,E ERERZESRARFER

h‘ w:i:f' School of Information Science and Technology

CS 110
Computer Architecture
Thread-Level Paralellism ||

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/5/8

Administratives

Mid-term Il tentatively May 15th 8am-10am; you can bring 2-
page A4-sized double-sided cheat sheet, handwritten only!
(Teaching center 201/301/303); From start to May 13th lecture
(Thread-level parallelism).

Project 2.2 released, ddl May 19th.

Project 3 to be released soon. Speed Competition! ddl May 29th
HW 6 released, ddl approaching May 12th!

Lab 12 released. Prepare in advance!

 To check May 13th, 15th & 19th;

 May 12th Monday lab session to check Lab 11;

Discussion May 9th & 12th on SIMD & OpenMP.

2

Parallelism Overview

Software B Hardware

Parallel Requests
Assigned to computer

‘) Harness
e.g., Search “CS110 Paral]e]ism &
Parallel Threads Achieve High
Performance

Assigned to core

e.g., Lookup, Ads
Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Warehouse
Scale §
Computer

..~ Core = Today’s

Memory /,/(’Cache) \, Lecture

lngut#@ﬁtput %

Aol Functional
N ereteictal Unit(s)

Hardware descriptions
All gates @ one time

Programming Languages

Logic Gates

OpenMP Synchronization

Synchronization

e To enforce multithreaded program correctness, we often need to
synchronize threads, i.e., coordinate their execution.
- Most commonly, know when one task is finished writing so that it is
safe for another to read.
e Desired correct outcome:

load load load
addi addi addi
store store store

(or any permutation between these four code segments)

e Note: If we enforce the above, then execution effectively becomes
sequential...(Amdahl’s Law)

Critical Sections with OpenMP (1/2)

e A critical section is a segment of code that must be executed by a

single thread at a time, thereby enforcing synchronization.

> In OpenMP, you can declare critical sections of code.
Each thread can safely execute code in critical section, knowing that it is the

only thread that can execute that section at that time
o This user-level specification (e.g., in OpenMP) relies on hardware
synchronization instructions (e.g., in RISC-V) (more later)

©)

#pragma omp barrier [docs]
Forces all threads to wait until all threads have hit the barrier

#pragma omp critical [docs]
Creates a critical section within a parallel code segment; only one

thread can run a critical section at a time.

https://www.openmp.org/spec-html/5.0/openmpsu90.html
https://www.openmp.org/spec-html/5.0/openmpsu89.html

OpenMP Synchronization

OpenMP Hello World, Synchronized

main() {
:@;
#pragma omp parallel
{
tid = omp_get_thread_num();
{
printf("Hello World from thread = %d, x = %d\n", tid, X);
I3
if (tid == 0) {
printf("Number of threads = %d\n", omp_get_num_threads());
I3
¥

I 5

OpenMP Synchronization

Critical Sections with OpenMP (2/2)

e A critical section is a segment of code that must be executed by a
single thread at a time.
- In OpenMP, you can declare critical sections of code.
- Compile to atomic instructions that enable synchronization
between threads (more later, RISC-V)

OpenMP has very restrictive parallelism.
Really only good for parallelizing loops...
Beyond that:
If your critical section is too large, then effectively serial program
— Amdahl's law quickly rears its ugly head
If critical sections not defined well, can run into deadlock.

OpenMP Synchronization

The Other Parallel Programming Languages

ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join 0z
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALSA
APL E LabVIEW Scala
Axum Eiffel Limbo SISAL
Chapel Erlang Linda SR
Cilk Fortan 90 MultilLisp Stackless Python
Clean Go Modula-3 SuperPascal
Clojure Io Occam VHDL

Concurrent C Janus

OpenMP Synchronization

The Other Parallel Programming Languages

* Library —e.q.:
* pthread
o C++:
std::thread C++11
std::jthread C++20

std::mutex; std::lock_guard; std::scoped_lock; std::shared_lock
std::condition_variable; std::counting_semaphore; std::latch; std::barrier
std::promise; std::future

 Qt QThread
* OpenMP

Lock Synchronization

Data Race & Synchronization

 Two memory accesses form a data race if from different threads to

same location, and at least one is a write, and they occur one after

another

* |If there is a data race, result of program can vary depending on
chance (which thread first?)

* Avoid data races by synchronizing writing and reading to get
deterministic behavior

» Synchronization done by user-level routines that rely on hardware
synchronization instructions

* (more later)

Lock Synchronization

Analogy: Buying Milk

* Lilei and roommate Lihua would like to buy a carton of milk
* Originally no milk;

« Shared fridge; intend to be exactly one carton in the fridge;

// attempt 1

if milk not in fridge:
buy milk at store
put milk in fridge

o What if Lilei get home while Lihua
is out buying milk?
> Result: Two milk cartons!

