
CS 110
Computer Architecture

Thread-Level Paralellism
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/5/6

Administratives

2

• Mid-term II May 15th 8am-10am; you can bring 2-page A4-
sized double-sided cheat sheet, handwritten only!
(Teaching center 201/301/303); From start to May 13th
lecture (Thread-level parallelism/TLP).

• Project 2.2 released, ddl May 19th.

• HW5 ddl approaching, May 7th.

• HW6 released, ddl May 12th!

• Lab 12 to be released. Prepare in advance!

• To check May 13th, 15th & 19th;

• Discussion May 9th & 12th on SIMD.

3

Parallelism Overview

• Parallel Requests
Assigned to computer
e.g., Search “CS110”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Smart
Phone

Warehouse
Scale

Computer

Logic Gates

Today’s
Lecture

 Functional
Unit(s)

A1+B1A0+B0

Cache Memory

Core Core…
 Memory (Cache)

Input/Output

Computer

4

Threads

Thread-Level Parallelism OpenMP Data Race

• Threads (short for threads of execution) is a single stream of instructions.
• Each thread has:

• Its own registers (including stack pointer)
• Its own program counter (PC)
• Shared memory (heap, global variables) with other threads

• Each processor provides one (or more) hardware threads (through multi-core or
single-core multithreading, later) that actively execute instructions

• Within a given program’s process,
threads can run concurrently.

• Operating system (OS) multiplexes
multiple software threads onto the
available hardware threads

Software threads

5

Fork-Join Model
● Fork-Join model: A program / process can split, or fork itself into

separate threads, which can (in theory) execute concurrently.
○ Main thread executes sequentially until first parallel task region.
○ Fork: Main thread then creates a team of parallel subthreads.
○ Join: When subthreads complete their parallel task region, they synchronize and

terminate, leaving only the main thread.

A

B

A

B

C

A

B

C

Main
thread

Parallel
task I

Parallel
task II

Parallel
task III

Fork Join

Thread-Level Parallelism OpenMP Data Race

6

Thread-Level Parallelism & MIMD
● MIMD: Multiple Instruction, Multiple Data

○ Examples: Multicore systems, compute clusters, etc.
● A program / process can split, or fork itself into separate threads, which

can (in theory) execute simultaneously.

Multithreaded programs can run on both
SISD (time-shared) and MIMD systems
(in parallel).

● In hardware:
○ Single core: Multiple threads execute

instructions on a single core, concurrently
(time-multiplexing, giving the illusion of
many active threads)

○ Multicore: Each thread executes on a
separate core, simultaneously/in parallel

○ Can combine the above two…(more later)
A process with two threads of
execution, running on a single

processor [wiki]

Thread-Level Parallelism OpenMP Data Race

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

● The operating system, or OS, is responsible for (among other tasks)
managing which threads get run on which CPUs.

● On most modern computers, number of active threads >> number of
available cores, so most threads are idle at any given time;

● Context switches: The OS can choose whichever threads it wants to
run, and change threads at any time;
○ Remove a software thread from a hardware thread by interrupting

its execution and saving its registers and PC into memory;
○ Threads from the same program share memory;
○ Can make a different software thread active by loading its

registers into a hardware thread’s registers and jumping to its
saved PC, e.g., if one thread is blocked waiting for network access
or user input.

7

Operating System (OS) Threads

Thread-Level Parallelism OpenMP Data Race

8

“Hello, world!” to OpenMP
 OpenMP is a language extension used for multi-threaded, shared-

memory parallelism
○ Generally follows the fork-join model
○ “Open Multi-Processing”

 Portable & standardized
 Easy to compile

 #include <omp.h>
 Use pragma, e.g., #pragma omp parallel
 cc –fopenmp name.c

 Key ideas:
 Shared vs. private variables
 OpenMP directives for:

 Parallelization and work sharing
 Synchronization

Thread-Level Parallelism OpenMP Data Race

9

“Hello, world!” to OpenMP
#include <stdio.h>
#include <omp.h>
int main() {
 /* Fork team of threads with private variable tid */
 #pragma omp parallel
 {
 int tid = omp_get_thread_num(); /* get thread id */
 printf("Hello World from thread = %d\n", tid);
 /* Only main thread does this */
 if (tid == 0) {
 printf("Number of threads = %d\n",
 omp_get_num_threads());
 }
 } /* All threads join main and terminate */
 return 0;
}

Pragmas are a preprocessor
mechanism C provides for
language extensions.

