E N EERESEAFER

E.:af;; o .-'_';;i:?. School of Information Science and Technology

CS 110
Computer Architecture
Thread-Level Paralellism

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/5/6

Administratives

Mid-term Il May 15th 8am-10am; you can bring 2-page A4-
sized double-sided cheat sheet, handwritten only!
(Teaching center 201/301/303); From start to May 13th

lecture (Thread-level parallelism/TLP).
Project 2.2 released, ddl May 19th.

HWS ddl approaching, May 7th.

HWG released, ddl May 12th!

Lab 12 to be released. Prepare in advance!
 To check May 13th, 15th & 19th;
Discussion May 9th & 12th on SIMD.

Parallelism Overview

Software B Hardware

Parallel Requests
Assigned to computer

‘) Harness
e.g., Search “CS110 Paral]e]ism &
Parallel Threads Achieve High
Performance

Assigned to core

e.g., Lookup, Ads
Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Warehouse
Scale §
Computer

..~ Core = Today’s

Memory /,/(’Cache) \, Lecture

lngut#@ﬁtput %

Aol Functional
N ereteictal Unit(s)

Hardware descriptions
All gates @ one time

Programming Languages

Logic Gates

Thread-Level Parallelism

Threads

Threads (short for threads of execution) is a single stream of instructions.

Each thread has:

* Its own registers (including stack pointer)
* Its own program counter (PC)

« Shared memory (heap, global variables) with other threads

Each processor provides one (or more) hardware threads (through multi-core or

single-core multithreading, later) that actively execute instructions

Within a given program’s process,

code

data

files

code

data

files

threads can run concurrently.

registers

stack

registers

registers

registers

Operating system (OS) multiplexes
multiple software threads onto the
available hardware threads

thread —>

stack

stack

stack

single-threaded process

— thread

multithreaded process

Software threads

Thread-Level Parallelism

Fork-doin Model

« Fork-Join model: A program / process can split, or fork itself into

separate threads, which can (in theory) execute concurrently.
o Main thread executes sequentially until first parallel task region.
o Fork: Main thread then creates a team of parallel subthreads.
o Join: When subthreads complete their parallel task region, they synchronize and
terminate, leaving only the main thread.

Parallel Parallel
Parallel task II task 111
task I - A
Main | —
thread —
o B — 00—
— B —

Fork Join

Thread-Level Parallelism

Thread-Level Parallelism & MIMD

o« MIMD: Multiple Instruction, Multiple Data
o Examples: Multicore systems, compute clusters, etc.

o A program / process can split, or fork itself into separate threads, which
can (in theory) execute simultaneously.

Process

e In hardware:
Single core: Multiple threads execute

Thread #1

Thread #2

Instructions on a single core, concurrently A o
(time-multiplexing, giving the illusion of — 5
many active threads) y,

Multicore: Each thread executes on a v

separate core, simultaneously/in parallel

Can combine the above two...(more later)
A process with two threads of

: execution, running on a single
Multithreaded programs can run on both orocessor [wikil

SISD (time-shared) and MIMD systems
(in parallel).

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

Thread-Level Parallelism

Operating System (OS) Threads

e The operating system, or OS, is responsible for (among other tasks)
managing which threads get run on which CPUs.

e« On most modern computers, number of active threads >> number of
available cores, so most threads are idle at any given time;

e Context switches: The OS can choose whichever threads it wants to
run, and change threads at any time;

- Remove a software thread from a hardware thread by interrupting
its execution and saving its registers and PC into memory;

- Threads from the same program share memory;

- Can make a different software thread active by loading its
registers into a hardware thread’s registers and jumping to its
saved PC, e.g., if one thread is blocked waiting for network access
or user input.

Thread-Level Parallelism

“Hello, world!” to OpenMP

« OpenMP is a language extension used for multi-threaded, shared-
memory parallelism
- Generally follows the fork-join model
> “Open Multi-Processing”
« Portable & standardized
o Easy to compile
- #include <omp.h>
- Use pragma, e.qg., #pragma omp parallel
« cCc —fopenmp name.c
o Key ideas:
o Shared vs. private variables
o OpenMP directives for:

« Parallelization and work sharing
o Synchronization

OpenMP

“Hello, world!” to OpenMP

#include <stdio.h>
#include <omp.h>
int main() {

Pragmas are a preprocessor
mechanism C provides for
language extensions.

