
CS 110
Computer Architecture

Thread-Level Paralellism III
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/5/13

Administratives

2

• Mid-term II May 15th 8am-10am; you can bring 2-page A4-
sized double-sided cheat sheet, handwritten only! (Teaching
center 201/301/303); From start to today’s lecture (Thread-
level parallelism).

• Project 2.2 released, ddl approaching, May 19th.

• Project 3 released. Speed Competition! ddl May 29th.

• HW 7 released, ddl May 23rd.

• Lab 13 released, related to Project 3. Prepare in advance!

• To check May 13th, 15th & 19th;

• Discussion May 16th & 19th on Profiling.

3

Parallelism Overview

• Parallel Requests
Assigned to computer
e.g., Search “CS110”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Smart
Phone

Warehouse
Scale

Computer

Logic Gates

Today’s
Lecture

 Functional
Unit(s)

A1+B1A0+B0

Cache Memory

Core Core…
 Memory (Cache)

Input/Output

Computer

4

Pragma and Scope - Review
More on OpenMP Hardware Multithreading

● Basic OpenMP construct for parallelization:
#pragma omp parallel
{

/* code goes here */
}

○ Each thread runs a copy of code within the block
○ Thread scheduling is non-deterministic

● To make private, need to declare with pragma:
#pragma omp parallel private (x)

● Automatic work-sharing (for-loop):
 #pragma omp parallel
 {
 #pragma omp for
 /* for loop */
 }

○ Can be shortened as: #pragma omp parallel for
○ Implicit “barrier” synchronization at end of the for loop
○ for-loop index private for each thread, variables declared

outside for-loop shared

aaa a

5

OpenMP Directives (Work-sharing)
• Defined within a parallel section

Main
thread

for-loop

Main
thread

Sections

Main
thread

Main
thread

Main
thread

Main
thread

Single

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

OpenMP section usage:
https://www.cnblogs.com/wzyj/p/4501348.html

More on OpenMP Hardware Multithreading

https://www.cnblogs.com/wzyj/p/4501348.html

6

OpenMP Timing
• Elapsed wall clock time:

double omp_get_wtime(void);
• Returns elapsed wall clock time in seconds;
• Time is measured per thread, no guarantee can be made that

two distinct threads measure the same time;
• Time is measured from “some time in the past,” so subtract

results of two calls to omp_get_wtime to get elapsed time
within a parallel section;

More on OpenMP Hardware Multithreading

7

OpenMP Matrix Multiplication Example
double dgemm_scalar(int N, double *A,
 double *B, double *C) {
 double start_time = omp_get_wtime();
 #pragma omp parallel for
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 double Cij = 0;
 for (int k = 0; k < N; k++) {
 Cij += A[i+k*N] * B[k+j*N];
 }
 C[i+j*N] = Cij;
 }
 }
 double run_time = omp_get_wtime()-start_time;
 return run_time;
}

A B C

=x

Outer loop spread across x threads;
inner loops inside a single thread

More on OpenMP Hardware Multithreading

8

OpenMP Matrix Multiplication Example
double dgemm_scalar(int N, double *A,
 double *B, double *C) {
 double start_time = omp_get_wtime();
 double Cij;
 int i,j,k;
 #pragma omp parallel for private (Cij,i,j,k)
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 Cij = 0;
 for (k = 0; k < N; k++) {
 Cij += A[i+k*N] * B[k+j*N];
 }
 C[i+j*N] = Cij;
 }
 }
 double run_time = omp_get_wtime()-start_time;
 return run_time;
}

A B C

=x

Explicitly declare private variables

More on OpenMP Hardware Multithreading

9

Notes on Matrix Multiplication Example
• More performance optimizations available:

• Higher compiler optimization (-O2, -O3) to reduce
number of instructions executed

• Cache blocking to improve memory performance
• Using SIMD SSE instructions to raise floating point

computation rate (using DLP)

More on OpenMP Hardware Multithreading

10

Example: Calculating π

• Can be approximated by numerical integration (Reimann sum)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

More on OpenMP Hardware Multithreading

11

Example: Calculating π
• Serial version

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

#include <stdio.h>
void main(){
 const long num_steps = 20;
 double step = 1.0/((double)num_steps);
 double sum = 0.0;
 for (int i=0; i<num_steps; i++){
 double x = (i+0.5)*step;
 sum += 4.0*step/(1.0+x*x);
 }
 printf(“pi=%6.12f\n”,sum);
}

 pi=3.141800986893.

