
Computer Architecture I Midterm II 2025

Computer Architecture I Mid-Term II

Chinese Name:

Pinyin Name:

Student ID:

E-Mail ... @shanghaitech.edu.cn:

Question Points Score

1 1

2 26

3 11

4 10

5 6

6 29

7 10

8 7

Total: 100

• This test contains 24 numbered pages, in-
cluding the cover page, printed on both
sides of the sheet.

• We will use gradescope for grading, so
only answers filled in at the obvious
places will be used.

• Use the provided blank paper for calcula-
tions and then copy your answer here.

• Please turn off all cell phones, smart-
watches, and other mobile devices. Re-
move all hats and headphones. Put every-
thing in your backpack. Place your back-
packs, laptops and jackets out of reach.

• The total estimated time is 105 minutes.

• You have 120 minutes to complete this exam. The exam is closed book; no computers,
phones, or calculators are allowed. You may use one A4 page (front and back) of handwritten
notes in addition to the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you
can. We will deduct points if your solution is far more complicated than necessary. When
we provide a blank, please fit your answer within the space provided.

• Do NOT start reading the questions/ open the exam until we tell you so!



Email: Midterm II, Page 2 of 24 Computer Architecture I 2025

1.1 First Task (1 point): Fill in you name
Fill in your name and email on top of every page (without @shanghaitech.edu.cn) (so write
your name in total 24 times).

2. MISC (26 Points)
(a)2 Which of the following scenarios best exemplifies data-level parallelism?

A. A multi-core CPU distributes different tasks across different cores.
B. A vector processor executes a single instruction to add four pairs of numbers in two

arrays simultaneously.
C. A pipelined CPU overlaps the fetch, decode, and execute stages of consecutive in-

structions.
D. A web server handles multiple client requests concurrently through thread pooling.

Solution: B

(b)2 In a classic 5-stage instruction pipeline (IF → ID → EX → MEM → WB), assuming
there is no forwarding mechanism, which of the following instruction pairs does NOT
cause a data hazard?

A. ADD R1, R2, R3; SUB R4, R1, R5

B. LW R1, 0(R2); ADD R3, R1, R4

C. ADD R1, R2, R3; SW R1, 0(R4)

D. LW R1, 0(R2); SW R2, 0(R3)

Solution: D

(c)2 Choose statement(s) that is/are True.

A. A computer with higher IPC will always run faster.
B. Synchronous circuits are usually modeled by FSM.
C. Mealy and Moore machines are not interchangeable.
D. You can obtain the value of PC register using RV32I instructions.

Solution: B, D

(d)2 (True or False) In the classic five-stage pipeline for a RISC-V processor, at most one
cache miss may happen to an arithmetic instruction.

Solution: T

(e)2 (True or False) The output of a combinational circuit solely depends on the inputs to it.



Email: Midterm II, Page 3 of 24 Computer Architecture I 2025

Solution: T

(f)2 (True or False) Given a C program running on two computers with the same instruction
set architecture (ISA), say, RISC-V, one computer that yields a higher CPI (clock cycles
per instruction) is impossible to be faster than the other one.

Solution: F

(g)2 (True or False) In the classic five-stage pipeline, read-after-write (RAW) is the only one
structural hazard that we need to handle with stall or bypassing.

Solution: F

(h)2 (True or False) A direct-mapped cache does not need any replacement policy, such as
the least-recently used (LRU) or random, to make space.

Solution: T

(i)2 (True or False) Given two computers with the same instruction set architecture (ISA),
say, RISC-V, they may have completely different memory hierarchy systems but the same
number of CPU cores.

Solution: T

(j)2 (True or False) Given two caches with the same size on two computers (the other parts of
the computers are the same), the set-associative four-way cache has a lower miss rate than
the two-way cache when the computers run the same program.

Solution: F

(k)2 (True or False) The reason why loading an instruction into the CPU cache hierarchy
for one thread causes an eviction of data that the other thread has put through a store
instruction, is that the two threads have a data race condition.

