
CS 110
Computer Architecture

Paralellism, Amdahl’s Law
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/4/29

Administratives

2

• Mid-term II tentatively May 15th 8am-10am; you can bring
2-page A4-sized double-sided cheat sheet, handwritten
only! (Teaching center 201/301/303); From start to May 13th
lecture.

• Project 2.1 ddl approaching, May 5th!!!

• Project 2.2 released, ddl May 19th.

• HW5 ddl approaching, May 7th.

• HW6 will be released, ddl May 12th!

• Lab 11 to be released. Prepare in advance!

• Keep the boards really well, because you have to return the
board after lab/project checking;

• Discussion May 9th & 12th on SIMD.

3

Parallelism Overview

• Parallel Requests
Assigned to computer
e.g., Search “CS110”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Smart
Phone

Warehouse
Scale

Computer

Logic Gates

Today’s
Lecture Functional

Unit(s)

A1+B1A0+B0

Cache Memory

Core Core…
 Memory (Cache)

Input/Output

Computer

4

CPU Trends

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

Due to
power wall.

5

Using Parallelism for Performance
• Two basic ways:

• Multiprogramming
• Run multiple independent programs in parallel
• “Easy”

• Parallel computing (parallel processing program)
• Run one program (single task or job) faster
• “Hard”

• We’ll focus on parallel computing for next few lectures

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

6

Challenges for Parallel Processing Programs

Task partition Communication
between writersTask sceduling

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

7

Recall Amdahl’s Law
• We have learnt in the very first lecture.

 Execution time after improvement

=

Gene Amdahl
Computer Pioneer

Execution time affected by improvement

Amount of improvement
+ Execution time not affected

With
enhancement:

Without
enhancement: Affected by

improvement

Amount of improvement = 2

Not
affected

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

8

Speed-up Challenges

Gene Amdahl
Computer Pioneer

With
enhancement:

Without
enhancement: Affected by

improvement (F)

Amount of improvement = 2 = S

Not
affected

 Speed-up

=
Execution time after improvement

Original execution time
=

1

(1-F) +
S
F

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

9

Amdahl’s Law Example

With
enhancement:

Without
enhancement: Affected by

improvement (F)

Amount of improvement = 2 = S

Not
affected

Speed-up =
1

(1-F) +
S
F

● Suppose to achieve a speed-up of 90 times faster with 100 processors,
what percentage of the original computation can be sequential?

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

10

Amdahl’s Law Example

With
enhancement:

Without
enhancement: Affected by

improvement (F)

Amount of improvement = 2 = S

Not
affected

Speed-up =
1

(1-F) +
S
F

● Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of
the original computation can be sequential!

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

11

Another Example
● Assume that we perform two sums: one to sum 10 scalar variables,

and one to add two-dimensional arrays (element-wise), with
dimensions 10 by 10. Assume an addition takes time t.

Single processor execution time: 110 * t

10 processors execution time: 20 * t

50 processors execution time: 12 * t

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

12

Another Example
● Assume that we perform two sums: one to sum 10 scalar variables,

and one to add two-dimensional arrays (element-wise), with
dimensions 10 by 10. Assume an addition takes time t.

Single processor execution time: 110 * t

10 processors execution time: 20 * t

50 processors execution time: 12 * t

● What if it is a 20 by 20 matrix addition?

Single processor execution time: 410 * t

10 processors execution time: 50 * t

50 processors execution time: 18 * t

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

13

Strong and Weak Scaling
● It is harder to obtain good speed-up while keeping the problem size

fixed than to obtain good speed-up by increasing the size of problem;
○ Strong scaling: when speedup can be achieved on a parallel processor

without increasing the size of the problem;
○ Weak scaling: when speedup is achieved on a parallel processor by

increasing the size of the problem proportionally to the increase in the
number of processors

● Memory hierarcy also interfere with scaling;
○ e.g. when problem does not fit in last level cache for weakly scaled data

Gustafson’s law

A post on scaling

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

14

Load Balancing
● Assume that we perform add two-dimensional arrays (element-wise),

with dimensions 10 by 10. Assume an addition takes time t.

