
CS 110
Computer Architecture

Thread-Level Paralellism II
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/5/8

Administratives

2

• Mid-term II tentatively May 15th 8am-10am; you can bring 2-
page A4-sized double-sided cheat sheet, handwritten only!
(Teaching center 201/301/303); From start to May 13th lecture
(Thread-level parallelism).

• Project 2.2 released, ddl May 19th.

• Project 3 to be released soon. Speed Competition! ddl May 29th

• HW 6 released, ddl approaching May 12th!

• Lab 12 released. Prepare in advance!

• To check May 13th, 15th & 19th;

• May 12th Monday lab session to check Lab 11;

• Discussion May 9th & 12th on SIMD & OpenMP.

3

Parallelism Overview

• Parallel Requests
Assigned to computer
e.g., Search “CS110”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Smart
Phone

Warehouse
Scale

Computer

Logic Gates

Today’s
Lecture

 Functional
Unit(s)

A1+B1A0+B0

Cache Memory

Core Core…
 Memory (Cache)

Input/Output

Computer

4

Synchronization

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

● To enforce multithreaded program correctness, we often need to
synchronize threads, i.e., coordinate their execution.
○ Most commonly, know when one task is finished writing so that it is

safe for another to read.
 Desired correct outcome:

load
addi
store

load
addi
store

load
addi
store

load
addi
store

(or any permutation between these four code segments)

●⚠️ Note: If we enforce the above, then execution effectively becomes
sequential…(Amdahl’s Law)

5

Critical Sections with OpenMP (1/2)
● A critical section is a segment of code that must be executed by a

single thread at a time, thereby enforcing synchronization.
○ In OpenMP, you can declare critical sections of code.
○ Each thread can safely execute code in critical section, knowing that it is the

only thread that can execute that section at that time
○ This user-level specification (e.g., in OpenMP) relies on hardware

synchronization instructions (e.g., in RISC-V) (more later)

• #pragma omp barrier [docs]
• Forces all threads to wait until all threads have hit the barrier

• #pragma omp critical [docs]
• Creates a critical section within a parallel code segment; only one

thread can run a critical section at a time.

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

https://www.openmp.org/spec-html/5.0/openmpsu90.html
https://www.openmp.org/spec-html/5.0/openmpsu89.html

6

OpenMP Hello World, Synchronized
#include <stdio.h>
#include <omp.h>
int main() {
 int x = 0; /* shared variable */
 #pragma omp parallel
 {
 int tid = omp_get_thread_num(); /* private variable */
 #pragma omp critical
 {
 x++;
 printf("Hello World from thread = %d, x = %d\n", tid, x);
 }
 #pragma omp barrier
 if (tid == 0) {
 printf("Number of threads = %d\n", omp_get_num_threads());
 }
 }
}

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

7

Critical Sections with OpenMP (2/2)
● A critical section is a segment of code that must be executed by a

single thread at a time.
○ In OpenMP, you can declare critical sections of code.
○ Compile to atomic instructions that enable synchronization

between threads (more later, RISC-V)

• OpenMP has very restrictive parallelism.
• Really only good for parallelizing loops…
• Beyond that:

• If your critical section is too large, then effectively serial program
→ Amdahl's law quickly rears its ugly head

• If critical sections not defined well, can run into deadlock.

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

8

The Other Parallel Programming Languages

ActorScript Concurrent Pascal JoCaml Orc

Ada Concurrent ML Join Oz

Afnix Concurrent Haskell Java Pict

Alef Curry Joule Reia

Alice CUDA Joyce SALSA

APL E LabVIEW Scala

Axum Eiffel Limbo SISAL

Chapel Erlang Linda SR

Cilk Fortan 90 MultiLisp Stackless Python

Clean Go Modula-3 SuperPascal

Clojure Io Occam VHDL

Concurrent C Janus occam-π XC
Mostly
dead

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

9

The Other Parallel Programming Languages
• Library – e.g.:

• pthread
• C++:

std::thread C++11
std::jthread C++20
std::mutex; std::lock_guard; std::scoped_lock; std::shared_lock
std::condition_variable; std::counting_semaphore; std::latch; std::barrier
std::promise; std::future

• Qt QThread
• OpenMP

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

10

Data Race & Synchronization
• Two memory accesses form a data race if from different threads to

same location, and at least one is a write, and they occur one after
another

• If there is a data race, result of program can vary depending on
chance (which thread first?)

• Avoid data races by synchronizing writing and reading to get
deterministic behavior

• Synchronization done by user-level routines that rely on hardware
synchronization instructions

• (more later)

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

11

Analogy: Buying Milk
• Lilei and roommate Lihua would like to buy a carton of milk

• Originally no milk;
• Shared fridge; intend to be exactly one carton in the fridge;

// attempt 1
if milk not in fridge:
 buy milk at store
 put milk in fridge

● What if Lilei get home while Lihua
is out buying milk?
○ Result: Two milk cartons!

