
SIMD and OpenMP
Disscussion 12

Hanjia Cui

May 7, 2025

Disscussion 12 May 7, 2025 1 / 21

SIMD

• Single Instruction Multiple Data
• SIMD instructions allow processing of multiple pieces of data in a

single step, speeding up throughput for many tasks
• SIMD extensions

• ARM extensions - Neon
• X86 extensions - SSE, AVX, AVX-512 etc

Disscussion 12 May 7, 2025 2 / 21

Vector Registers

• SSE support 128-bit XMM registers
• AVX support 256-bit YMM registers
• AVX-512 support 512-bit ZMM registers

Disscussion 12 May 7, 2025 3 / 21

Loop Unrolling

void add(double *A, double *B, double *C, int N){
for(int i=0; i<N; i++){

C[i] = A[i] + B[i];
}

}

/* Suppose N % 4 = 0 */
void add_unrolling(double *A, double *B, double *C, int N){

for(int i=0; i<N; i+=4){
C[i] = A[i] + B[i];
C[i+1] = A[i+1] + B[i+1];
C[i+2] = A[i+2] + B[i+2];
C[i+3] = A[i+3] + B[i+3];

}
}

Disscussion 12 May 7, 2025 4 / 21

Intrinsics

#include <immintrin.h>

void add_intrinsic(double *A, double *B, double *C, int N){
for(int i=0; i<N; i+=4){

__m256d a = _mm256_load_pd(&A[i]);
__m256d b = _mm256_load_pd(&B[i]);
__m256d c = _mm256_add_pd(a, b);
_mm256_store_pd(&C[i], c);

}
}

Disscussion 12 May 7, 2025 5 / 21

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

OpenMP

• Scalable programming model that gives parallel programmers a simple
and flexible interface for developing portable parallel applications

• Fortran, C, C++ support
• Use compiler directives and library routines

• #include <omp.h>
• #pragma omp construct [clause [clause]...]
{

/* Structured Block */
}

• Compile with flag: -fopenmp
• Intend to support programs that will execute correctly both as

• parallel programs (multiple threads of execution and a full OpenMP
support library)

• sequential programs (directives ignored and a simple OpenMP stubs
library)

Disscussion 12 May 7, 2025 6 / 21

OpenMP

• Parallelization in OpemMP employs multi-thread and shared-memory
• fork-join model

• If there is parallel work, master thread forks off slave threads.
• When slave threads finish, they merge back into matser thread.

Disscussion 12 May 7, 2025 7 / 21

Runtime

• Library calls
• omp_set_num_threads()

• Affects the number of threads used for subsequent parallel
constructs not specifying a num_threads clause

• omp_get_num_threads()
• Returns the number of threads in the current team

• omp_get_thread_num()
• Returns the thread number of the calling thread

• Environment variables
• OMP_NUM_THREADS

• sets the number of threads to use for parallel regions

Disscussion 12 May 7, 2025 8 / 21

parallel construct

• Creates a team of OpenMP threads that execute the region
int tid, n;
#pragma omp parallel private(tid, n)
{

tid = omp_get_thread_num();
n = omp_get_num_threads();
printf("Hello from thread %d out of %d\n", tid, n);

}

Disscussion 12 May 7, 2025 9 / 21

Work-sharing

• When any team encounters a worksharing construct, the work inside
the construct is divided among the members of the team, and
executed cooperatively instead of being executed by every thread.

• An implicit barrier occurs at the end of any region that corresponds
to a worksharing construct for which the nowait clause is not
specified.

Disscussion 12 May 7, 2025 10 / 21

Work-sharing
loop constructs: for

• Specifies that the iterations of associated loops will be executed in
parallel by threads in the team.
int i, tid;
#pragma omp parallel for private(tid)
for(i=0; i<10; i++){

tid = omp_get_thread_num();
printf("Iteration %d by thread %d\n", i, tid);

}

Disscussion 12 May 7, 2025 11 / 21

Schedule

• schedule(static[,chunk_size])
• Iterations are divided into chunks of size chunk_size
• Chunks assigned in round-robin fashion
• Default: chunks approximately equal

