Operating System & Virtual Memory

Kunchang Guo

May 22, 2025

1/25

Overview

1. An Overview of OS

2. Process & CPU Management

3. Virtual Memory

2/25

What does an Operating System (OS) do?

A Layered View:

® Manages hardware resources.

® Provides abstractions to applications.

e Offers a consistent interface.
Key Roles of an OS:

1.

Abstraction: Hides hardware complexity (e.g.,
files vs. disk blocks).

. Resource Management: Shares CPU, memory,

I/O devices fairly and efficiently.

. Protection & Isolation: Prevents interference

between users/programs.

Standardized Interface (e.g., System Calls,
ABI): Simplifies application development.

Users

\4

Applications

-ABI--—----- ¥-----—-—-- -

|

OS Kernel

Hardware Interfacev —————————— -

~

Hardware
(CPU, Memory, Disk, etc.)

(Conceptual OS Layers)

3/25

Computing paradigms

Bare Metal: cPU 1/0 cPU

Batch: T1 CPU T2 CPU T3 CPU
Time-Sharing: -- c | |

> Time

Key Idea

The evolution aims for better tradeoff between resource utilization and performance.

4/25

Defining a ” Task”: The Process

In a time-sharing system, the OS manages multiple concurrent tasks.
Program vs. Process:

® Program: Passive entity stored on disk (e.g., executable file)

® Process: Active entity with:

Address space (code, data, stack, heap)
Execution state (CPU registers like pc, sp, GPRs)
Resources (files, sockets)

Managed via PCB (Process Control Block)

(Executable (Active in mem-
file, passive) ory, with PCB)

5/25

Concurrency vs. Parallelism

Concurrency Parallelism (Actual Simultaneousness)
(usion of Simultaneousness) ® Multiple processes (or threads) execute
® Multi-processes make progress over time truly at the same instant
® On a single core: Processes are interleaved ® Requires multi-cores.

Core 1: P1 P2 P1 P3 P2 Core 1: P1 P1
Time
Core 2: P2 P3

Modern OS supports both, but concurrency is fundamental even on single core.

Time

6/25

System Calls: The Gateway to the Kernel

® A system call is the programmatic way a user program requests a service from the
OS kernel.

® Acts as the Application Programming Interface (API) to the kernel.
® Triggers a mode switch from user mode to kernel mode.
Examples (Unix-like):
e fork(): Create a new child process.
® exec(): Replace current process image with a new program.
® pipe(): Create a data channel for Inter-Process Communication (IPC).
e read()/write(): File 1/0.
® sbrk()/mmap(): Memory management.

® exit(): Terminate process.

7/25

User Mode vs. Kernel Mode

User Mode (Unprivileged) Kernel Mode (Privileged / Supervisor)
® Applications run here e OS Kernel runs here
® Restricted memory access ® Full access to memory and hardware
® Cannot execute privileged instructions ® Can execute all CPU instructions

o Attempts trigger CPU exceptions

Protected from each other

Why this separation?

Provides isolation that prevents user programs from crashing the entire system.

8/25

The Trap: Software Interrupts

How does a user program transition to kernel mode to execute OS code?
¢ Via the RISC-V ECALL instruction (Environment Call).
The RISC-V Trap Mechanism:
1. User program executes ECALL (e.g., after library call like ‘read()").
® System call number placed in a7 (x17) register.
® Arguments placed in a0-a6 (x10-x16) registers.

CPU switches from User Mode to Supervisor Mode.

. CPU saves current program state in sepc (Supervisor Exception Program Counter),
and other CSRs like scause, stval record cause/details.

CPU jumps to the address specified in stvec (Supervisor Trap Vector).

Kernel's trap handler executes the requested service.

OS executes SRET (Supervisor Return) instruction.

CPU switches back to User Mode.

CPU restores saved program counter from sepc.

User program resumes execution after the ECALL.

N

©oN R

9/25

The lllusion of Many CPUs on RISC-V

On a single-core processor, how does the OS run multiple processes "simultaneously”?
® By rapidly switching the CPU between processes — Context Switching.
® Each process gets a small time slice to run.

What triggers a context switch on RISC-V?

¢ Voluntary:

® Process makes an ECALL that blocks (e.g., read() from empty pipe).
® Process explicitly yields the CPU using sched_yield() system call.
® Process terminates (via exit).

¢ Involuntary (Preemption):

® Timer Interrupt: When a timer interrupt comes, decided by corresponding handler.

® Higher priority process becomes ready in scheduler queue.

