
1

Summary and Comparison

Multi-issue SIMD SMT Multi-core
Parallelism ILP DLP TLP TLP

Datapath

Shared IF/PC/register
file (RF), multiple

datapaths for different
types of instructions

Multiple
processing

elements/ ALUs,
indepedent
vector RF

Shared ALU,
multiple PC/register

files

Indepedent multiple
full datapaths

Core Within single core Within single
core

Within single core,
but looks like multi-

core (multiple logical
cores)

Multiple (phsical) cores
or full datapaths (IF,
PC, RF, ALU, etc.)

Main issues
Combined with

pipeline, may lead to
data hazards

Data should be
indepedent

Requires
Synchronization

Requires
Synchronization

CS 110
Computer Architecture

Advanced Cache
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/5/20

Administratives

3

• Final exam, June 12th 8am-10am; you can bring 3-page A4-
sized double-sided cheat sheet, handwritten only! (Teaching
center 201/202/203); the whole course will be covered.

• Project 3 released. Speed Competition! ddl May 29th.

• Project 4 released, ddl June 3rd.

• HW 7 released, ddl extended since it is not covered yet, May 30th.

• To check Lab 13 this week, May 20th, 22nd & 26th

• Lab 14 released, to check May 27th, 29th & June 4th (Lab Session
1 only, 1D104); Prepare in advance!

• Discussion May 23rd & 26th on OS & Virtual memory.

4

Key Design Questions

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

 How do different processors coordinate/communicate?
 Shared variables in memory and load/store instructions
 Coordinated access to shared data through synchronization primitives (e.g.,

locks) that restrict access to one processor at a time

 How many processors (or cores) should be supported in this
multiprocessor?
 Depends on the target workload!
 Most systems: Multiple “best available single core within constraints”
 Power-critical systems (e.g., phones): “some of the best available single cores”

and “some of the most power efficient single cores”

 How do different processors (cores) share data?
 Via shared-memory

Effectively all multicore
computers today use
shared memory.

5

Multiprocessor with Shared-memory
● A multiprocessor with shared-memory offers multiple cores/

processors a single, shared, coherent memory.
• Should be called shared-address multiprocessor, because all

processors share single physical address space (more later, VM)

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

Memory I/O

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

6

Multiprocessor (Multicore) Cache
● Memory is a performance bottleneck even with one processor.
● Use private caches to reduce bandwidth demands on main memory!
● Only cache misses have to access the shared common memory

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

Memory I/O

CacheCache Cache

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

7

Multiprocessor Cache

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

Memory I/O

CacheCache Cache

Each
core/processor

has its own
cache

All cores
communicate with

each other and
memory through

a bus.

One memory
shared by all

cores

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

8

Multiprocessor Cache

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

Memory I/O

CacheCache Cache

● Consider the following scenario
● Assume value “20” initially @ Mem[0x5000]):
● Processor 0 read Mem[0x5000];
● Processor 1 read Mem[0x5000];

Request
Response

0x5000: 20 0x5000: 20

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

9

Multiprocessor Cache

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

Memory I/O

CacheCache Cache

● Consider the following scenario
● Assume value “20” initially @ Mem[0x5000]):
● Processor 0 read Mem[0x5000];
● Processor 1 read Mem[0x5000];
● Processor 0 write ‘1’ to Mem[0x5000];

Request
Response

0x5000: 200x5000: 1

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

10

Cache (In)coherence

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

Memory I/O

CacheCache Cache

● Consider the following scenario
● Assume value “20” initially @ Mem[0x5000]):
● Processor 0 read Mem[0x5000];
● Processor 1 read Mem[0x5000];
● Processor 0 write ‘1’ to Mem[0x5000];

0x5000: 200x5000: 1

New cache miss type: coherence
miss (a.k.a. communication miss),
caused by writes to shared data
made by other processors.

● For some parallel programs, coherence misses can dominate total misses;
● The 4th “C” of cache misses

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

11

Cache (In)coherence

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

Memory I/O

CacheCache Cache

● The processor 0 write invalidates other copies in other processors’
caches.

0x5000: 200x5000: 1

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

12

Cache Coherence and Snooping
● Coherent: any read of a data item returns the most recently written

value of that data item
● Because there is shared memory, a computer architect must design the

system to keep cache values coherent.
● Idea: When any processor has cache miss or writes, use the bus to

notify other processors.
● If only reading, many processors can have copies
● If a processor writes, invalidate any other copies.