Lock Synchronization

Analogy: Buying Milk

» Lilei and roommate Lihua would like to buy a carton of milk
* Originally no milk;

« Shared fridge; intend to be exactly one carton in the fridge;

// attempt 2, with note
if note not on fridge:
if milk not in fridge:

put note on fridge;
buy milk at store;
put milk in fridge;
take note off fridge;

else no action;

Seems good, but

Lock Synchronization

Analogy: Buying Milk

* Even with shared note, we can run into a two-milk situation

// Lilei's thread // Lihua’s thread
if note not on fridge:
if milk not 1in fridge:
1f note not on fridge:
if milk not in fridge:
put note on fridge;

put note on fridge;
time

! buy milk at store;

put milk in fridge;

take note off fridge;
buy milk at store;
put milk in fridge;

Even when threads execute in take note off fridge;

parallel, they still sequentially
access shared resources.

13

Lock Synchronization

Lock Synchronization

Use a “Lock” to grant access to a region (critical section) so that only
one thread can have the lock and operate at a time

 Need all processors to be able to access the lock, so use a location in shared
memory as the lock

Processors read lock and either wait (if locked) or set lock and go into
critical section
0O means lock is free / open / unlocked / lock off

* 1 means lock is set/ closed / locked / lock on

Locks are one gpplroach to implementing 50 [05555 0000
thread synchronization. lock address)

Su ppose 0 if unlocked/open
1 if locked/closed

 Lock in shared memory @ 0x5555 0000 lock, in shared memory

14

Lock Synchronization

Lock Synchronization

Use a “Lock” to grant access to a region (critical section) so that only
one thread can have the lock and operate at a time

 Need all processors to be able to access the lock, so use a location in shared
memory as the lock

Processors read lock and either wait (if locked) or set lock and go into
critical section

0O means lock is free / open / unlocked / lock off

1 means lock is set / closed / locked / lock on

Pseudocode:

Check lock DCan Iciﬁggﬂleedhere
Set the lock

Critical section
(e.g. change shared variables)
Unset the lock 15

Lock Synchronization

Lock Synchronization

Use a “Lock” to grant access to a region (critical section) so that only
one thread can have the lock and operate at a time

 Need all processors to be able to access the lock, so use a location in shared
memory as the lock

Two operations, formally: // attempt 3, with lock

. . . acquire fridgelock
Acquire: try to acquire the lock. If if milk not in fridge:

successful, keep going. Otherwise, buy milk at store

. _ put milk in fridge
wait and try later; release fridgelock

* Release: Unlock and continue (only
works if we originally had the lock)

10

Lock Synchronization

Lock Synchronization

 When Lihua does not have the lock, then wait

// Lilei
acquire fridgelock

if milk not in fridge:

buy milk at store
put milk in fridge
release fridgelock

Locks inherently enforce some
serialization of threads. Amdahl’s
Law strikes again!

// Llhua

Can loop/idle here
acquire fridgelockD if locked (wait)

if milk not in fridge:
buy milk at store
put milk in fridge
release fridgelock

17

Lock Synchronization Realization

Possible Naive Lock Implementation

« Lock (a.k.a. busy wait) in RISC-V (acquire)

Get_ lock: # s@ — addr of lock
addi t1,zero,l1 # t1 = Locked value
Loop: 1w t0,0(s0) # load lock
bne t0@,zero,Loop # loop if locked
Lock: sw t1,0(s0) # Unlocked, so lock

* Unlock (release)
Unlock:
sw zero,0(s0)

* Any problems with this?

Lock Synchronization Realization

Naive Lock Problem

« Thread 1 acquire o Thread 2 acquire

addi t1,zero,1
Loop: lw 10,0(s0)

addi t1,zero,1
Loop: lw t0,0(s0)

bne t0,zero,Loop

bne t0,zero,Loop

Lock: sw t1,0(s0)

v Lock: sw t1,0(s0)
Time
Both threads think they have set the lock!
Exclusive access not guaranteed!

Actually it resembles the “note”
19

Lock Synchronization Realization

Hardware Synchronization

o Hardware support required to prevent an interloper (another thread)
from changing the value
o Atomic read/write memory operation (all other operations must to
happen strictly before/after the read/write)
o No other access to the location allowed between the read and write
o How to implement in software?
o Single instruction: atomic swap of register —~ memory through
atomic instructions;
o Pair of instructions: one for read (and lock), one for write (and
unlock);
o Needed even on uniprocessor systems
o Interrupts can happen: can trigger thread context switches...

