hardware
• MRU: easy hardware implementation
• FIFO, LIFO: reasonable approximation
• Random



Write Policy

• Write-back vs. write-through
• Write dirty on eviction vs. write to memory 
• Whether a hit write updates the main memory
• Averagely shorter but variable latency vs. fixed longer latency

• Write-allocate vs. no-write-allocate (write-around)
• Whether a write allocates a cache line on miss
• No-write-allocate implies write-through (must write to memory)



Cache Implementation

• How many bits for one entry?
• General: data, tag, valid
• State bit(s) for replacement policy
• Dirty bit for write-back policy

• How many digital circuit components required?
• Direct Mapped: MUX for set and one {tag,valid} comparator
• Fully Associative: A great many {tag,valid} comparator
• Set Associative: MUX for set and N {tag,valid} comparator for N-way


	幻灯片 1: Midterm II Review
	幻灯片 2: Digital Circuit & Simple Datapath
	幻灯片 3: Timing (Setup)
	幻灯片 4: Datapath & Controller
	幻灯片 5: R-type, I-type, lw, sw, beq
	幻灯片 6: Datapath Timing
	幻灯片 7: Instruction-Level Parallelism
	幻灯片 8: Classic 5-stage Pipeline
	幻灯片 9: Hazards
	幻灯片 10: Multi-issue
	幻灯片 11: Cache
	幻灯片 12: Direct Mapped
	幻灯片 13: Set Associative
	幻灯片 14: Fully Associative
	幻灯片 15: Replacement Policy
	幻灯片 16: Write Policy
	幻灯片 17: Cache Implementation