● Case 1: balanced load for
10 processors on matrix
addition

10 * t

● Case 2: 5 processors take
100%, while the other 5
processors take 0% on
matrix addition

20 * t

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

15

Flynn’s Taxonomy

Set-Associative Cache Cache Metrics &Performance

• Sequential computer that exploits no parallelism in either the instruction or data
streams. Examples of SISD architecture are traditional uniprocessor machines.
• E.g. Our RISC-V processor up to now;
• Superscalar is SISD because programming model is sequential

Data
pool

Instruction pool

Processing
unit (PU)

Single instruction, single data (SISD)

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

16

Single Instruction, Multiple Data (SIMD)
• SIMD computer exploits multiple data streams against a single instruction stream to

operations that may be naturally parallelized.
• Intel SIMD instruction extensions

• NVIDIA Graphics Processing Unit (GPU)

• Vector processors

Data
pool

Instruction pool

PU

SIMD pronouced as “sim-dee”.
Main topic today!

PU

PU

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

17

Multiple Instruction, Multiple Data (MIMD)
• Multiple autonomous processors simultaneously executing different instructions on

different data.
• Multicore
• Warehouse-scale computers (WSC)

Data
pool

Instruction pool

PU

MIMD pronouced as “mim-dee”.
Will be covered in later lectures!

PU

PU

Apple M4 [Tech Insights]

PU

PU

PU

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

https://www.techinsights.com/blog/introducing-tsmc-n3e-power-behind-apples-m4-soc
https://www.reddit.com/r/hardware/comments/1djdnn5/m4_die_shot/

18

Multiple Instruction, Single Data (MISD)
• Multiple-Instruction, Single-Data stream computer that exploits multiple instruction

streams against a single data stream.
• Rare, mainly of historical interest only
• Some literatures categorize systolic array as MISD

Data
pool

Instruction pool

PU

MISD

PU

Mem.

Processing Unit
(PU)

Mem.

PU PU PU PU

H. T. Kung, Why systolic Architectures? IEEE Computer, 1982

5M
FLOPS

20 M FLOPS
possible

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

19

Flynn’s Taxonomy, 1966
• Since about 2013, SIMD and MIMD most common parallelism in architectures –

usually both in same system!
• Most common parallel processing programming style: Single Program Multiple Data

(“SPMD”)
• Single program that runs on all processors of a MIMD
• Cross-processor execution coordination using synchronization primitives

• SIMD (a.k.a. hw-level data parallelism): specialized function units, for handling lock-
step calculations involving arrays
• Scientific computing, signal processing, multimedia (audio/video processing)

Data streams
Single Multiple

Instruction
streams

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86
Multiple MISD: No examples today MIMD: Intel i7/Apple M4, etc.

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

20

Data-Level Parallelism (DLP)
• Executing the same operation on multiple data streams

• Example: element-wise vector multiplication (e.g., in filtering, GEMM, etc.)

 y[i] := c[i] × x[i], 0 ≤ i < n

void dgemm_scalar(int N, double *A,
 double *B, double *C) {
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 double Cij = 0;
 for (int k = 0; k < N; k++) {
 Cij += A[i+k*N] * B[k+j*N];
 }
 C[i+j*N] = Cij;
 }
 }
}

A B C

=x

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

21

SIMD Architecture
● SIMD architectures provide performance improvement for DLP

○ One instruction is fetched & decoded for entire operation
○ Multiplications are known to be independent
○ Pipelining/concurrency in memory access as well
○ Special functional units may be faster

A0 A1 A2 A3 A4 A5 A6 A7

SIMD mode

B0 B1 B2 B3 B4 B5 B6 B7

C0 C1 C2 C3 C4 C5 C6 C7

*

=

Scalar mode

*

=

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

22

SIMD Applications & Implementations

● Implementations
○ x86 Intel Intrinsics
○ ARM
○ RISC-V vector extensions

○ More in CA II & EE219

○ Video cards

● Applications
○ Scientific computing (Matlab,

NumPy)
○ Graphics and video

processing (Photoshop, …)
○ Big Data (Deep learning)
○ Gaming

SIMD instructions can often be accessed via extensions
to a given ISA, e.g., Intel x86 SSE/AVX, RISC-V vector
extension.