Lock Synchronization Realization

RISC-V: Two solutions!

e Option 1: Read/Write Pairs
e Pair of instructions for “linked” read and write
» Load-reserved and Store-conditional
» No other access permitted between read and write
e Must use shared memory (multiprocessing)

e Option 2: Atomic Memory Operations
» Atomic swap of register «» memory

27

Lock Synchronization Realization

Option 1: Read/Write Pairs

e Load-reserved instruction: Lr rd, rs
o Load the word (doubleword) pointed to by rs into rd, and register
a (hardware thread) reservation set [*

e Store-conditional: sc rd, rsl, rs2
e Store the value in rs2 into the memory location pointed to by rs1, only if
the reservation is still valid and set the status in rd
e Returns O (success) to rd if location has not changed since the Lr
e Returns nonzero (failure) to rd if location has changed:
Actual store will not take place
¢ Invalid the (hardware thread) reservation whether success or not F

31 27 26 25 24 20 19 15 14 12 1 7 6 0
funct5 aq| rl rs2 rsi funct3 rd opcode
5 1 1 5 5 3 5 7
LR.W/D ordering 0 addr width dest AMO

SCG.W/D ordering SrC addr width dest AMO

Lock Synchronization Realization

Lr/sc Example

o Atomic swap (to test/set lock variable)
e Exchange contents of register and memory: s4 <« Mem(s1)

try:

Lr tl, sl #load reserved \-
SC t0, sl1, s4 #store conditional
bne t9, x0, try #loop if sc fails

add s4, x0, tl #1load value 1n s4

s c would fail if another threads
executes sc before here

Load-reserved instruction: Lr rd, rs
Store-conditional: sc rd, rsl, rs2 -

Lock Synchronization Realization

Test-and-Set

1
e |n a single atomic operation: Load
e Test to see if a memory location is set (contains a 1) semaphore

e Setit(to1)ifitisn’t (it contained a zero when tested) [No
e Otherwise indicate that the Set failed, so the @
program can try again Yes

e While accessing, no other instruction can modify the
memory location, including other Test-and-Set

instructions
e Useful for implementing lock operations

Yes

Try to own & lock
semaphore

Execute critical section
(access shared data)
)
Unlock
semaphore

Lock Synchronization Realization

Test-and-Set in RSIC-V using Lr/sc
1

e Example: RISC-V sequence for implementing a Load
T&S at (s1) 7 | semaphore

No M
i t2, 1 — Yes
s lr t1, si / Try to own & lock
bne ti, X0, TrB/) semaphore

sc tO, s1, t2

bne t0, x0, Try - 2
Locked:

Yes

critical section
Unlock: \ Execute critical section

sw x0,0(s1) \ (access shared data)
y
Unlock

semaphore

25

Lock Synchronization Realization

Option 2: RISC-V Atomic Memory Operations (AMOS)

e Encoded with an R-type instruction format
- swap,add,and,or,xor,max,min
- AMOSWAP rd, rs2,(rs1)
- AMOADD rd, rs2,(rsl)
e Take the value pointed to by rsl
- Load it into rd
- Apply the operation to that value with the contents in rs2
- If rs2==rd, use the old value in rd
- Store the result back to where rs1 is pointed to
e This allows atomic swap as a primitive
- It also allows “reduction operations” that are common to be
efficiently implemented

Lock Synchronization Realization

AMO Example

o Assume that the lock is in memory location stored in register a0
e Thelockis “set” if itis 1; it is “free” if it is O (it’s initial value)

11 t0, 1
Try: amoswap.w.aq t1, to, (a0)
bnez tl, Try

.. Critical section goes here ..
amoswap.w.rl x0, x0, (a0)

27

Lock Synchronization Realization

Lock Synchronization Implementation

Broken Synchronization

while (lock '= 0) :

lock = 1;

// critical section

lock = 0;

Fix (lock is at location (a@))

11 t0, 1
Try: amoswap.w.aq tl1l, t@, (a0)
bnez tl, Try
Locked:

critical section

Unlock:
amoswap.w. rl x0, x0, (a0)

28

Lock Synchronization Realization

How to Implement

Don’t implement yourself!

Use according library — e.g.:

pthread

C++:

« std::thread C++11
« std::jthread C++20

» std::mutex; std::lock_guard; std::scoped_lock; std::shared_lock

» std::condition_variable; std::counting_semaphore; std::latch; std::barrier
« std::;promise; std::future

Qt QThread

OpenMP

https://en.cppreference.com/w/cpp/thread

29

https://en.cppreference.com/w/cpp/thread

Summary

Sequential software is slow software

— SIMD and MIMD only path to higher performance
Multithreading increases utilization

OpenMP as simple parallel extension to C

— Threads, Parallel for, private, critical sections, ...

— = C: small so easy to learn, but not very high level and it’s easy to
get into trouble

Synchronization & Lock synchronoization
— Can be implemented by atomic operations in RISC-V
— 1lr/sc pair or AMO instructions