This is annoying, but curly brace MUST
go on separate line from #pragma

Thread-Level Parallelism OpenMP Data Race

10

“Hello, world!” to OpenMP

Thread-Level Parallelism OpenMP Data Race

11

OpenMP: Threads
● OpenMP creates as many threads as specified in the environment

variable OMP_NUM_THREADS.
○ Set this variable to max number of threads you want to use
○ Generally, default: (# physical cores) * (# threads/core). Use lscpu

command to obtain the numbers (e.g. 6 physical cores * 2
threads/core = 12 threads

● OpenMP threads are OS (software) threads, which are then multiplex-
ed onto available hardware threads.

OpenMP Intrinsic Description

omp_set_num_threads(x); Set number of threads to x.

num_th = omp_get_num_threads(); Get number of threads.

th_ID = omp_get_thread_num(); Get Thread ID number.

Thread-Level Parallelism OpenMP Data Race

12

lscpu

Thread-Level Parallelism OpenMP Data Race

13

OpenMP: Shared/Private Variables
● Shared variables: all threads

read/write the same variable.
○ Variable declared outside of

parallel region
○ Heap-allocated variables
○ Static variables

● Private variables: Each thread
has its own copy of the variab-
le.
○ Variables declared inside

p a r a l l e l r e g i o n (r e c a l l
separate stack frames)

 int var1, var2;
 char *var3 = malloc(…);
 #pragma omp parallel private(var2)
 {
 int var4;
 // var1 shared (default)
 // var2 private
 // var3 shared (heap)
 // var4 private (thread’s stack)
 …
 }

Thread-Level Parallelism OpenMP Data Race

14

Example
#include <stdio.h>
#include <omp.h>
int main() {
 /* Fork team of threads with private variable tid */
 #pragma omp parallel
 {
 int tid = omp_get_thread_num(); /* get thread id */
 printf("Hello World from thread = %d\n", tid);
 /* Only main thread does this */
 if (tid == 0) {
 printf("Number of threads = %d\n",
 omp_get_num_threads());
 }
 } /* All threads join main and terminate */
 return 0;
}

Parallel
region
executed
by each
subthread
(with
OpenMP
API)

Private
variable

Thread-Level Parallelism OpenMP Data Race

15

Parallelizing Loop Work
● Problem: You have to do some work over an array of 2^27 numbers,

with 8 people. How would you split the work?
● Assumptions

○ We need to decide before running the code!
○ Each element of the array is independent, so the tasks can be

done in any order
○ The threads are about equally fast, so we want to assign each of

them ~11 million numbers

Thread-Level Parallelism OpenMP Data Race

16

Which Runs Fastest?
/* A. */
#pragma omp parallel
{
 for (int i = 0;
 i < LENGTH;
 i++) {
 arr[i] = …;
 }
}

/* C. */
#pragma omp parallel
{
 int tid = omp_get_thread_num();
 int num_threads =
omp_get_num_threads();
 for (int i = tid;
 i < LENGTH;
 i+= num_threads) {
 arr[i] = …;
 }
}

/* B. */
#pragma omp parallel
{
 int tid = omp_get_thread_num();
 int num_threads = omp_get_num_threads();
 int thread_start = tid*LENGTH/num_threads;
 int thread_end = (tid+1)*LENGTH/num_threads;
 for (int i = thread_start;
 i < thread_end; i++) {
 arr[i] = …;
 }
}

/* D. */
#pragma omp parallel
{
 #pragma omp for
 for (int i = 0;
 i < LENGTH;
 i++) {
 arr[i] = …;
 }
}

Duplicates
work

“Interweaves”
array access

between threads

“Chunks” array
sections

Like C, but
planned via

OpenMP

Thread-Level Parallelism OpenMP Data Race

17

OpenMP Work-sharing for Syntax
● #pragma omp for

○ must be written inside an already existing
parallel segment.