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

23

SIMD Instructions
● Fetch one instruction, do the work of multiple instructions

x3 x2 x1 x0Source 1

Source 2 y3 y2 y1 y0

Destination op(x3,y3) op(x2,y2) op(x1,y1) op(x0,y0)

OP OP OP OP

– Source operands + destination registers wide enough to fit multiple values
(e.g., four 64-bit floating point numbers)

– Apply single operation (e.g., OP:= add) to all operands in register

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

24

Intel SIMD Instructions
● Multi-Media eXtension (MMX)
● Streaming SIMD Extension (SSE)
● Advanced Vector eXtension (AVX)

MMX 64-bit registers, reusing
floating-point registers

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

25

MMX Datatype
Packed byte

07863

Packed word (Intel has 16-bit words)

0151663

Packed doubleword

0313263

Packed quadword

063

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

26

Intel SIMD Instructions
● Multi-Media eXtension (MMX)
● Streaming SIMD Extension (SSE)
● Advanced Vector eXtension (AVX)

https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-
ctp/

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/

27

Intel SSE SIMD Data Types
● Multi-Media Note: in Intel Architecture (unlike RISC-V) a word is 16 bits

• Single-precision FP: Double word (32 bits)
• Double-precision FP: Quad word (64 bits)
• AVX-512 available (16x float and 8x double)

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

28

SSE/SSE2 Floating-Point Instructions

xmm: one operand is a 128-bit SSE2 register
mem/xmm: other operand is in memory or an SSE2 register
{SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register
{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
{A} 128-bit operand is aligned in memory
{U} means the 128-bit operand is unaligned in memory
{H} means move the high half of the 128-bit operand
{L} means move the low half of the 128-bit operand

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

29

X86 SIMD Intrinsics

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Intrinsic
Instruction

4 parallel additions

CPI = 0.5

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

30

SIMD Instructions and Intrinsic Functions
● SIMD instructions can often be accessed via extensions to a given ISA, e.g., Intel

x86.
○ Sometimes known as vector instructions

● Use specialized “vector” registers
● Use extended SIMD instructions

to load/store, do arithmetic, etc.

_m256d

doubledoubledoubledouble

● Intrinsics are C functions and procedures that provide access to assembly
language.
○ With intrinsics, can program using assembly instructions indirectly.
○ One-to-one correspondence between SIMD extension assembly instruction

(e.g., Intel AVX or SSE) and intrinsics.

Instead of writing assembly, use intrinsics to write in a higher-level language, C.

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

31

Example: SIMD Array Processing
● For each f in array perform: f = sqrt(f)

for each f in array
{
 load f to the floating-point register
 calculate the square root
 write the result from the register to memory
}

for each 4 members in array
{
 load 4 members to the SSE register
 calculate 4 square roots in one operation
 store the 4 results from the register to memory
}

SIMD style

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

32

Loop Unrolling
● SIMD wants adjacent values in memory that can be operated in parallel
● Usually specified in programs as loops

 for(i=1000; i>0; i=i-1)
 x[i] = x[i] + s;
• How can reveal more DLP than available in a single iteration of a loop?
• Unroll loop and adjust iteration rate

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

33

Looping in RISC-V
• D Standard Extension (double) – builds upon F standard extension

(float)
Assumptions:
- t1 is initially the address of the element in the array with the highest

address
- f0 contains the scalar value s
- 8(t2) is the address of the last element to operate on
CODE:

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

34

Loop Unrolled
• NOTE:
1.Only 1 Loop overhead every 4 iterations
2.This unrolling works if

loop_limit(mod 4) = 0
3. Using different registers for each
iteration eliminates data hazards in pipeline

Loop Unrolled
Scheduled

4 Loads side-by-side:
Could replace with 4-wide SIMD Load

4 Adds side-by-side:
Could replace with 4-wide SIMD Add

4 Stores side-by-side:
Could replace with 4-wide SIMD Store

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

35

Loop Unrolling in C
• Instead of compiler doing loop unrolling, could do it yourself in C

for(i=1000; i>0; i=i-1)
 x[i] = x[i] + s;

• Could be rewritten
for(i=1000; i>0; i=i-4) {

 x[i] = x[i] + s;
x[i-1] = x[i-1] + s;
x[i-2] = x[i-2] + s;
x[i-3] = x[i-3] + s;
}

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

36

Generalizing Loop Unrolling
• A loop of n iterations
• k copies of the body of the loop
• Assuming n(mod k) ≠ 0

Then we will run the loop with 1 copy of the body (n mod k)
times and with k copies of the body floor(n/k) times

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

37

RISC-V Vector Extension
• 32 vector registers
• Need to setup length of data and number of parallel registers to

work on before usage (vconfig)! vflw.s: vector float load word .
stride: load a single word, put in v1 ‘vector length’ times

• vsetvl: ask for certain vector length – hardware knows what it
can do (maxvl)!