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

12

Analogy: Buying Milk
• Lilei and roommate Lihua would like to buy a carton of milk

• Originally no milk;
• Shared fridge; intend to be exactly one carton in the fridge;

// attempt 2, with note
if note not on fridge:
 if milk not in fridge:
 put note on fridge;
 buy milk at store;
 put milk in fridge;
 take note off fridge;
else no action;

I am out
buying
milk!!!

Seems good, but ...

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

13

Analogy: Buying Milk
• Even with shared note, we can run into a two-milk situation

// Lilei's thread
if note not on fridge:
 if milk not in fridge:

 put note on fridge;

 buy milk at store;
 put milk in fridge;
 take note off fridge;

// Lihua’s thread

if note not on fridge:
 if milk not in fridge:

 put note on fridge;

 buy milk at store;
 put milk in fridge;
 take note off fridge;

time

Even when threads execute in
parallel, they still sequentially
access shared resources.

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

14

Lock Synchronization
• Use a “Lock” to grant access to a region (critical section) so that only

one thread can have the lock and operate at a time
• Need all processors to be able to access the lock, so use a location in shared

memory as the lock

• Processors read lock and either wait (if locked) or set lock and go into
critical section
• 0 means lock is free / open / unlocked / lock off
• 1 means lock is set / closed / locked / lock on

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

s0 0x5555 0000
lock address

0 if unlocked/open
1 if locked/closed

lock, in shared memory

• Locks are one approach to implementing
thread synchronization.

• Suppose
• Lock in shared memory @ 0x5555 0000

15

Lock Synchronization
• Use a “Lock” to grant access to a region (critical section) so that only

one thread can have the lock and operate at a time
• Need all processors to be able to access the lock, so use a location in shared

memory as the lock

• Processors read lock and either wait (if locked) or set lock and go into
critical section
• 0 means lock is free / open / unlocked / lock off
• 1 means lock is set / closed / locked / lock on

• Pseudocode:

Check lock
Set the lock
Critical section
(e.g. change shared variables)
Unset the lock

Can loop/idle here
 if locked

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

16

Lock Synchronization
• Use a “Lock” to grant access to a region (critical section) so that only

one thread can have the lock and operate at a time
• Need all processors to be able to access the lock, so use a location in shared

memory as the lock

• Two operations, formally:
• Acquire: try to acquire the lock. If

successful, keep going. Otherwise,
wait and try later;

• Release: Unlock and continue (only
works if we originally had the lock)

// attempt 3, with lock
acquire fridgelock
 if milk not in fridge:
 buy milk at store
 put milk in fridge
release fridgelock

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

17

Lock Synchronization
• When Lihua does not have the lock, then wait

// Lilei
acquire fridgelock

 if milk not in fridge:
 buy milk at store
 put milk in fridge
release fridgelock

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

// Lihua

acquire fridgelock

 if milk not in fridge:
 buy milk at store
 put milk in fridge
release fridgelock

Can loop/idle here
 if locked (wait)

Locks inherently enforce some
serialization of threads. Amdahl’s
Law strikes again!

18

Possible Naive Lock Implementation
● Lock (a.k.a. busy wait) in RISC-V (acquire)

Get_lock: # s0 -> addr of lock
 addi t1,zero,1 # t1 = Locked value
Loop: lw t0,0(s0) # load lock
 bne t0,zero,Loop # loop if locked
Lock: sw t1,0(s0) # Unlocked, so lock

• Unlock (release)
Unlock:
 sw zero,0(s0)

• Any problems with this?

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

19

Naive Lock Problem
● Thread 1 acquire
 addi t1,zero,1
Loop: lw t0,0(s0)

 bne t0,zero,Loop

Lock: sw t1,0(s0)

● Thread 2 acquire

 addi t1,zero,1
Loop: lw t0,0(s0)

 bne t0,zero,Loop

Lock: sw t1,0(s0)

Both threads think they have set the lock!
Exclusive access not guaranteed!

Time

Actually it resembles the “note”

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

20

Hardware Synchronization
● Hardware support required to prevent an interloper (another thread)

from changing the value
● Atomic read/write memory operation (all other operations must to

happen strictly before/after the read/write)
● No other access to the location allowed between the read and write

● How to implement in software?
● Single instruction: atomic swap of register ↔ memory through

atomic instructions;
● Pair of instructions: one for read (and lock), one for write (and

unlock);
● Needed even on uniprocessor systems

● Interrupts can happen: can trigger thread context switches...