Solution: F

(l)2 (True or False) In a computer with a typical CISC ISA, e.g., x86, an arithemetic instruc-
tion is allowed to access memory locations to load or store data.

Solution: T

(m)2 (True or False) A computer with L1 cache only must be slower than a computer with L1
and L2 caches.



Email: Midterm II, Page 4 of 24 Computer Architecture I 2025

Solution: F

3. Calling Convention [11 Points]
Your friend Li Hua defines a struct node type as follows:

struct node {
int val; // 4 bytes
struct node *next; // 4 bytes

};

The following function recursively reverses a single-linked list:

struct node *reverse(struct node *head, struct node *prev) {
if (head == NULL) return prev;
struct node *next_node = head->next;
head->next = prev;
return reverse(next_node, head);

}

The function is initially called as follows to reverse an entire linked list head:

struct node *new_head = reverse(head, NULL);

(a)7 Please help Li Hua complete the RV32I assembly implementation of the reverse func-
tion below according to RISC-V calling conventions. Assume:

• Argument head is passed through register a0.
• Argument prev is passed through register a1.

reverse:
addi sp, sp, __ // (1) Allocate the minimum stack space

required regardless of stack alignment requirements.
sw ______ // (2) Select all must-save registers below

(multiple choices):

(A) a0. (B) a1. (C) s0. (D) s1.
(E) t0. (F) ra. (G) sp.

beq a0, x0, reverse_end // if (head == NULL) return prev
mv s0, a0 // s0 = head
mv s1, a1 // s1 = prev
lw t0, ______ // (3) t0 = head->next
sw s1, ______ // (4) head->next = prev.
____________ // (5) Set the 1st argument for recursive call
____________ // (6) Set the 2nd argument for recursive call
jal reverse



Email: Midterm II, Page 5 of 24 Computer Architecture I 2025

reverse_end:
mv a0, a1 // Return value: prev
lw ... // Restore registers (not shown)
addi sp sp ... // Restore stack pointer (not shown)
ret

(b)2 Below is an optimized version of list reversion. Complete the implementation:

reverse_opt:
beq a0, x0, reverse_end_opt // if head == NULL return prev
lw t0, 4(a0) // next = head->next
sw a1, 4(a0) // head->next = prev
mv a1, a0 // prev = head
mv a0, t0 // head = next
_________ // (7) Write the recursive call instruction

reverse_end_opt:
mv a0, a1 // Return value: prev
ret

(c)2 Next Li Hua asks you to answer the following question:
If the original non-optimized implementation (reverse) processes a linked list of length
6, how many bytes of stack space does the optimized version (reverse_opt) save at
the deepest recursion point compared to the non-optimized version? Please write your
answer directly.

Solution:

• (1) (1 point) -12 - Allocate 12 bytes of stack space

• (2) (2 points) Correct answers: C, D and F (ra, s0, s1)

– ra must be saved because the recursive call will overwrite it.

– s0 and s1 are callee-saved registers that we use, so they must be pre-
served.

• (3) (1 point) 4(s0) (or 4(a0)) - The next field is at offset 4 bytes from the
start of the struct.

• (4) (1 point) 4(s0) (or 4(a0)) – Same offset for storing to the next field.

• (5) (1 point) mv a0, t0 – First argument should be next_node which is in
t0.

• (6) (1 point) mv a1, s0 – Second argument should be head which is in s0.

• (7) (1 point) j reverse_opt – Jumping back to the beginning of the function
without modifying ra. The following answers are also right.



Email: Midterm II, Page 6 of 24 Computer Architecture I 2025

– jal x0, reverse_opt

– jal zero, reverse_opt

– tail reverse_opt

• (8) (1 point) 84 bytes. For a linked list of length 6, the recursion depth is 7 (6
for list nodes, 1 for the last NULL check). reverse creates a new stack frame
of 12 bytes for each recursive call while reverse_opt does not reserve any
stack space. Thus 12× 7 = 84 bytes are saved.