• Resembles π, but not very accurate
• Let’s increase num_steps and parallelize

More on OpenMP Hardware Multithreading

12

Example: Calculating π
• OpenMP version 1

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

#include <stdio.h>
#include <omp.h>
void main(){
 const long num_steps = 20;
 double step = 1.0/((double)num_steps);
 double sum = 0.0;
 #pragma omp parallel for
 for (int i=0; i<num_steps; i++){
 double x = (i+0.5)*step;
 sum += 4.0*step/(1.0+x*x);
 }
 printf(“pi=%6.12f\n”,sum);
}

• Problem: each thread needs access to the shared
variable sum

• Code demands synchronization…

More on OpenMP Hardware Multithreading

13

Example: Calculating π
• OpenMP version 2

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
Divide & conquer

1.Compute sum[0] and sum[1] in
parallel

2.Compute sum=sum[0]+sum[1]
sequentially

sum[0]

sum[1]

More on OpenMP Hardware Multithreading

14

Example: Calculating π
• OpenMP version 2

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

sum[0]

sum[1]

#include <stdio.h>
#include <omp.h>
void main(){
 const int NUM_THREADS = 4;
 const long num_steps = 20;
 double step = 1.0/((double)num_steps);
 double sum[NUM_THREADS];
 for (int i=0;i<NUM_THREADS;i++)
 sum[i]=0;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int id = omp_get_thread_num();
 for (int i=id;i<num_steps;i+=NUM_THREADS){
 double x = (i+0.5)*step;
 sum[id] += 4.0*step/(1.0+x*x);
 }
 }
 double pi=0;
 for (int i=0;i<NUM_THREADS;i++)
 pi += sum[i];
 printf(“pi=%6.12f\n”,pi);
}

Demo

Increase num_step to obtain higher accuracy.

More on OpenMP Hardware Multithreading

openmp/pi_par_man.c

15

Question
• OpenMP version 2

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

sum[0]

sum[1]

#include <stdio.h>
#include <omp.h>
void main(){
 const int NUM_THREADS = 4;
 const long num_steps = 20;
 double step = 1.0/((double)num_steps);
 double pi=0;
 double sum[NUM_THREADS];
 for (int i=0;i<NUM_THREADS;i++)
 sum[i]=0;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int id = omp_get_thread_num();
 for (int i=id;i<num_steps;i+=NUM_THREADS){
 double x = (i+0.5)*step;
 sum[id] += 4.0*step/(1.0+x*x);
 }
 pi += sum[id];
 }
 printf(“pi=%6.12f\n”,pi);
}

Parallelize the final summation?

More on OpenMP Hardware Multithreading

16

OpenMP Reduction
double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX; // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that, 1 or more variables that are private to

each thread, are subject of reduction operation at end of parallel
region:
reduction(operation:var) where
• Operation: operator to perform on the variables (var) at the end of

the parallel region: +, *, -, &, ^, |, &&, or ||.
• Var: One or more variables on which to perform scalar reduction.

More on OpenMP Hardware Multithreading

17

OpenMP Reduction Example

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

• OpenMP reduction #include <omp.h>
#include <stdio.h>
static long num_steps = 100000;
double step;
void main (){
 int i; double x, pi, sum = 0.0;
 step = 1.0 / (double)num_steps;
 #pragma omp parallel for private(x)
reduction(+:sum)
 for (i=1; i<= num_steps; i++){
 x = (i - 0.5) * step;
 sum = sum + 4.0 / (1.0+x*x);
 }
 pi = sum * step;
 printf("pi = %6.12f\n", pi);
}

More on OpenMP Hardware Multithreading

18

OpenMP Other Usage
• #pragma omp single

• Code block executed by one thread only;
• Other threads will wait;
• Useful for thread-unsafe code & I/O operations.

• #pragma omp master
• Only the master threads executes instructions in the block.
• There is no implicit barrier, so other threads will not wait for master

to finish
•
• Learn more at https://www.openmp.org/specifications/

More on OpenMP Hardware Multithreading

https://www.openmp.org/specifications/

19

Summary
• Thread-level parallelism (TLP)

• Fork-join model
• Software/hardware threads, context switching, etc.
• OpenMP as simple parallel extension to C

• Pragma as compiler directives
• Parallel for, private, reductions, barrier, critical …

• Synchronization and atomic instructions in RISC-V
• Much we didn’t cover – including other synchronization

mechanisms, TLP models, to be explored in advanced courses

CS 110
Computer Architecture

Hardware Multithreading
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/5/13

21

Parallel Computer Architecture

Warehouse-scale computers AMD Zen 5 Die photo [ISSCC 2025]

More on OpenMP Hardware Multithreading

22

Multicore Processor
• A multicore processor contains multiple processors (“cores”) in a

single integrated circuit.
Processor 0

Control

Datapath
PC

Registers

Arithmetic &
Logic Unit (ALU)

Processor 1
Control

Datapath
PC

Registers

Arithmetic &
Logic Unit (ALU)

Input

Output

Memory

Bytes

I/O-Memory
Interfaces

Processor 1-
memory
accesses

Processor 0-
memory
accesses

More on OpenMP Hardware Multithreading

23

Multicore Processor
• A multicore processor contains multiple processors (“cores”) in a

single integrated circuit.