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

● Option 1: Read/Write Pairs
● Pair of instructions for “linked” read and write
● Load-reserved and Store-conditional
● No other access permitted between read and write
● Must use shared memory (multiprocessing)

● Option 2: Atomic Memory Operations
● Atomic swap of register ↔ memory

21

RISC-V: Two solutions!

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

● Load-reserved instruction: lr rd,rs
● Load the word (doubleword) pointed to by rs into rd, and register

a (hardware thread) reservation set

● Store-conditional: sc rd,rs1,rs2
 Store the value in rs2 into the memory location pointed to by rs1, only if

the reservation is still valid and set the status in rd
 Returns 0 (success) to rd if location has not changed since the lr
 Returns nonzero (failure) to rd if location has changed:

Actual store will not take place
 Invalid the (hardware thread) reservation whether success or not

22

Option 1: Read/Write Pairs

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

● Atomic swap (to test/set lock variable)
● Exchange contents of register and memory: s4 ↔ Mem(s1)

23

lr/sc Example

try:
lr t1, s1 #load reserved
sc t0, s1, s4 #store conditional
bne t0, x0, try #loop if sc fails
add s4, x0, t1 #load value in s4

Load-reserved instruction: lr rd,rs
Store-conditional: sc rd,rs1,rs2

sc would fail if another threads
executes sc before here

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

 In a single atomic operation:
 Test to see if a memory location is set (contains a 1)
 Set it (to 1) if it isn’t (it contained a zero when tested)

 Otherwise indicate that the Set failed, so the
program can try again

 While accessing, no other instruction can modify the
memory location, including other Test-and-Set
instructions

 Useful for implementing lock operations

24

Test-and-Set
Load

semaphore

Unlocked?

Try to own & lock
semaphore

Unlock
semaphore

Success?

Execute critical section
(access shared data)

No

No

Yes

Yes

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

 Example: RISC-V sequence for implementing a
T&S at (s1)

25

Test-and-Set in RSIC-V using lr/sc
Load

semaphore

Unlocked?

Try to own & lock
semaphore

Unlock
semaphore

Success?

Execute critical section
(access shared data)

No

No

Yes

Yesli t2, 1
Try:

lr t1, s1
bne t1, x0, Try
sc t0, s1, t2
bne t0, x0, Try

Locked:
critical section

Unlock:
sw x0,0(s1)

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

 Encoded with an R-type instruction format
○ swap,add,and,or,xor,max,min
○ AMOSWAP rd,rs2,(rs1)
○ AMOADD rd,rs2,(rs1)

 Take the value pointed to by rs1
○ Load it into rd
○ Apply the operation to that value with the contents in rs2

■ If rs2==rd, use the old value in rd
○ Store the result back to where rs1 is pointed to

 This allows atomic swap as a primitive
○ It also allows “reduction operations” that are common to be

efficiently implemented

26

Option 2: RISC-V Atomic Memory Operations (AMOs)

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

● Assume that the lock is in memory location stored in register a0
● The lock is “set” if it is 1; it is “free” if it is 0 (it’s initial value)

27

AMO Example

li t0, 1
Get 1 to set lock

Try: amoswap.w.aq t1, t0, (a0)
 # t1 gets old lock value while we set it to 1
 bnez t1, Try
 # if it was already 1, another thread has the lock
 # so we need to try again
 … critical section goes here …
 amoswap.w.rl x0, x0, (a0)
 # store 0 in lock to release

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

28

Lock Synchronization Implementation
Broken Synchronization

while (lock != 0) ;

lock = 1;

// critical section

lock = 0;

Fix (lock is at location (a0))

 li t0, 1
Try: amoswap.w.aq t1, t0, (a0)
 bnez t1, Try
Locked:

critical section

Unlock:
amoswap.w.rl x0, x0, (a0)

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

29

How to Implement
• Don’t implement yourself!

• Use according library – e.g.:
– pthread
– C++:

• std::thread C++11
• std::jthread C++20
• std::mutex; std::lock_guard; std::scoped_lock; std::shared_lock
• std::condition_variable; std::counting_semaphore; std::latch; std::barrier
• std::promise; std::future

– Qt QThread
– OpenMP

https://en.cppreference.com/w/cpp/thread

OpenMP Synchronization Lock Synchronization Lock Synchronization Realization

https://en.cppreference.com/w/cpp/thread

30

Summary
• Sequential software is slow software

– SIMD and MIMD only path to higher performance
• Multithreading increases utilization
• OpenMP as simple parallel extension to C

– Threads, Parallel for, private, critical sections, …
– ≈ C: small so easy to learn, but not very high level and it’s easy to

get into trouble
• Synchronization & Lock synchronoization

– Can be implemented by atomic operations in RISC-V
– lr/sc pair or AMO instructions