10/25

Context Switching: The Mechanism

What is saved and restored? The process's entire execution context.

1. Save Context of Current Process (P1):

® RISC-V general-purpose registers (x1-x31) — P1's PCB.

® Save supervisor CSRs (sstatus, sepc, etc.) if necessary.

® Update P1's state in PCB (e.g., from Running to Ready/Waiting).
2. Select Next Process (P2):

® OS Scheduler chooses P2 from the Ready Queue based on scheduling policy.
3. Restore Context of Next Process (P2):

® [oad P2's saved registers from its PCB — CPU registers.

® Crucially: Update satp register to point to P2's page table.

® Flush TLB entries.

® Update P2’s state in PCB (from Ready to Running).

4. Resume P2: Execute SRET instruction or jump to P2's saved program counter.

Overhead

Register saves/restores (32+ registers), TLB flushes, and cache pollution.

11/25

Context Switching: The Mechanism

OS Kernel Actions

OS: Save P1 Ctx
(regs, sCSRs)

Y

OS Scheduler
(Selects P2)

OS: Load P2 Ctx
(satp, TLB
Flush)

(Context switch: P1 — OS — P2)

12/25

Context Switching: Policies

The "mechanism” is how switching happens. The "policy” decides when and to whom to
switch. CPU Scheduling Policies (Examples - not exhaustive):

¢ First-Come, First-Served (FCFS): Simple, but can lead to convoy effect.

Shortest Job First (SJF): Optimal average turnaround, but needs future knowledge.

® Priority Scheduling: Important jobs run first; risk of starvation.

Round Robin (RR): Fair, good for time-sharing. Time slice (quantum) is critical.
Multilevel Feedback Queues (MLFQ): Adaptive, widely used.

13/25

The Programmer’s ldeal Memory View

From an application programmer’s perspective, memory should be:
® Large: Enough space for code, data, stack, heap.
e Contiguous: A single, unbroken range of addresses.

® Private/Isolated: My program’s memory is mine alone, safe from others.

Starts at 0 (or a known address): Simplifies linking and loading.

14/25

Challenges of Direct Physical Memory Access

If programs directly accessed physical RAM:

¢ Limited Capacity: Physical RAM is finite. How to run many/large programs?
¢ Address Relocation/Positioning:

® |f multiple programs, where does each start in RAM?
® Addresses compiled into program might conflict or be invalid.

* Fragmentation:

® External: Unused memory holes too small for new programs.
® Internal: Allocated block larger than needed, waste within block.

* Protection/lIsolation:

® No way to prevent one program from corrupting another or the OS.
® A single bug can crash the entire system.

15/25

Virtual Memory

Core Idea: OS gives each process its own private, virtual address space.

® Appears large, contiguous, starting from 0.

® OS + MMU translate virtual addresses to physical addresses dynamically.
Key Benefits:

lllusion of More Memory: Can run programs larger than physical RAM.

Protection: Processes isolated in their own VAS.

Simplified Programming: Programmers use simple, consistent virtual addresses.

Efficient Sharing: Controlled sharing of physical memory (e.g., libraries).

Flexibility: Programs can be loaded anywhere in physical RAM.

16/25

Paging

Observation: Programs often don't use their entire address space at once.
® Only a small "working set” of memory is actively used.
Paging ldea:
¢ Divide virtual address space into fixed-size blocks — pages (e.g., 4KB, 2MB).

® Divide physical memory into same-sized blocks — page frames.
® OS manages mapping from virtual pages to physical page frames.
® A page can be in RAM or on disk (swapped out).

Advantages of Paging:
e Solves External Fragmentation: Any free frame can be used for any page.
e Efficient for Sparse Address Spaces: Only allocate frames for pages in use.
® Demand Paging: Load pages into RAM only when accessed (on page fault).

Note: Internal fragmentation can still occur within the last page of a segment.

17/25

Virtual to Physical Address Translation

The MMU (Memory Management Unit) translates virtual addresses (VAs) to physical
addresses (PAs).

The Page Table

A per-process data structure, pointed to by a root register (e.g., satp in RISC-V), used
by the MMU.

e Contains mappings from Virtual Page Numbers (VPNs) to Physical Page Numbers
(PPNs).
® Page Table Entries (PTEs) also hold control bits (e.g., Valid, R/W, U, D, A).

A virtual address is typically split:
Virtual Address = [Virtual Page Number (VPN)] [Page Offset]

The MMU uses the VPN to find the PPN via the Page Table, then:
Physical Address = [Physical Page Number (PPN)] [Page Offset]

18/25

Page Table Entries

A RISC-V PTE (e.g., for SV39/SV48) contains more than just the PPN:

The MMU checks these bits on every memory access

Enforcing protection and triggering faults if necessary.