 Execution Model:
• Each processor executes an independent stream of instructions.

• Also separate: high-level caches (e.g., L1 & L2 cache)
• All processors access the same shared memory.

• Shared: DRAM and perhaps L3 cache
• Communicate via shared memory by storing to/loading from

common locations.

More on OpenMP Hardware Multithreading

24

Multicore Processor Use Cases
• A multicore processor contains multiple processors (“cores”) in a

single integrated circuit.

 Parallel-processing program
• Improve the runtime of a single program that has been specially

crafted to run on a multiprocessor
• Example: Multithreaded program

 Process-level parallelism (i.e., job-level parallelism, not covered in
CS 110):
• Deliver high throughput for independent jobs
• Example: Your operating system and different programs

More on OpenMP Hardware Multithreading

25

Key Design Questions

 How do different processors coordinate/communicate?
 Shared variables in memory and load/store instructions
 Coordinated access to shared data through synchronization primitives (e.g.,

locks) that restrict access to one processor at a time

 How many processors (or cores) should be supported in this
multiprocessor?
 Depends on the target workload!
 Most systems: Multiple “best available single core within constraints”
 Power-critical systems (e.g., phones): “some of the best available single cores”

and “some of the most power efficient single cores”

 How do different processors (cores) share data?
 Via shared-memory multiprocessor (SMP) (later this lecture)

More on OpenMP Hardware Multithreading

26

Hardware vs. Software Thread Review
● Each core provides one (or more) hardware threads that actively

execute instructions.
● The Operating System multiplexes multiple software threads onto

the available hardware threads.
• Only those mapped onto hardware threads are executing; all the

others are waiting.
• The OS uses context switching to give the illusion of many active,

concurrently executing threads.
● Context switching:
● To remove old SW thread from HW thread:

• Interrupt execution
• Save registers to memory, including PC

● To activate new SW thread onto HW thread:
• Load register values for new thread,

including PC
• Transfer control to new thread

More on OpenMP Hardware Multithreading

27

Simultaneous Multithreading (SMT)
● Processor resources are expensive; should not be left idle

• High memory latency cost on cache miss (~100 cycles)
• Furthermore, the cost of thread context switch should be much

less than cache miss latency!
● HW optimization is to have redundant hardware so that not every

context switch needs to “save context”
• Thanks to Moore’s Law, transistors are plenty
• Add multiple PCs, registers to the same core

More on OpenMP Hardware Multithreading

https://docs.google.com/presentation/d/1P8qd8sQE6o3WmGeQc3DS41OPNhyuY7EXiGib3DqWLNI/edit?slide=id.g34a85134a8f_1_0#slide=id.g34a85134a8f_1_0

28

● HW multithreading means having multiple thread “active” in the
same processor, e.g., by storing thread state (PC, registers).
• Control logic decides which instruction to issue next
• Can mix from different threads

● To software, this looks like multiple processors (hardware thread 0,
hardware thread 1, etc).

Multithreading occurs
on a single processor
(core).

Processor 0
Control

Datapath
PC

Registers

Arithmetic & Logic
Unit (ALU)

Memory

BytesRegisters

PC

Hardware
thread 0

Hardware
thread 1

Input

Output

Simultaneous Multithreading (SMT)

More on OpenMP Hardware Multithreading

29

● Simplified implementation

Simultaneous Multithreading (SMT)

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

1. Instruction
Fetch

2. Decode/
 Register Read 3. Execute 4. Memory 5. Write

Back
re

gi
st

er
s

PC
PC

● Use muxes to select which state to use every clock cycle
● Run 2 independent processes

• No Hazards: registers different; different control flow; different memory;
Threads: race condition should be solved by software (e.g., lock sync. …)

● Speedup?
• No obvious speedup; Complex pipeline: make use of CL blocks in case of

unavailable resources (e.g. wait for memory)

More on OpenMP Hardware Multithreading

30

More on SMT
● Simultaneous multithreading (SMT) lowers the cost of multithreading

by leveraging multiple issue, dynamically scheduled microarchitecture.
• Superscalar architecture
• Also called “hyperthreading” in Intel processors
• Downside: excessive power consumption

More on OpenMP Hardware Multithreading

31

Multithreading vs. Multicore
● Modern machines do both:

• Multiple cores, with multiple threads per core.
● Multithreading (SMT):

• ~1% more hardware, ~1.10X better performance
• Shared: integer ALU, floating point units, all caches, memory

controller
• Better utilization from reducing latency of:

• OS context switches
• Major stalls like instruction cache misses

● Multiple cores:
• Duplicate processors entirely
• ~50% more hardware, ~2X better performance
• Share: outer caches (e.g., L3 cache), memory controller
• Better utilization from executing instructions on different processors in

parallel

More on OpenMP Hardware Multithreading

