Midterm |l Review

Yizhou Wang
<wanhgyzh2024>

Digital Circuit & Simple Datapath

* Digital design starting from scratch

* Design the state machine (Mealy/Moore)

* Write down the truth table

* Simplify Boolean formulas (Boolean algebra laws)

* Implement with basic gates (AND, OR, NOT, NAND, NOR, XOR, ...)

* Exercise: modulo-3 machine based on 2-input NAND
* 1-bit stream input, 2-bit remainder output

Timing (Setup)

* Reg’s Q -> Combinational -> Reg’s D
* Critical path sets a lower bound of clock period
° t +tomp <= T

clk-to-q comb period ~ tsetup

Datapath & Controller

 Datapath serves as “railway tracks” of data
* Regfile, ALU, Memory, Imm

* Controller controls “turnouts”
* Should data be written back? Which data should be written to Rd?
* Which data sources should be selected for ALU operands?
* Which format should the immediate value be extracted from?
* And so many other decisions/switches

R-type, |-type, lw, sw, beq

Control signals

instrul[11:7]

& reg_en
PC) _ re we
instruction , I d_fin
N PC Instruction rd |
. memo
] ;:.REQ L [— rsi x[rsi] Data |4 o4t
az” i _ou
| 4 i rs2 Reg. rs2] ALU Bddr g memory 5
instru[19:15] ; file 0 _ | D>
instrul[24:20] * x[rd] 1 - alu 1
ZEI0 result
0— 4 | wb_src
1 > ALU ctrl
pc_src instru
: .71 — imm. Gen. |-— op2_src
[31:20]11:7] i mm
| (sign—-extended)
imm_ctrl

T
N

|]

1s_beqg_instruction

Datapath Timing

Control signals
instrul11:7]

& reg_en
PC . : 3 | d lin re we
AN PC Instruction | 1NStruction rq | |
. memo
] ;:.REQ v J rsl x[rsi] Data
2 ., rs2 d_out
d ! Reg. |X rs2] ALU addrJ memory 5
instru[19:15] | file %) _ | >
instrul[24:20] * x[rd] 1 - alu 1
ZEI0 result
0— 4 | wb_src
1 P ALU_ctrl
pe_src instru |
: .71 — imm. Gen. |-— op2_src
[31:20]11:7] i mm

(sign-extended)

|
imm_ctrl {f——
N

|]

1s_beqg_instruction

Instruction-Level Parallelism

* l[ron Law:
. Time __ Instructions v Cycles v Time
Program Program Instruction Cycle

* |[nstr. per program determined by ISA, compilers and programmers
* Digital circuit design limits min. time per cycle

* Wanna reduce cycles per instruction!
* Improves throughput, i.e., more instructions executed within some cycles
* Unchanged or worse latency, i.e., one instruction alone is not made faster.

Instru.

Instru.

Instru.

Instru.

1

2

3

4

Classic 5-stage Pipeline

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7
IF ID EX MEM WB
Imem R_eg Dmem R?g
file file
IF ID EX MEM WB
Reg Reg
Imai file Dmem filo
IF ID EX MEM WEB
Reg Reg
Imee file Dmem filo
IF ID EX MEM
Imem R_eg Dmem
file

Hazards

* A situation in which a planned instruction cannot execute in the
proper clock cycle (perfect pipelining fails)

e Structural: datapath unit not available
* Memory unit shared for both data and instruction (IF and MEM)
* Regfile that does not support simultaneous read and write (ID and WB)

* Data: RAW, WAW, WAR

* Forwarding may not always solve it (lw then add)

* Control: next PC not fully determined
e Stalling, speculation, forwarding

Multi-issue

* Static: Very Long Instruction Word

 Compilers or programmers carefully pack multiple instructions to be
executed in the same cycle and avoid hazards.

* Dynamic: Superscalar
* Hardware packs instructions and avoids hazards.

* E.g., each cycle has an arithmetic slot and a memory slot
* Require more resources to avoid structural hazard
* Orthogonal to multithreading, SIMD and pipelining

Cache

* Make use of locality to provide
fast memory access
* Temporal locality
* Ref this addr again soon

e Spatial locality
 Ref near this addr soon

* [f missed, then turn to
accessing main memory

* Basic unit to fetch and replace
Is cache line/block

Memory Address (one dot per access)

- Temporal

locality

Direct Mapped

tag index offset

* Each memory address is mapped to a fixed cache line

* Index field locates the cache entry

* Offset field locates the byte inside the entry

* Tag used to distinguish addresses mapped to the same line
* On conflict, replacementis involved

Set Associative

tag index offset

* Cache is divided into sets and each sets have multiple slots

* Each address is mapped to a fixed set but may reside in any slots.
* Index field locates the set

* Offset field locates the byte inside the entry

* Tag used to distinguish addresses mapped to the same set and
determine in which slot the address reside.

* On all slots used, replacement is involved to replace one slot

Fully Associative

tag offset

* The whole cache is essentially a set of slots
 Each address may reside in any slots.

* No need of index field

* Offset field locates the byte inside the entry

* Tag used to distinguish addresses and determine in which slot the
address reside.

* On all slots used, replacement is involved to replace one slot

Replacement Policy

* LRU: utilize temporal locality but complex in hardware
* MRU: easy hardware implementation
* FIFO, LIFO: reasonable approximation

e Random

Write Policy

* Write-back vs. write-through
* Write dirty on eviction vs. write to memory
* Whether a hit write updates the main memory
* Averagely shorter but variable latency vs. fixed longer latency

* Write-allocate vs. no-write-allocate (write-around)
* Whether a write allocates a cache line on miss
* No-write-allocate implies write-through (must write to memory)

Cache Implementation

* How many bits for one entry?
* General: data, tag, valid
» State bit(s) for replacement policy
* Dirty bit for write-back policy
* How many digital circuit components required?
* Direct Mapped: MUX for set and one {tag,valid} comparator

* Fully Associative: A great many {tag,valid} comparator
* Set Associative: MUX for set and N {tag,valid} comparator for N-way

	幻灯片 1: Midterm II Review
	幻灯片 2: Digital Circuit & Simple Datapath
	幻灯片 3: Timing (Setup)
	幻灯片 4: Datapath & Controller
	幻灯片 5: R-type, I-type, lw, sw, beq
	幻灯片 6: Datapath Timing
	幻灯片 7: Instruction-Level Parallelism
	幻灯片 8: Classic 5-stage Pipeline
	幻灯片 9: Hazards
	幻灯片 10: Multi-issue
	幻灯片 11: Cache
	幻灯片 12: Direct Mapped
	幻灯片 13: Set Associative
	幻灯片 14: Fully Associative
	幻灯片 15: Replacement Policy
	幻灯片 16: Write Policy
	幻灯片 17: Cache Implementation