Email: Midterm II, Page 7 of 24 Computer Architecture I 2025

4. Scalar and Loop Unrolling (10 Points)
Next, please help Li Hua examine the execution of the following C loop on a scalar processor.
This code operates on two arrays, containing 32-bit floating-point numbers.

1 for (i = 0; i < N; ++i) // N is the the length of two arrays.
2 A[i] = A[i] + B[i] * 3.1415926;

Let us start by compiling and running the loop on Li Hua’s scalar processor. The compiler
generates the following instructions.

1 # Intially, f1 = 3.1415926, and N is a large constant number.
2 # x1 = &A[0] and x2 = &B[0]
3 # x3 = &A[N] (the 1st address beyond vector A)
4 I1: flw f0, 0(x2) # load B[i]
5 I2: flw f2, 0(x1) # load A[i]
6 I3: fmul f3, f0, f1 # f0 * f1 --> f3
7 I4: addi x1, x1, 4 # x1 + 4 --> x1
8 I5: fadd f4, f2, f3 # f2 + f3 --> f4
9 I6: addi x2, x2, 4 # x2 + 4 --> x2

10 I7: fsw f4, -4(x1) # store A[i]
11 I8: bne x1, x3, I1 # if x1 != x3, go to I1

(a)5 The code above runs on an in-order, pipelined, single-issue scalar processor with perfect
branch prediction and full bypassing. ALU (integer) operations have a 1-cycle latency (so,
thanks to bypassing, consecutive dependent ALU operations execute without stalling),
loads have a 2-cycle latency, and floating-point operations have a 3-cycle latency.
(i) How many cycles will the processor stall per loop iteration? Please briefly explain.

Solution: No stalls for the I1→I3 or I2→I5 load-use dependencies, as the compiler
has scheduled these instructions far enough apart. I3→I5 and I5→I7 each require one
stall to wait for a floating-point operation. Total: 2 stalls



Email: Midterm II, Page 8 of 24 Computer Architecture I 2025

(ii) How many floating-point arithmetic operations per cycle will the processor perform
on average? You can assume that N is a very large number, e.g., N ≥ 1,000,000,000.

Solution: 8 instructions + 2 stalls = 10 cycles per iteration, so with 2 floating point
operations this gives: 2/10 = 1/5 = 0.2 FLOPs/cycle.

(b)5 Next, Li Hua asks you to apply unrolling to the loop. What is the minimum unrolling
factor needed to remove all stalls in a long run of steady-state execution (i.e., N is a very
large number)? The unrolling factor is the total number of copies of code that you end up
with for the computation in the loop. Explain your answer.

Solution: Unrolling by 2 is sufficient. We could simply interleave instructions from
two iterations, which works since the original loop never required two stalls for a sin-
gle instruction. Although not required, for this particular loop, we can also reduce the
bookkeeping instructions and an unrolling factor of 2 is still sufficient. The following
code with only two additions (which is the minimum possible) still has zero stalls:

1

2 I1: lw f0, 0(x2) ; load B[i]
3 I2: lw f5, 4(x2) ; load B[i+1]
4 I3: lw f2, 0(x1) ; load A[i]
5 I4: lw f6, 0(x1) ; load A[i+1]
6 I5: fmul f3, f0, f1 ; f0 * f1 --> f3
7 I6: fmul f7, f5, f1 ; f5 * f1 --> f7
8 I7: addi x1, x1, 8 ; x1 + 8 --> x1
9 I8: fadd f4, f2, f3 ; f2 + f3 --> f4



Email: Midterm II, Page 9 of 24 Computer Architecture I 2025

10 I9: fadd f8, f6, f7 ; f6 + 67 -- > f8
11 I10: addi x2, x2, 8 ; x2 + 8 --> x2
12 I11: sw f4, -8(x1) ; store A[i]
13 I12: sw f8, -4(x1) ; store A[i + 1]
14 I13: bne x1, x3, I1; if x1 != x3, go to I1



Email: Midterm II, Page 10 of 24 Computer Architecture I 2025

5. Very Long Instruction Word (6 Points)

Memory

General
Register
(x0-x31)

