E EEMNFESEAFER

1%;;;. ;;;E School of Information Science and Technology

CS 110
Computer Architecture
Operating System & 1/O

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/5/22

Administratives

Final exam, June 12th 8am-10am; you can bring 3-page A4-
sized double-sided cheat sheet, handwritten only! (Teaching
center 201/202/203); the whole course will be covered. No
electronic devices (no smart watches, no calculators, etc.)

Project 3 released. Speed Competition! ddl May 29th.

Project 4 released, ddl June 3rd. Will be check the 17th week.
HW 7 released, ddl approaching, May 30th.

HW 8 will be released soon, ddl June 5th.

To check Lab 13 this week, May 20th, 22nd & 26th

Lab 14 released, to check May 27th, 29nd & June 4th (Lab Session
1 only, 1D104); Prepare in advance!

Discussion May 23th & 26th on OS & Virtual memory.

CA so far ...

Next PC Logic

—O T (ooncat e <<2 | 4nt25:0)
I nstruction Fetch I ' I I Memory ||| Regiseter Write
- 1 d
+4 1 ﬁ
. 1
! -
: Ingp521) | Rad a .
S [)
K P ras — Pl L1 Linszoe o ogister -
L——0 c File 1
T Instruction | ! Wie i MDa(ar i “F
Memory : Al ' emory ||
. 1 — 1
: -l
!V inssd) |~ >~ : : :
1 Sign / Zero) , H '
' Extended]
1 [insiar28) Sl g 1 1 1
1 | Insti50 I 1 1 |
1 1 L
RegDst ExtOp RegWr AlUSC ALQr Memwr
‘ Control Unit l
Byte
R 3130 ... 1312 11 . 43210
Hit offset Data
Tag 20 3 Block offset
Index
Index Valid Tag Data
0
1
2
253 <
254
255
T=20
L 1

27

BC Machine Code
0x0 0x00115863
0x4

0x8

oxc 0x00032283
0x10 0x0

0x14

RISC-V
Assembly

.foo
1w t0, 4(sl)
addi t1, tO0, 3
beq tl1, t2, foo
nop

Dump Trace

Basic Code

bge x2 x1 16

la x6,

Editor

Original Code

ble x1, x2, loop

omedata # address

ata" in x6

omedata # address

edata" in x6

1w x5 0(x6) 0(x6) # (initial)
to x5
addi x5 x5 1 addi, x5, x5, 1 # x5 +=
“loop" points here)
jal x1 -4 jal loop # jump to loop
Co Download r

C Programs

imulator

of

of

value of

(label

#include <stdlib.h>

int fib(int n) {

return
fib(n-1) +
fib(n-2);

}

zero

ra (x1)

sp (x2)

gp (x3)

tp (x4)

t0 (x5)

t1l (x6)

t2 (x7)

S0 (x8)

Registers M

Integer (R) Floating

Memory

Program

Bytes

Data

Intro. to OS

Different from Real Staff

Screen

Storage
Keyboard

%
‘‘‘‘‘

A
poe”

Add I/0O

C Programs

+4
\/l
™~
s
|| - —

RISC-V
Assembly

.foo

beq t1, t2,
nop

#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);
}

1w t0, 4(sl)
addi tl1, tO,

3
foo

Screen

Keyboard

Storage

1

1

1
1
1
i +—
: 1
' 1
H 1
i 1
P | !
L—»0 c 0
L Instruction | ! \
Memory l]
1
. 1
i 1
1 | 1
1 | | 1
1 | ! 1
1 |InsB12B] S ! ! !
1 | Insti50 1 1 1
- . 1 L 1 | [
- RegDst ExtOp RegWr ALUS' ALLQr MemWr) temToReg
/ \
‘ Control Unit ’ (=)
7/
N/ Byte
i 3130 .. 1312 11 43210
Hit offset
Tag 20 s Block offset
Index
Index Valid Tag Data
0
1
2
253
254
255
T=20
(=]

i

/0 (Inpvut/Output)

)

Memory

Program

L |
i g |
| 5= a

(]

Respberry Pi

|/O controller

Arm processor

|
/0

=R =—m | 1 : :
w3 Raspoerry i) -
: p e A 117 i HAT+ GP10 INTERFACE

w | " v 86 {
= P 4G
(.. 76

Lad
= .a‘]G

4
4

|l

Main memory

the Uk

|

Maode ip

’ﬂ."‘ — — r'

o — — .--J

" vy A7 20Ee A N

MIPI for
camera etc.