● One cache coherence protocol: Each cache controller “snoops” for
write transactions on the common bus
● Bus is a broadcast medium
● On any block request to the bus, check if own cache has a copy

● If exists, then invalidate own cache’s copy

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

13

How to Keep Cache Coherent?
● Cache coherent protocol, things to think about:

● How do we communicate when one processor changes the state of shared
data?

● Does every processor action cause data to change state?
● Who should be responsible for providing the updated data?
● What happens to memory while all of this is happening?

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

14

Snooping/Snoopy Protocols
● Snoopy Cache, [Goodman 1983]

● Idea: Have cache watch (or snoop upon) other memory transactions, and
then “do the right thing”

● Snoopy cache tags are dual-ported

Proc.

Cache

Snoopy read port attached
to memory bus

Data
(blocks)

Tags and
state

D

R/W

Used to drive memory bus
when cache is bus master

A

R/W

A

Courtesy: Baidu Baike

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

15

Optimized Snoop with L2 Cache
● Processors often have two-level caches

● Small L1, large L2 (usually both on chip)
● Inclusion property: entries in L1 must be in L2

● invalidation in L2 => invalidation in L1
● Snooping on L2 does not affect CPU-L1 bandwidth

Processor 0 Processor 1 Processor N-1

Bus

... ...

... ...

L1 CacheL1 Cache L1 Cache

L2 Cache
Snooper

L2 Cache
Snooper

L2 Cache
Snooper

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

16

Cache Coherence Tracked by Block

● Suppose core 0 reads and writes D0, core 1 reads and writes D1
● What will happed?

Core 0 Core 1 Core N-1

A big cache block in L1
caches of Cores 0 and 1

... ...

L1 CacheL1 Cache L1 Cache

Tag D0 D1 ...

● False sharing effect
● From hardware perspective, use relatively small cache block;
● Once the hardware is given, keep variables far apart (at least block size away)

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

17

Snooping Protocols
● Write invalidate

● Processor k wanting to write to an address, grabs a bus cycle and sends a
‘write invalidate’ message

● All the other snooping caches invalidate their copy of appropriate cache
line

● Processor k writes to its cached copy (assume for now that it also writes
through to memory)

● Any shared read in the other processors will now miss in cache and re-
fetch new data.

Processor 0 Processor 1 Processor 2

Cache Cache Cache

Bus

Memory I/O

1000 20 1000 20

Processor 0 write
invalidates other

copies

1000

1000 40

1000 40

Save the precious
bandwidth!
Preferred!

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

18

Optimized Snoop with WAW
● Use valid bit to “unload” cache lines (in processors 1~N-1);
● If write-back cache, processor 0 holds a dirty bit;

● Dirty bit tells me: “I am the only one using this cache line”! => no need to
announce on bus again for a second write by processor 0!

Processor 0 Processor 1 Processor N-1

Bus

... ...

CacheCache Cache

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

19

Snooping Protocols
● Write update

● CPU wanting to write grabs bus cycle and broadcasts new data as it
updates its own copy

● All snooping caches update their copy

Processor 0 Processor 1 Processor 2

Cache Cache Cache

Bus

Memory I/O

1000 20 1000 201000 401000 201000 401000 40 1000 40 1000 40

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

20

Snooping Protocols
● Write invalidate:

● Processor k wanting to write to an address, grabs a bus cycle and sends a
‘write invalidate’ message

● All the other snooping caches invalidate their copy of appropriate cache
line

● Processor k writes to its cached copy (assume for now that it also writes
through to memory)

● Any shared read in the other processors will now miss in cache and re-
fetch new data.

● Write update:
● CPU wanting to write grabs bus cycle and broadcasts new data as it

updates its own copy
● All snooping caches update their copy

● In either case, problem of simultaneous writes is taken care of by bus
arbitration, i.e., only one processor can use the bus at any one time.

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

21

Implementation Issues
● Knowing if a cached value is not shared (copy in another cache) can

avoid sending messages
○ But when combined with “write-back” policy, the other processors

may re-fetch the old value;
● Requires protocol to handle this;
● The cache coherence protocols ensure that there is a coherent view of

data, with migration and replication.
○ A cache line has a state

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

22

Example: MOESI Protocols
● For each block in a cache, track its state:

● Shared: up-to-date data, other caches may have a copy; can evict the data
without writing it to backing store;

● Modified: up-to-date data, changed (dirty), no other cache has a copy, OK to
write, memory out-of-date (i.e., write-back); can be further modified freely;

● Invalid: not in cache (from before: valid flag), must be fetched.
● and optional performance optimizations:
● Exclusive: up-to-date data, no other cache has a copy, OK to write, memory

up-to-date;
● Owner: up-to-date data, other caches may have a copy (they must be in

Shared state), the only copy that can update the memory;
● There are different combinations of them (and the other newly invented states)

● MSI/MESI/MOESI (AMD processor family)/MESI+F (Intel processor)

More in CAII

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

23

True or False?
● Using write-through caches removes the need for cache coherence.