Slot 0
MEM

Slot 1
CTRL

Slot 2
ALU

Slot 3
ALU

Load/
Store

324x32 bit
Instruction

128

S3 S2 S1 S0

(a)6 Li Hua has got a new processor that supports up to four parallel operations. The opera-
tions are executed in four parallel pipelined datapath which are referred to as slots. The
four slots are named slot 0, slot 1, slot 2, and slot 3. Slot 0 is for the execution of memory
access operations. Slot 1 is for the execution of branch operations. Slots 2 and 3 are for
the execution of integer arithmetic operations. Operations can be grouped in a very long
instruction word (VLIW) instruction to be executed in parallel. A VLIW instruction may
contain 1, 2, 3, or up to 4 operations. Grouping operations in a VLIW instruction must
be explicitly specified in software. For each VLIW instruction: (1) First, all operations
in it read their source registers in parallel; (2) After that, all operations in it execute in
parallel; (3) Then, all operations in it write their destination registers in parallel.
Each VLIW instruction is atomic from the program’s perspective. An instruction has a
single PC address that is the address of the start of the instruction. Operations in a VLIW
instruction cannot write to the same destination register. Also, there must be no data
dependency inside a VLIW instruction. Branches cannot be performed in the middle of
an instruction. Architecturally, an instruction executes to completion – including updating
all registers and memory where necessary – before the next instruction begins.

1 I1: addi x5, x0, 4
2 I2: addi x6, x0, 0
3 I3: lw x10, 0(x11)
4 I4: lw x28, 0(x12)
5 I5: lw x29, 0(x13)
6 I6: mul x28, x28, x29
7 I7: add x10, x10, x28
8 I8: addi x12, x12, 4
9 I9: addi x13, x13, 4

10 I10: addi x6, x6, 1
11 I11: beq x5, x6, I4
12 end: # End of program



Email: Midterm II, Page 11 of 24 Computer Architecture I 2025

Suppose Li Hua gives you a RISC-V program shown above. Assume that each operation,
i.e., each RISC-V instruction shown in this program, takes 1 cycle to run. If you run it on
this VLIW processor, what is the minimum number of cycles it will take?
Fill your VLIW instructions in the following table with their labels, e.g., I1, to ensure the
minimum number of cycles. You’re not allowed to change the content of given operations.
If no operation can be put in a slot for a VLIW instruction, please put ‘NOP’. You may
not use all rows or add more if you think it is necessary. The first row has been filled for
your reference.

Instruction No. Slot 0 (Memory) Slot 1 (Branch) Slot 2 (Arithmetic) Slot 3 (Arithmetic)
1 I3 NOP I1 I2
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Solution:
4 cycles

Instruction No. Slot 0 (Memory) Slot 1 (Branch) Slot 2 (Arithmetic) Slot 3 (Arithmetic)
1 I4 NOP I1 I2
2 I5 NOP I8 I10
3 I3 NOP I6 I9
4 NOP I11 I7 NOP

or
5 cycles(See table on next page.)



Email: Midterm II, Page 12 of 24 Computer Architecture I 2025

Instruction No. Slot 0 (Memory) Slot 1 (Branch) Slot 2 (Arithmetic) Slot 3 (Arithmetic)
1 I3 NOP I1 I2
2 I4 NOP I10 NOP
3 I5 NOP I8 NOP
4 NOP NOP I6 I9
5 NOP I11 I7 NOP
6
7
8



Email: Midterm II, Page 13 of 24 Computer Architecture I 2025

6. Cache (29 Points)
Recently Li Hua is very interested in CPU cache. In this question, assume a 32-bit address
space. For data types, assume sizeof(short)== 2 and sizeof(int)== 4. Standard C
alignment rules apply. The array arr starts at memory address 0x10000. The memory layout
of struct A is shown in the figure below.

