
Final Review
Yizhou Wang

<wangyzh2024>



Topics Covered

• Parallelism & Amdahl's Law (L19)
• Thread-Level Parallelism (L20-L22)
• Advanced Cache & Coherence (L23)
• Operating Systems & I/O (L24)
• Virtual Memory (L25)
• DMA, Networking, WSC (L26)
• Fault-Tolerance & Security (L27)
• Heterogeneous Computing & Summary (L28)



Parallelism & Amdahl's Law



Parallelism: Motivation & Amdahl's Law

• CPU Trends:
• Moore's Law, Power Wall, Frequency Plateau, More Cores 
• Need for Parallelism.

• Amdahl's Law: Speedup = 1 / [(1 - F) + (F / S)]
• F: Parallelizable fraction.
• S: Speedup of parallel part.
• Sequential part (1-F) limits overall speedup.



Scaling & Flynn's Taxonomy

• Strong vs. Weak scaling
• Load Balancing
• Flynn’s Taxonomy: SISD/SIMD/MISD/MIMD
• SPMD: Single Program Multiple Data



DLP & SIMD Execution

• DLP: Same operation on multiple data items (vector ops).
• SIMD Architecture: Wide registers, specialized FUs. One 

instruction -> multiple ops.
• Applications: Scientific, Graphics, AI/ML.
• SIMD Instructions: Operate on "packed" data. (e.g., VADDPS). 

Intel SSE/AVX (XMM/YMM/ZMM regs), Intrinsics.
• Loop Unrolling: Increase DLP by reducing overhead, exposing 

independent ops. (Manual/Compiler).



TLP & OpenMP (L20-L22)



TLP Intro & OpenMP Basics

• Threads: Own regs/PC/SP, Share memory (heap, globals). HW/SW 
threads.

• Fork-Join Model: Main forks -> parallel tasks -> threads join.
• OpenMP: API for shared-memory TLP. #pragma omp ...
• Key Concepts:

• Shared/Private vars.
• omp_get_thread_num()
• omp_get_num_threads()



TLP: Synchronization & Locks

• Need for Sync: Correctness, avoid data races
• Critical Sections: Code executed by one thread at a time

• OpenMP: #pragma omp critical/barrier

• Locks (Mutexes): Exclusive access. Operations: Acquire, Release
• Analogy: Buying Milk (L21)

• Naïve Locks: Prone to races. Need atomic hardware ops.



Hardware Atomics for Synchronization

• Atomic Operations: Indivisible hardware-supported read-modify-
write.

• RISC-V Atomics (RV-A Ext.):
• Load-Reserved (lr) / Store-Conditional (sc)

• Builds atomic sequences (swap, test-and-set).
• Atomic Memory Operations (AMOs): Single instructions (amoswap.w, 
amoadd.w).

• Used for lock implementation (amoswap.w.aq/.rl).

• Note: Use library locks (pthreads, std::mutex, OpenMP critical).



Advanced OpenMP & HW Multithreading

• Work-Sharing: #pragma omp sections/single/master
• OpenMP Reduction: reduction(operator:list) for safe 

parallel aggregation (e.g., sum).
• Multicore: Multiple independent cores. True parallelism.
• Hardware Multithreading (SMT/Hyper-Threading): Single core, 

multiple HW threads (duplicate state, shared FUs). Improves core 
utilization.

• Modern: Multicore + SMT.



Advanced Cache & Coherence 
(L23)



Multiprocessor Caches & Coherence Problem

• Shared Memory MPs: Multiple CPUs, single physical address 
space. Private Caches (L1/L2).

• Cache Coherence Problem: Multiple copies of a block; one CPU 
writes, others become stale. Example (L23, S8-10).

• Coherence: Read returns most recent write.
• Snooping Protocols: Controllers monitor shared bus.

• Write-Invalidate (Common): Writer broadcasts invalidate; others 
invalidate.

• Write-Update: Writer broadcasts new data; others update. (More bus 
traffic).



Cache Coherence States & False Sharing

• Coherence States (e.g., MSI, MESI, MOESI): Track block state 
(Modified, Shared, Invalid, Exclusive, Owned). State transitions on 
CPU/Bus ops.

• False Sharing: Different data items in same cache block, 
accessed by different CPUs.

• Write to one item invalidates block for others -> unnecessary misses.
• Mitigation: Alignment, padding.



Cache Inclusiveness (Multi-Level)

• Inclusive: in L1 => in L2
• Exclusive: in L1 => not in L2
• Non-inclusive: No strict relation
• Trade-offs: Coherence ease vs. capacity/performance



Operating Systems & I/O (L24)



OS Role & I/O Basics

• OS: Manages HW/SW resources, provides services (Booting, 
Resource/Process/I/O Mgmt, File Systems, Protection).

• I/O Interaction: CPU controls devices, transfers data.
• Memory-Mapped I/O (MMIO): (RISC-V) Device regs in physical 

addr space. Use lw/sw.
• Speed Mismatch: CPU vs. Devices -> Synchronization needed.
• Polling: CPU busy-waits checking device status. Simple, but 

wasteful.
• Interrupts: Device signals CPU. Efficient for slow/infrequent I/O.



Interrupts, Exceptions, Traps & Syscalls

• Interrupt: Asynchronous, external (I/O, timer).
• Exception: Synchronous, from instruction (fault, syscall).
• Trap: HW mechanism (jump) to OS handler.

• Handling: Save state (SEPC, SCAUSE), jump to handler (STVEC), OS runs, 
restore, resume.