● Every processor store instruction must check contents of other caches.

● Only one processor can cache any memory location at one time.

24

True or False?
● Using write-through caches removes the need for cache coherence.

FALSE. You have a copy. I do a write (through, to memory). How do you get
updated when you do a read?

● Every processor store instruction must check contents of other caches.

FALSE. That’s the point of these protocols, to know if others have copies and
whether I need to just do a store or do other work.

● Only one processor can cache any memory location at one time.

FALSE. What if they’re all doing reads? That would be inefficient.

25

Advanced Cache
● Inclusiveness of multi-level caches

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 6MB

Intel Ivy Bridge Cache Architecture (Core i5-3470)

If all blocks in the higher level cache are also present in the lower level cache,
then the lower level cache is said to be inclusive of the higher level cache.

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

26

Inclusiveness

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due to
cache replacement

A

B

B

Evict B from L2 due to
cache replacement

A

B

B

A

Back
invalidation

Ln ⫋ Ln+1 (n ≥ 1)

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

27

Exclusive

L2

L1

Initial state Read A miss; load A
into L1

A

Read B miss;
load B into L1

A B

Evict A from L1 due to
cache replacement

and place in L2

BA

Ln ⋂ Ln+1 = ∅ (n ≥ 1)

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

28

Non-inclusive

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due to
cache replacement

A

B

B

Evict B from L2 due to
cache replacement

A

B

B

A

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

29

Real Staff
● Intel processors

○ Sandy bridge, inclusive
○ Haswell, inclusive
○ Skylake-S, inclusive
○ Skylake-X, non-inclusive

● ARM processors
○ ARMv7, non-inclusive
○ ARMv8, non-inclusive

● AMD processors
○ K6, exclusive
○ Zen, inclusive
○ Shanghai, LLC non-inclusive

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

30

Inclusive or Not?
● Inclusive cache eases coherence

○ A cache block in a higher-level surely exists in lower-level(s)
● Non-inclusive cache yields higher performance though, why?

○ No back invalidation
○ More data can be cached  larger capacity

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

31

“Sneaky” LRU for Inclusive Cache

Inclusive
LLC

L1

A

A B

B

CPU
Core

A is frequently used A is frequently hit in L1
cache. It is MRU in L1 cache.

In LLC, A is not
frequently hit

In LLC, A is
LRU

A is evicted for
replacement, in
both L1 and L2

As a result, MRU block that should be retained might
be evicted, which causes performance penalty.

Should you be interested, you can click https://doi.org/10.1109/MICRO.2010.52
to read the related research paper for details.

What if LLC is non-inclusive?

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

https://doi.org/10.1109/MICRO.2010.52

32

Last-Level Cache (LLC) is not Monolithic

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 20 MB

Intel® Xeon® Processor E5-2667 v3

• Previously, it’s considered that, to CPU cores, LLC is monolithic. No
matter where a cache block in the LLC, a core would load it into private
L2 and L1 cache with the same time cost.

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

33

Last-Level Cache (LLC) is not Monolithic

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Intel® Xeon® Processor E5-2667 v3

LLC is fine-grained
LLC in 8 slices

LLC (L3) Unified 20 MB

From the paper https://doi.org/10.1145/3302424.3303977

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

https://doi.org/10.1145/3302424.3303977

34

Slice-aware Memory Management
● The idea seems simple

○ Put your data closer to your program (core)
● But it not EASY to do so

○ Cache management is undocumented, not to mention fine-grained
slices

○ Researchers did a lot of efforts
■ Click https://doi.org/10.1145/3302424.3303977 for details
■ They managed to improve the average performance by 12.2%

for GET operations of a key-value store.
■ 12.2% is a lot, if you consider the huge transactions every day

for Google, Taobao, Tencent, JD, etc.

Processors with Shared Memory Cache Coherence Snoopy Cache Advanced Cache

https://doi.org/10.1145/3302424.3303977

35

Summary
● There is a huge design space for CPU cache
● To make the best of cache can boost your program’s performance!