Consider the following C code that Li Hua has written:

1 // Starts at address 0x10000
2 struct A {short a; int b; short c;} arr[1024];
3

4 void f() {
5 // i and j are stored in registers and cause no memory access
6 register int i, j;
7

8 // Loop X
9 for (i = 0; i < 1024; ++i) {

10 arr[i].a = i;
11 arr[i].b = i;
12 arr[i].c = i;
13 }
14

15 // Loop Y
16 for (i = 0; i < 32; ++i) {
17 for (j = 0; j < 60; ++j) {
18 // Intermediate calculations for address and values are

register-based
19 // Right-hand side operands are read first
20 arr[i + 32 + j * 16].a += arr[i + j * 16].a;
21 arr[i + 32 + j * 16].b += arr[i + j * 16].b;
22 }
23 }
24 }

(a)17 Single-Level Cache Analysis
Li Hua considers a system with a single-level unified cache with the following properties:

• Total Size: 8 KiB (213 bytes)
• Associativity: 4-way Set-Associative
• Block Size: 8 Bytes (23 bytes)
• Write Policy: Write-Back



Email: Midterm II, Page 14 of 24 Computer Architecture I 2025

• Write Allocation: Write-Allocate
• Replacement Policy: Least Recently Used (LRU)
• Hit Time (HT): 1 cycle
• Miss Penalty (MP): 80 cycles (time to fetch from main memory)

(i) Cache Anatomy (3 points)
Determine the number of bits for Tag, Index, and Offset for this cache configuration.
Tag: 21 bits, Index: 8 bits, Offset: 3 bits

(ii) Loop X Access Trace (3 points)
Li Hua finds that the cache is initially empty (cold start). Trace all memory accesses
(address and type) generated by the first two iterations (i=0 and i=1) of Loop X. Please
determine if each access causes a Hit or Miss.
Hint: Remember addresses correspond to the start of the accessed data (short or int).
Consider the structure layout, data types, and alignment. sizeof(struct A) must
be deducted.

Memory Address (Hex) Tag (Hex) R/W Hit/Miss?
10000 20 W M
10004 20 W H
10008 20 W M
1000C 20 W H
10010 20 W M
10014 20 W H

The struct is 4-byte aligned (due to int b) and the two short members a and c are
padded to 4 bytes. Therefore, the offset of a, b and c are 0x0, 0x4 and 0x8, respectively.

(iii) Loop Y Access Trace (6 points)
Continue tracing from the state the cache was left in after the accesses in (a.ii), where
Loop X only executed for two iterations before executing Loop Y. Trace all memory
accesses generated by the first iteration of the outer loop (i=0) of Loop Y, and for only



Email: Midterm II, Page 15 of 24 Computer Architecture I 2025

the first iteration of the inner loop (j=0) within each outer loop iteration. Determine if
each access is a Hit or Miss.

Memory Address (Hex) Tag (Hex) R/W Hit/Miss?
10000 20 R H
10180 20 R M
10180 20 W H
10004 20 R H
10184 20 R H
10184 20 W H

Reading 0x10000 is a hit because it has been fetched in (a.ii). The access sequence
for each in-place addition is reading the RHS operand, then reading the LHS operand,
followed by writing the result into the LHS operand.

(iv) Miss Rate Calculation (3 points)
Based only on the accesses traced in (a.ii) and (a.iii), calculate the miss rates and round
to the nearest integer percentage.
Loop X Miss Rate (Traced): 50 %
Loop Y Miss Rate (Traced): 17 %
Overall Miss Rate (Traced): 33 %

(v) AMAT Calculation (2 points)
Calculate the Average Memory Access Time (AMAT) for this cache based on the Overall
Miss Rate (Traced) calculated in (a.iv). Round to one decimal place.
AMAT (based on traced accesses): 27.4 cycles

(b)12 Two-Level Cache Analysis

Now Li Hua considers a system with a two-level unified cache hierarchy with the follow-
ing properties:

• L1 Cache:
– Size: 1 KiB (210 bytes)



Email: Midterm II, Page 16 of 24 Computer Architecture I 2025

– Associativity: Direct-Mapped
– Block Size: 8 Bytes (23 bytes)
– Write Policy: Write-Through
– Write Allocation: No-Write-Allocate
– Hit Time (HT1): 1 cycle

• L2 Cache:
– Size: 16 KiB (214 bytes)
– Associativity: Direct-Mapped
– Block Size: 16 Bytes (24 bytes)
– Write Policy: Write-Through
– Write Allocation: No-Write-Allocate
– Hit Time (HT2): 10 cycles (time to access L2 after L1 miss)

• Main Memory Access Time (MMAT): 120 cycles (time to access main memory after
L2 miss)

• Assume L2 is not inclusive of L1 (L1 hit does not guarantee L2 hit). Use local miss
rates for calculations.