• schedule(dynamic[,chunk_size])
• Iterations are divided into chunks of size chunk_size
• Grab chunk each time finished
• Default: chunk_size = 1

• schedule(guided[,chunk_size])
• Start with large size of chunks and then shrink down to chunk_size
• Grab chunk each time finished

Disscussion 12 May 7, 2025 12 / 21

Work-sharing
sections

• A non-iterative worksharing construct that contains a set of
structured blocks that are to be distributed among and executed by
the threads in a team.
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{ /* Structured Block */ }
#pragma omp section
{ /* Structured Block */ }

}
}

Disscussion 12 May 7, 2025 13 / 21

Work-sharing
single & master

• single associated structured block is executed by only one of the
threads in the team

#pragma omp parallel
{

#pragma omp single
{ /* Structured Block */ }

}
• master associated structured block is executed by only master thread

and no implicit barrier
#pragma omp parallel
{

#pragma omp master
{ /* Structured Block */ }

}

Disscussion 12 May 7, 2025 14 / 21

Data-sharing
private(variable_list)

• Creates a new variable for each item in list that is private to each
thread
int i = 1;
#pragma omp parallel private(i)
{

/* undefined initial value `i` */
}

Disscussion 12 May 7, 2025 15 / 21

Data-sharing
firstprivate(variable_list)

• Subject to the private clause semantics, except as noted
• Initialized from the value the original variable has at the time the

construct is encountered
int i = 1;
int *ptr_i = &i;
#pragma omp parallel firstprivate(i)
{

assert(i == 1);
i = 2;
assert(*ptr == 1);

}
assert(i == 1);

Disscussion 12 May 7, 2025 16 / 21

Data-sharing
lastprivate(variable_list)

• Subject to the private clause semantics, except as noted
• Values of the variables are the same as when the loop is executed

sequentially
int k = 0;
#pragma omp parallel for lastprivate(k)
for(int i=1; i<=100; i++){

if(i % 33 == 0){
k = i;

}
}
assert(k == 99);

Disscussion 12 May 7, 2025 17 / 21

Data-sharing
shared(variable_list)

• All references to a shared variable within a task refer to the storage
area of the original variable at the point the directive was
encountered.
/* Sum of 1, 2, ..., 10000000 */
double sum = 0;
double start = omp_get_wtime();
#pragma omp parallel for shared(sum)
for(int i=1; i<=10000000; i++){

sum += i;
}
double end = omp_get_wtime();
printf("Sum: %.1f in %fs\n", sum, end-start);

Disscussion 12 May 7, 2025 18 / 21

critical

• Restricts execution of the associated structured block to a single
thread at a time.
/* Sum of 1, 2, ..., 10000000 */
double sum = 0;
double start = omp_get_wtime();
#pragma omp parallel for shared(sum)
for(int i=1; i<=10000000; i++){
#pragma omp critical

sum += i;
}
double end = omp_get_wtime();
printf("Sum: %.1f in %fs\n", sum, end-start);

Disscussion 12 May 7, 2025 19 / 21

Data-sharing
reduction(op : variable_list)

• Private copy is created for each thread and is initialized with the
initializer value of the specified operator

• Combining original value with the final value of each private copies
using the combiner of the specified operator

• Operators: +, *, &, |, ^, &&, ||
/* Sum of 1, 2, ..., 10000000 */
double sum = 0;
double start = omp_get_wtime();
#pragma omp parallel for reduction(+ : sum)
for(int i=1; i<=10000000; i++){

sum += i;
}
double end = omp_get_wtime();
printf("Sum: %.1f in %fs\n", sum, end-start);

Disscussion 12 May 7, 2025 20 / 21

Reference

• Intel Intrinsics
• OpenMP Specification
• Slides from ShanghaiTech CS110
• Slides from ShanghaiTech CS121
• Slides from MIT 12.950

Disscussion 12 May 7, 2025 21 / 21

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://ocw.mit.edu/courses/12-950-parallel-programming-for-multicore-machines-using-openmp-and-mpi-january-iap-2010/a266803e9fa70cafb1e56c36b1742d5a_MIT12_950IAP10_Lec1.pdf

	
	SIMD
	OpenMP
	Overview
	Work-sharing
	Data-sharing

	Reference