Valid bit (V): Is this PTE valid and the page present in a physical frame?
Read bit (R): Is reading from this page allowed?

Write bit (W): Is writing to this page allowed?

Execute bit (X): Is executing code from this page allowed?

User Mode Accessible bit (U): Can user-mode code access this page?
Accessed bit (A): Has this page been accessed since A was last cleared?
Dirty bit (D): Has this page been written to since D was last cleared?
RSW (Reserved for Supervisor Software): 2 bits for OS use.

Physical Page Number (PPN): If V=1 and R/W/X bits don't indicate a pointer
PTE, this is the frame number.

Note: If R=0, W=0, X=0, the PTE is a pointer to the next-level page table.
Otherwise, it's a leaf PTE.

19/25

RISC-V SV39 Page Walk

VA (39b) = [VPN[2](9b)] [VPN[1](9b)] [VPN[0](9b)] [0ffset(12b)]
{ VPN2 H VPN1 H VPNO H Offset 1

{ satp L—B:e[L2 Table L—B;e[L1 Table]LO—B:J LO Tab]éT“*

Copy < R

‘ PPN H Offset ’

20/25

Translation Lookaside Buffer (TLB)

TLB: A small, fast, hardware-managed cache on the CPU chip.
e Stores recent VPN — PPN mappings (and protection bits).

® Modern RISC-V implementations typically have hardware-managed TLBs.

® May include ASID tags to distinguish between address spaces.
Translation Process with TLB:

1. CPU generates VA. Extract VPN.
2. Check TLB

® TLB Hit: Get PPN from TLB, form PA = PPN + offset.

® TLB Miss:
2.1 Performs page table walk.
2.2 If PTE valid: Load translation into TLB, form physical address.
2.3 If PTE invalid: Generate a page fault exception.

21/25

Memory Protection with Paging

Private Page Tables

® Each process has its own page table structure.
RISC-V PTE Protection Bits:
R/W/X bits: Control read/write/execute permissions.

U bit: When 0, only supervisor mode can access the page.

Attempt to write to a read-only page — Store Page Fault.

User mode attempt to access a supervisor page — Load/Store/Instruction Page
Fault.

® Attempt to execute from non-executable page — Instruction Page Fault.
PMP (Physical Memory Protection)
e Additional RISC-V feature that can restrict even supervisor access to physical

memory regions.

22/25

Memory Sharing with Paging

Shared Libraries:

® Multiple processes map the same physical frames into their different VAS.

e Typically set with R-X permissions (readable, executable, but not writable).
Inter-Process Communication:

® OS maps same physical data page(s) with R-W permissions for multiple processes.
Copy-on-Write for fork():

® |nitially parent and child share all pages with R— permissions.

o Write attempt triggers page fault; OS makes a private copy and sets R-W
permissions.

23/25

Context Switching: Memory & TLB in RISC-V

When switching from Process P1 to Process P2:

1. Save/Load Process Context - CPU registers, etc.
2. Switch Address Spaces:

® Update satp register with P2's root page table physical address and its ASID.
3. Handle the TLB:

® Execute SFENCE.VMA instruction to flush TLB entries.
e With ASIDs:

® TLB entries include ASID tags.
® SFENCE.VMA can target specific ASID.

24/25

Further Exploration

Many important topics are not covered, such as:
® File Systems (Organization, Implementation, Performance)
¢ |/O Device Management and Drivers

Deadlocks

® Security features beyond basic protection

® And much more...

Recommended Reading for Deeper Understanding:
¢ Operating Systems: Three Easy Pieces (OSTEP) by Remzi Arpaci-Dusseau and
Andrea Arpaci-Dusseau.
® Website: http://pages.cs.wisc.edu/~remzi/0STEP/
® xvb:)a simple, Unix-like teaching operating system (and its accompanying
book).

® Website: https://pdos.csail.mit.edu/6.828/2024/xv6.html
® Book: https://pdos.csail.mit.edu/6.828/2024/xv6/book-riscv-rev4.pdf

25 /25

http://pages.cs.wisc.edu/~remzi/OSTEP/
https://pdos.csail.mit.edu/6.828/2024/xv6.html
https://pdos.csail.mit.edu/6.828/2024/xv6/book-riscv-rev4.pdf

	An Overview of OS
	Process & CPU Management
	Virtual Memory