(i) Cache Anatomy (2 points)
Determine the number of bits for Tag, Index, and Offset for the L1 and L2 caches.
L1: Tag: 22 bits, Index: 7 bits, Offset: 3 bits
L2: Tag: 18 bits, Index: 10 bits, Offset: 4 bits

(ii) Loop X Access Trace (3 points)
Assume both caches are initially empty (cold start). Trace all memory accesses (address
and type) generated by the first two iterations (i=0 and i=1) of Loop X. Determine if
each access is an L1 Hit/Miss and an L2 Hit/Miss. Note that the caches are write-through.
Leave L2 status blank if L2 is not accessed.

Memory
Address
(Hex)

L1 Tag (Hex) L2 Tag (Hex) R/W L1 Hit/Miss? L2 Hit/Miss?

10000 40 4 W M M
10004 40 4 W M M
10008 40 4 W M M
1000C 40 4 W M M
10010 40 4 W M M
10014 40 4 W M M

Write misses will not cause the destination be cached with no-write-allocate policy. Writes
will access both levels of cache with write-through policy.

(iii) Loop Y Access Trace (3 points)



Email: Midterm II, Page 17 of 24 Computer Architecture I 2025

Continue tracing from the state the caches were left in after the accesses in (b.ii), where
Loop X only executed for two iterations before executing Loop Y. Trace all memory
accesses generated by the first iteration of the outer loop (i=0) of Loop Y, and for only
the first one iteration of the inner loop (j=0) within each outer loop iteration. Note that
the caches are write-through. Determine L1 Hit/Miss and L2 Hit/Miss status. Leave L2
status blank if L2 is not accessed.

Memory
Address
(Hex)

L1 Tag (Hex) L2 Tag (Hex) R/W L1 Hit/Miss? L2 Hit/Miss?

10000 40 4 R M M
10180 40 4 R M M
10180 40 4 W H H
10004 40 R H
10184 40 R H
10184 40 4 W H H

Writing 0x10180 and 0x10184 access both levels of cache with write-through policy.

(iv) Miss Rate Calculation (2 points)
Based only on the accesses traced in (b.ii) and (b.iii), calculate the L1 miss rates and the
L2 local miss rate and round to the nearest integer percentage.
L1 Loop X Miss Rate (Traced): 100 %
L1 Loop Y Miss Rate (Traced): 33 %
L1 Overall Miss Rate (Traced): 67 %
L2 Local Miss Rate (Traced): 100 % (L2 Misses / L1 Misses)

(v) AMAT Calculation (2 points)
Calculate the Average Memory Access Time (AMAT) for this two-level cache hierarchy
based on the L1 Overall Miss Rate (Traced) and L2 Local Miss Rate (Traced) calculated
in 2.4. Round to one decimal place.
AMAT (based on traced accesses): 88.1 or 131 cycles
Read AMAT based on calculated rates: 1 + 67%× (10 + 100%× 120) = 88.1.
Write AMAT is always 1 + 10 + 120 = 131.
Because the question does not specify which AMAT clearly, both are acceptable.



Email: Midterm II, Page 18 of 24 Computer Architecture I 2025

7. Performance and Amdahl’s Law (10 Points)
(a)3 Assume that one program written in C runs 10 seconds on machine A. Li Hua has an op-

timized C compiler that compiles that program into 50% as much instructions as the old
compiler. However, half of the instructions require 140% average CPI compared to orig-
inal program, while the rest requires the same average CPI as the original program. How
much time would the program compiled by the newer compiler cost if run on machine A
now? Give your calculation.