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

38

Hardware Support for CPU

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

39

Example: Add Two Single-Precision Floating-Point Vectors

• Computation to be performed:
vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;

• SSE Instruction Sequence:
(Note: Destination on the right in x86 assembly)
movaps address-of-v1, %xmm0
// v1.w | v1.z | v1.y | v1.x -> xmm0
addps address-of-v2, %xmm0
// v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x -> xmm0
movaps %xmm0, address-of-vec_res

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

40

Example SSE Intrinsics

• Vector data type:
_m128d

• Load and store operations:
_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double

• Load and broadcast across vector
_mm_load1_pd MOVSD + shuffling/duplicating

• Arithmetic:
_mm_add_pd ADDPD/add, packed double
_mm_mul_pd MULPD/multiple, packed double

Corresponding SSE instructions:Intrinsics:

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

41

Matrix Multiplication Performance Benchmark
● Matrix multiplication is a basic operation in many engineering, data,

and imaging processing tasks.
○ Image filtering, noise reduction, machine learning…
○ Many closely related operations

● Task (and implementation): dgemm
○ Double(-Precision floating-point) GEneral Matrix Multiplication

Weights
W0

Layer 0

Weights
W1

Layer 1 ...

Weights
WL-1

Layer L “Cat”

Mainly matrix-matrix/vector
multiplications in each layer

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

42

Recall Matrix Multiplication
● Basic implementation in C

for (int n = 0; n < N; n++) {
 for (int k = 0; k < K; k++) {
 C[n][k] = 0; // Initialization
 for (int m = 0; m < M; m++) {
 C[n][k] += A[n][m] * B[m][k];
 }
 }
}

A B C

=x

C0,0

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

43

Recall Matrix Multiplication
● Basic implementation in C

for (int n = 0; n < N; n++) {
 for (int k = 0; k < K; k++) {
 C[n][k] = 0; // Initialization
 for (int m = 0; m < M; m++) {
 C[n][k] += A[n][m] * B[m][k];
 }
 }
}

A B C

=x

C0,0

A B C

=x

C0,1

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

44

DGEMM in C
● Set C = A x B, and A, B, C are N x N matrices in column-major order.
● In C, they are actually stored in row-major order.
● FLOPS: Floating Point Operations Per Second.

○ DGEMM has 2*N3 Floating Point Operations (fadd, fmul)

for (int n = 0; n < N; n++) {
 for (int k = 0; k < K; k++) {
 C[n][k] = 0; // Initialization
 for (int m = 0; m < M; m++) {
 C[n][k] += A[n][m] * B[m][k];
 }
 }
}

A B C

=x

Column-major

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

45

Observations

● Parallelism opportunities in DGEMM
● Element-wise computation of Cij;
● Multiplication of Aik and Bkj;

void dgemm_scalar(int N, double *A,
 double *B, double *C) {
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 double Cij = 0;
 for (int k = 0; k < N; k++) {
 Cij += A[i+k*N] * B[k+j*N];
 }
 C[i+j*N] = Cij;
 }
 }
}

A B C

=x

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

46

A 2 x 2 Matrix Multiplication
• Definition of Matrix Multiply:

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x
C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

1 0

0 1

1 3

2 4
x

C1,1= 1*1 + 0*2 = 1 C1,2= 1*3 + 0*4 = 3

C2,1= 0*1 + 1*2 = 2 C2,2= 0*3 + 1*4 = 4
=

Ci,j =
k=1

2
Ai,k × Bk,j

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

47

A 2 x 2 Matrix Multiplication
• Definition of Matrix Multiply:

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x
C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

1 0

0 1

1 3

2 4
x

C1,1= 1*1 + 0*2 = 1 C1,2= 1*3 + 0*4 = 3

C2,1= 0*1 + 1*2 = 2 C2,2= 0*3 + 1*4 = 4
=

Ci,j =
k=1

2
Ai,k × Bk,j

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

48

A 2 x 2 Matrix Multiplication
• Use the XMM registers (contain two doubles per reg.)

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x
C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Ci,j =
k=1

2
Ai,k × Bk,j

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

C1 C1,1 C2,1

B1

B2

Bi,1

Bi,2

Bi,1

Bi,2

A A1,i A2,i

49

A 2 x 2 Matrix Multiplication
• Use the XMM registers (contain two doubles per reg.)