/* Fork team of threads with private variable tid *x/

\#pragma omp parallel

{ —

This is annoying, but curly brace MUST
go on separate line from #pragma

int tid = omp_get_thread_num(); /% get thread id =x/
printf("Hello World from thread = %d\n", tid);
/* Only main thread does this */

if (tid == 0) {

printf("Number of threads

%d\n'",

omp_get_num_threads());

¥

¥ /% All threads join main and terminate x/

return 0;

}

OpenMP

“Hello, world!” to OpenMP

siting@siting-ThinkPad-T14p-Gen-1: ~/Downloads/flec31_ code QO = - | x

: S ./hello world
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Number of threads = 20
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread

OpenMP

OpenMP: Threads

e OpenMP creates as many threads as specified in the environment
variable OMP_NUM_THREADS.
- Set this variable to max number of threads you want to use
- Generally, default: (# physical cores) * (# threads/core). Use 1scpu
command to obtain the numbers (e.g. 6 physical cores * 2
threads/core = 12 threads

o« OpenMP threads are OS (software) threads, which are then multiplex-
ed onto available hardware threads.

OpenMP Intrinsic Description
omp_set_num_threads(x); Set number of threads to X.
num_th = omp_get_num_threads(); Get number of threads.

th_ID = omp_get_thread _num(); Get Thread ID number.

11

siting@siting-ThinkPad-T14p-Gen-1: ~/Downloads

S lscpu
212 x86_64
CPU BT : 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits wvirtual
FHF Little Endian
CPU: 20
E4% CPU BIIR: 0-19
[& ID: GenuineIntel
BESZFR: 13th Gen Intel(R) Core(TM) 19-13900H
CPU &5 6
Bs: 186
STERBNEEH: 2
STENZE: 14
BE: 1
p 7t 2
CPU(s) scaling MHz: 39%
CPU FRK MHz: 2600.0000
CPU E/]\ MHz: 400.0000
BogoMIPS: 599@.40

Frid: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx f

xsr sse sse?2 ss ht tm pbe syscall nx pdpelgb rdtscp lm constant tsc art arch_perfmon pebs bts
rep good nopl xtopology nonstop tsc cpuid aperfmperf tsc known freq pni pclmulqdg dtes64 monit
or ds _cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid ssed4 1 ssed 2 x2apic movbe popcnt
tsc deadline timer aes xsave avx Tl1l6c rdrand lahf lm abm 3dnowprefetch cpuild fault epb ssbd 1
brs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpld ept ad fsgsbase tsc adjust bmil
avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel pt sha ni xsaveopt xsavec xg
etbvl xsaves split lock detect user shstk avx vnni dtherm ida arat pln pts hwp hwp notify hwp_
act window hwp epp hwp pkg req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulgdq tme rdpid
movdiri movdir64b fsrm md clear serialize pconfig arch_lbr ibt flush l1d arch capabilities

OpenMP

OpenMP: Shared/Private Variables

 Shared variables: all threads
read/write the same variable.
- Variable declared outside of
parallel region
- Heap-allocated variables
- Static variables
e Private variables: Each thread
has its own copy of the variab-
le.
- Variables declared inside
parallel region (recall
separate stack frames)

varl, var?2;
char xvar3 = malloc(..);
#pragma omp parallel private(var2)

{
varéd;
// varl shared (default)
// var2 private
// var3 shared (heap)
// vard private (thread’s stack)

13

OpenMP

Example

1) Parallel
Private | int tid |= omp_get_thread_num(); /% get thread id */| region
variable printf("Hello World from thread = %d\n", tid); > executed
/* 0Only main thread does this x/ by each
if ('t]_d —) -{ Su_bthread
printf("Number of threads = %d\n", gquhmD
omp_get_num_threads()); pen
! API)

¥ /% All threads join main and terminate x/ Y

14

OpenMP

Parallelizing Loop Work

® Problem: You have to do some work over an array of 2227 numbers,
with 8 people. How would you split the work?
® Assumptions
o We need to decide before running the code!
o Each element of the array is independent, so the tasks can be
done in any order
o The threads are about equally fast, so we want to assign each of
them ~11 million numbers

OpenMP

Which Runs

Fastest?