Solution: 10 × 50 % × (50% + 50% × 140%) = 6.0

(b)4 Li Hua considers an ISA in which instructions can be divided into four different classes
(A, B, C, D) according to their CPI. Processor 1 (P1) is with a clock rate of 2.5 GHz and
CPIs are 1, 2, 3 and 3 for four classes, respectively. Processor 2 (P2) works at a clock rate
of 3 GHz and CPIs are 3, 2, 2 and 2 for four classes, respectively. Given a program that
contains 1.0× 106 instructions with 10% A, 20% B, 50% C, and 20% D.
(i) What is the average CPI of that program for P1 and P2? Give your calculation steps.

Solution: P1: 10% * 1 + 20% * 2 + 50% ×3 + 20% * 3 = 2.6; P2: 10% *3 + 20% *
2 + 50% * 2 + 20% * 2= 2.1.

(ii) Which processor runs faster for that program? Briefly explains your answer.

Solution: 2.6 / 2.5 ¿ 2.1 / 3, so P2 is faster.

(c)3 Li Hua has one more problem. She has a function f() that accounts for 80% (fE = 0.80)
of the execution time of a large program when run on a processor. The remaining 20% of
the program is sequential. Suppose the computation performed by f() can be perfectly
parallelized, meaning its execution time can be divided by N when run on N parallel



Email: Midterm II, Page 19 of 24 Computer Architecture I 2025

execution units. Please calculate the number of parallel execution units (N ) required to
achieve an overall program speedup of 4×. Brielfly explains your answer.



Email: Midterm II, Page 20 of 24 Computer Architecture I 2025

8.7 Multithreading and OpenMP (7 Points)
Li Hua has received one more task of counting negative and non-negative numbers in an array
A that only holds integers. Using a single thread is too slow. She asks you to help her paral-
lelize it with the following program. Assume that each integer takes four bytes (32 bits) and
has a memory address starting with the last two bits being ‘00’.

1 #include <stdio.h>
2 #include <omp.h>
3 // size holds the total number of elements in A.
4 // threads is the number of threads that Li Hua expects.
5 // Both of them are valid numbers.
6 void count_num (int *A, int size, int threads) {
7 int negatives = 0, non_negatives = 0;
8 int i;
9

10 omp_set_num_threads(threads);
11 #pragma omp parallel for {
12 for (i = 0; i < size; ++i)
13 if (A[i] < 0) negatives += 1;
14 else non_negatives += 1;
15 }
16 printf("negatives: %d\n", negatives);
17 printf("non-negatives: %d\n", non_negatives);
18 }

(a) As Li Hua increases the number of threads running this code, will it certainly print the
correct results for negative and non-negative integers? Explain your answer to her.

Solution: No. There may be a data race.



Email: Midterm II, Page 21 of 24 Computer Architecture I 2025

(b) Eventually, Li Hua asks you to correctly count zeros in the array A. Please complete the
following program by filling in the blank lines. Note that you may not use all blanks or you
may need to add blanks if you think it is necessary.

1 #include <stdio.h>
2 #include <omp.h>
3 void count_zeros (int *A, int size, int threads)
4 {
5 int zeros = 0;
6 int i;
7

8 omp_set_num_threads(threads);
9

10 #pragma omp ______________________________ {
11 for (i = 0; i < size; ++i) {
12

13 ___________________________________
14

15 ___________________________________
16

17 ___________________________________
18

19 ___________________________________
20

21

22

23

24

25 }
26 }
27 printf("Zeros: %d\n", zeros);
28 }

Solution:

1 void count_zeros (int *A, int size, int threads)
2 {
3 int zeros = 0;
4 int i;
5



Email: Midterm II, Page 22 of 24 Computer Architecture I 2025

6 omp_set_num_threads(threads);
7

8 #pragma omp parallel for reduction(+:zeros)
9 for (i = 0; i < size; i++) {

10 if (A[i] == 0) zeros++;
11 }
12 printf("Zeros: %d\n", zeros);
13 }