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x
C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

C1 C1,1 C2,1

B1

B2

Bi,1

Bi,2

Bi,1

Bi,2

A A1,i A2,i

double A[4] __attribute__ ((aligned (16)));
double B[4] __attribute__ ((aligned (16)));
double C[4] __attribute__ ((aligned (16)));
//double arrays declared and initialized (not shown)

__m128d c1,c2,a,b1,b2;
//vector variables declared

50

A 2 x 2 Matrix Multiplication
• Use the XMM registers (contain two doubles per reg.)

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x
C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

C1 C1,1 C2,1

B1

B2

Bi,1

Bi,2

Bi,1

Bi,2

A A1,i A2,i

double A[4] __attribute__ ((aligned (16)));
double B[4] __attribute__ ((aligned (16)));
double C[4] __attribute__ ((aligned (16)));
//double arrays declared and initialized (not shown)

__m128d c1,c2,a,b1,b2;
//vector variables declared

// used aligned loads to set
// c1 = [c_11 | c_21]
c1 = _mm_load_pd(C+0);
// c2 = [c_12 | c_22]
c2 = _mm_load_pd(C+2);

51

A 2 x 2 Matrix Multiplication
• Use the XMM registers (contain two doubles per reg.)

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x
C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

C1 C1,1 C2,1

B1

B2

Bi,1

Bi,2

Bi,1

Bi,2

A A1,i A2,i

// used aligned loads to set a/b1
a = _mm_load_pd(A); //A11 A21
b1 = _mm_load1_pd(B); //B11 B11
//compute partial sum
c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));//A11B11 A21B11

52

A 2 x 2 Matrix Multiplication
• Use the XMM registers (contain two doubles per reg.)

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x
C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Motivation Amdahl’s Law Flynn's Taxonomy SIMD

C1 C1,1 C2,1

B1

B2

Bi,1

Bi,2

Bi,1

Bi,2

A A1,i A2,i

// used aligned loads to set a/b1
a = _mm_load_pd(A); //A11 A21
b1 = _mm_load1_pd(B); //B11 B11
//compute partial sum
c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));//A11B11 A21B11
// used aligned loads to set a/b2

a = _mm_load_pd(A+2); //A12 A22
b2 = _mm_load1_pd(B+1); //B21 B21
//compute C11,C21
c1 = _mm_add_pd(c1,_mm_mul_pd(a,b2));
//store C11,C21
_mm_store_pd(C,c1);

In Conclusion, …
• Amdahl’s Law: Serial sections limit speedup

• Flynn Taxonomy

• Intel SSE SIMD Instructions

• Exploit data-level parallelism in loops

• One instruction fetch that operates on multiple operands
simultaneously

• 128-bit XMM registers

• SSE Instructions in C

• Embed the SSE machine instructions directly into C programs
through the use of intrinsics

• Achieve efficiency beyond that of optimizing compiler

53

Appendix
• lscpu in terminal to check if your CPU supports certain SIMD extensions;

54

Appendix
• Toy example, 2x2 matrix multiplication

55

//Toy example, 2x2 matrix multiplication for CS110 2025, ShanghaiTech University, all rights reserved
#include <stdio.h>
#include <time.h>
#include <emmintrin.h>
#include <immintrin.h>
void main(){
 double A[4]__attribute__((aligned(16)));
 double B[4]__attribute__((aligned(16)));
 double C[4]__attribute__((aligned(16)));
 int ida = 2;
 int i = 0;
 __m128d c1, c2, a, b1, b2;
 A[0] = 1.0;A[1] = 1.1;A[2] = 0.0;A[3] = 1.0;
 B[0] = 1.0;B[1] = 2.0;B[2] = 5.0;B[3] = 4.0;
 C[0] = 0.0;C[1] = 0.0;C[2] = 0.0;C[3] = 0.0;
 c1 = _mm_load_pd(C+0*ida);
 c2 = _mm_load_pd(C+1*ida);
 for (i=0;i<2;i++){
 a = _mm_load_pd(A+i*ida);
 b1 = _mm_load1_pd(B+i+0*ida);
 b2 = _mm_load1_pd(B+i+1*ida);
 c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
 c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
 }
 _mm_store_pd(C+0*ida,c1);
 _mm_store_pd(C+1*ida,c2);
 printf("[%g,%g,%g,%g]\n",C[0],C[1],C[2],C[3]);
 return;
}