/* A. x/ /* B. x/ “Chunks” array
?pragma omp parallel itpragma omp parallel sections
(i=0; tid = omp_get_thread _num();
i < LENGTH; num_threads = omp_get_num_threads();
i++) { thread_start = tid*LENGTH/num_threads;
arr[i] = .3 thread end (tid+1)*LENGTH/num_threads;
} for (= thread_start;
} Duplicates i< thread _end; 1++) {
work arr[1 = ..
s
}
/*x C. x/ /* D. *x/
?pragma omp parallel ?pragma omp parallel
tid = omp_get_thread _num(); #pra ma omp for
num_threads = ? 1=0;
omp_get_num threads() i < LENGTH; Like C. but
for (i = tid; i++) { anned via
i < LENGTH; arr[i] = ..; P iy
i+= num_thread o) ¥ pen
arr[il = ..; Interweaves }
1 array access ”
1 between threads

OpenMP

OpenMP Work-sharing for Syntax

e #pragma omp for #pragma omp parallel
- must be written inside an already existing { #pra%ma onp for
parallel segment. for L iE;G%_

- If a parallel segment consists only of one i++) { '
for loop, we can combine the two arrii] = .;
declarations with #pragma omp
parallel for.

e Must have relatively simple “shape” for an

OpenMP-aware compiler to be able to
parallelize it

- Necessary for the run-time system to be

#pragma omp parallel for
for (i = 0;

able to determine how many of the loop i < LENGTH:
iterations to assign to each thread i++) {
« No premature exits from the loop allowed arr[i] = .;

- i.e. No break, return, exit, goto ;

17

Non-deterministic Outcomes

e Suppose we run the below code on 4 threads.

X = 0; What are possible values of x after
q_l{tpragma omp parallel pynning this code? Select all that
X =X + 1; apply.
1 A. 0
B. 1
C. 2
D. 3
E. 4
F. 5 or more

18

Data Race

e TwWO memory accesses form a data race |if:

- They are from different threads to the same location

- At least one is a write, and

- They occur one after another.

e Recall thread model: shared memory.

- For a given thread, these two operations don’t necessarily

happen together...! Thread scheduling is non-deterministic.
- Read current value of X
- Write new value of X

e Not a data hazard!

- Data hazard: Sequential instructions have data dependencies
during concurrent execution (instruction-level parallelism via
pipelining).

- Here, even with no ILP, can have nondeterministic results. This
results from lack of synchronization on which thread accesses
memory first.

19

Data Race: RISC-V Instructions

e Instructions from different threads have their execution on the CPU
interleaved.
e Assume (for ease of analysis):
- Non-pipelined, single-cycle datapath — all atomic instructions,
meaning that no nothing else interposes itself while the
Instruction is executing.

load
// four Bhreads 3331
X = 0;
' w t0 0(sp) store
itpragma omp parallel » addi t0 t0 1 »
X = X + 1; sw t0 0(sp) load load
1 add1l add1i
store store

20

Data Race: Case 1

e Grey thread load read x: 0 load
o Grey thread store write X: 1 add1
« Green thread load read X: 1 store
e Green thread store write X: 2 1330.'
e Blue thread load read X: 2 2,(Oi -
o Blue thread store write X: 3 load
e Red thread load read X: 3 addi
e Red thread store write X: 4 store
load
add1i
store

Final value of x: 4

21

Data Race: Case 1

e Grey thread load read x: 0 load
o Green thread load read x: 0 add1
e Blue thread load read x: 0 store
e Red thread load read x: 0 loaql
.) add1i
e Grey thread store write X: ctore
e Green thread store write X: load
e Blue thread store write X: addi
e Red thread store write X: store
load
add1i
store

Final value of x: 1

22

Data Race: Cases ...

e Many possible permutations!
« Cannot go over 4;
« Cannot go below 1;

o Formally, a multithreaded program is only considered correct if ANY
interlacing of threads yield the same result.

- Here, we have an incorrect program!
- But if each thread works on independent data (ho thread accesses

same data location another thread wrote to), you can guarantee
correctness.

Summary

o Basics on thread-level parallelsim
e One implementation: OpenMP (extension for C/C++ and Fortan)
o Data race and how shall we solve it?