○ If a parallel segment consists only of one
fo r loop , we can combine the two
d e c l a r a t i o n s w i t h #pragma omp
parallel for.

● Must have relatively simple “shape” for an
OpenMP-aware compiler to be able to
parallelize it
○ Necessary for the run-time system to be

able to determine how many of the loop
iterations to assign to each thread

● No premature exits from the loop allowed
○ i.e. No break, return, exit, goto

#pragma omp parallel
{
 #pragma omp for
 for (int i = 0;
 i < LENGTH;
 i++) {
 arr[i] = …;
 }
}

#pragma omp parallel for
 for (int i = 0;
 i < LENGTH;
 i++) {
 arr[i] = …;
 }

Equivelant

Thread-Level Parallelism OpenMP Data Race

18

Non-deterministic Outcomes

int x = 0;
#pragma omp parallel
{
 x = x + 1;
}

● Suppose we run the below code on 4 threads.

What are possible values of x after
running this code? Select all that
apply.
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5 or more

Thread-Level Parallelism OpenMP Data Race

19

Data Race
● Two memory accesses form a data race if:

○ They are from different threads to the same location
○ At least one is a write, and
○ They occur one after another.

● Recall thread model: shared memory.
○ For a given thread, these two operations don’t necessarily

happen together…! Thread scheduling is non-deterministic.
■ Read current value of x
■ Write new value of x

● Not a data hazard!
○ Data hazard: Sequential instructions have data dependencies

during concurrent execution (instruction-level parallelism via
pipelining).

○ Here, even with no ILP, can have nondeterministic results. This
results from lack of synchronization on which thread accesses
memory first.

Thread-Level Parallelism OpenMP Data Race

20

Data Race: RISC-V Instructions
● Instructions from different threads have their execution on the CPU

interleaved.
● Assume (for ease of analysis):

○ Non-pipelined, single-cycle datapath → all atomic instructions,
meaning that no nothing else interposes itself while the
instruction is executing.

// four threads
int x = 0;
#pragma omp parallel
{
 x = x + 1;
}

lw t0 0(sp)
addi t0 t0 1
sw t0 0(sp)

load
addi
store

load
addi
store

load
addi
store

load
addi
store

Thread-Level Parallelism OpenMP Data Race

21

Data Race: Case 1
● Grey thread load read x: 0
● Grey thread store write x: 1
● Green thread load read x: 1
● Green thread store write x: 2
● Blue thread load read x: 2
● Blue thread store write x: 3
● Red thread load read x: 3
● Red thread store write x: 4

load
addi
store
load
addi
store
load
addi
store
load
addi
store

Final value of x: 4

Thread-Level Parallelism OpenMP Data Race

22

Data Race: Case 1
● Grey thread load read x: 0
● Green thread load read x: 0
● Blue thread load read x: 0
● Red thread load read x: 0
● Grey thread store write x: 1
● Green thread store write x: 1
● Blue thread store write x: 1
● Red thread store write x: 1

load
addi
store
load
addi
store
load
addi
store
load
addi
store

Final value of x: 1

Thread-Level Parallelism OpenMP Data Race

23

Data Race: Cases ...
● Many possible permutations!

● Cannot go over 4;
● Cannot go below 1;

● Formally, a multithreaded program is only considered correct if ANY
interlacing of threads yield the same result.
○ Here, we have an incorrect program!
○ But if each thread works on independent data (no thread accesses

same data location another thread wrote to), you can guarantee
correctness.

Thread-Level Parallelism OpenMP Data Race

24

Summary
● Basics on thread-level parallelsim
● One implementation: OpenMP (extension for C/C++ and Fortan)
● Data race and how shall we solve it?