• Precise Traps: Handler sees consistent state. Crucial. Pipeline 
handling at commit point.

• System Calls (Syscalls): User programs request OS services via 
ECALL trap.



Virtual Memory (L25)



Virtual Memory: Motivations & Addressing

• VM Motivations: Illusion of large, private memory; 
Protection/Isolation; Efficient RAM use; Disk as backing store.

• VA (Virtual Address): CPU/program generated.
• PA (Physical Address): HW memory.
• Address Translation (VA->PA): OS managed, HW assisted (MMU).
• Paged Memory: VA/PA in fixed-size pages (e.g., 4KB).

• VA = VPN + Offset. PA = PPN + Offset. (Offset same).



Page Tables & Translation Process

• Page Table (PT): Maps VPNs -> PPNs for a process. Array of PTEs. 
PTBR (satp) points to active PT.

• PTE Contents: PPN, Valid, Protection (R/W/X), Dirty, Accessed 
bits, Disk address.

• Translation & Page Faults:
• CPU generates VA. MMU gets VPN. Use PTBR+VPN to find PTE in memory.
• Check validity and protection. If okay, access PPN+Offset.
• Otherwise trap to OS. OS decides to load or to kill.

• Demand Paging: Load pages only on fault.



TLB & Hierarchical Page Tables

• TLB (Translation Lookaside Buffer): Small, fast HW cache for 
recent VPN->PPN translations (PTEs).

• TLB Hit: Fast translation.
• TLB Miss: PTW (HW/OS). Load PTE into TLB.
• Context Switch: Flush TLB or use ASIDs.

• Hierarchical PTs: Multi-level PTs for large VAs (saves space if 
sparse).

• Pros: Space saving. Cons: More PTW accesses on TLB miss.



Miscellaneous



DMA & Storage (SSDs) (L26)

• DMA (Direct Memory Access): Device transfers data directly 
to/from memory. DMAC manages. CPU programs DMAC, gets 
interrupt on completion. Frees CPU.

• Issues: Cache Coherence, Bus Arbitration.

• SSDs (Solid State Drives): Flash Memory. Non-volatile. Faster, 
durable, lower power than HDDs. Wear Leveling.



Networking: Basics & TCP/IP (L26)

• Networking: Inter-computer communication. Nodes, Links, 
Packets (header, payload).

• Layering & Protocols: Hierarchy (e.g., TCP/IP). Encapsulation.
• TCP/IP Suite:

• App: HTTP, SMTP.
• Transport: TCP (reliable), UDP (unreliable).
• Network: IP (addressing, routing).
• Link: Ethernet, Wi-Fi (MAC addr).
• Physical: Bits.



Warehouse-Scale Computers (WSCs) (L26)

• WSCs (Datacenters): 10k-100k+ servers. For large Internet 
services.

• Characteristics: Ample Parallelism (RLP, DLP), Scale (failure 
tolerance needed), Operational Costs (power).

• Design Goals: Energy Efficiency (PUE), Energy-Proportional 
Computing.

• MapReduce Model: For parallel processing of large datasets. 
• Flow: Input -> Map -> Shuffle/Sort -> Reduce.
• Frameworks: Hadoop, Spark.



Dependability via Redundancy (L27)

• Spatial (extra HW/info). Temporal (retry).
• Metrics: MTTF, MTTR, Availability, AFR
• Error Detection/Correction:

• Hamming Distance
• Parity Bit(s)
• Hamming ECC

• RAID: RAID0, RAID1, RAID5



Security & Side-Channel Attacks (L27)

• Heartbleed: Software Flaw (missing length check)
• Rowhammer: Hardware Flaw (DRAM disturbance)
• Side-Channel Attacks: Timing/Power/…

• E.g. Cachebleed, Flush & Reload
• Meltdown: Out-of-Order Execution
• Spectre: Speculative Execution



Heterogeneous Computing (L28)

• Heterogeneous: More than one kind of processor/core
• GPU, DSP, NPU, System-on-Chip, ASIC/FPGA accelerator, etc.

• Field-Programmable Gate Array
• Logic & interconnection is reprogrammable
• HDL => Implementation => HW Logic



The Great Ideas (L28)

• Abstraction to simplify design
• Design for Moore’s Law
• Make the common case fast
• Memory hierarchy
• Performance via parallelism/pipelining/prediction
• Performance measurement & improvement
• Dependability via redundancy


	Final Review
	Topics Covered
	Parallelism & Amdahl's Law
	Parallelism: Motivation & Amdahl's Law
	Scaling & Flynn's Taxonomy
	DLP & SIMD Execution
	TLP & OpenMP (L20-L22)
	TLP Intro & OpenMP Basics
	TLP: Synchronization & Locks
	Hardware Atomics for Synchronization
	Advanced OpenMP & HW Multithreading
	Advanced Cache & Coherence (L23)
	Multiprocessor Caches & Coherence Problem
	Cache Coherence States & False Sharing
	Cache Inclusiveness (Multi-Level)
	Operating Systems & I/O (L24)
	OS Role & I/O Basics
	Interrupts, Exceptions, Traps & Syscalls
	Virtual Memory (L25)
	Virtual Memory: Motivations & Addressing
	Page Tables & Translation Process
	TLB & Hierarchical Page Tables
	Miscellaneous
	DMA & Storage (SSDs) (L26)
	Networking: Basics & TCP/IP (L26)
	Warehouse-Scale Computers (WSCs) (L26)
	Dependability via Redundancy (L27)
	Security & Side-Channel Attacks (L27)
	Heterogeneous Computing (L28)
	The Great Ideas (L28)