It Is a real computer!

Just Software?

The biggest piece of software on your machine?

How many lines of code? These are guesstimates (in millions of lines

o
20 3 40 50 60 80 9

Windows 2000
Microsoft Office for Mac

2006 30
Symbian

mobile operating system i 180%
Windows 7 y—133%

2009
Windows XP
2001
Microsoft Office 2013

60

80

90

Large Hadron Collider
total code

Windows Vista
2007

Microsoft Visual Studio 2012

Facebook
(including backend code)

US Army Future Combat System
fast battlefield network system (aborted)

Deblan 5. 0 codebase
free, open-source operating system

Mac OS X “Tiger”
v10.4

Car software
rage moder

n hig
Mouse
al DNA baseps

CC BY-NC 3.0

David McCandless©2015
http://www.informationis
beautiful.net/visualization
s/million-lines-of-code/

8

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Year
1994
1996
2001
2003
2011
2015
2019
Apr 2020
May 2022
May 2024
May 2025

Linux Kernel Over Time

OS = kernel
— User interface and other components not covered

Kernel Version
linux-1.0.tar.gz
linux-2.0.tar.gz
linux-2.4.0.tar.gz
linux-2.6.0.tar.gz
linux-3.0.tar.gz
linux-4.0.tar.gz
linux-5.0.tar.gz
linux-5.6.8.tar.gz
linux-5.17.5.tar.gz
Linux-6.9.tar.gz
Linux-6.14.7.tar.gz

Size of zipped file
1MB
6MB

23MB
40MB
92MB
118MB
155MB
166MB
189MB
222MB
231MB

-

All 7 fictions in txt format
zipped to be 2.5MB

~

Besides the Hardware

« That’s still not the same. CS 110 experience isn’t like the real world.

* When switching on a computer, get this

B ty e) w53 4

@
® o -
E ki Applications see 11 more results »

¥

| & & &)

R

Oitems Folder |

foREEE® ?

Yes, that is just the software!
The operating system (OS)

10

What does the OS do?

* One of the first things that runs when your computer starts (right
after firmware/bootloader)

— Provides services (100+): File System, Network stack, printer, etc.

* Loads, runs and manages programs (recall CALL):

— Isolate programs from each other (isolation), each program/process runs
(appears to run) in its own little world; (later, virtual memory)

— Multiplex resources between applications (e.g., hardware threads memory,
/O devices: disk, keyboard, diaplay, network, etc.)

« |/O with the rest of computer

— Provide interaction with the outside world;

— Finds and controls all the devices in the machine in a general way (using
“device drivers”)

What does the OS do?

One of the first things that runs when your computer starts (right
after firmware/bootloader)

12

What happens at Boot”?

 When the computer switches on, the CPU executes instructions
from some start address (stored in Flash ROM)

- il AMIBIOS

1 AMERICAN M |
Memory Bl (20X Eroh BIGCCATRENDS §

mapped I AA0135939

SLLliENEEREEE.

Jiz2 Irid

0x2000:
addi t0, zero, 0x1000
w t0, 4(t0)

(Code to cgby firmware
into regular memory

and jump into it)£;7

PC = 0x2000 (some default value) —— Address Space

« Bootstrapping: https://en.wikipedia.org/wiki/Bootstrapping

13

https://en.wikipedia.org/wiki/Bootstrapping

Boot

What happens at Boot”?

When the computer switches on, the CPU executes instructions
rom some start address (stored in Flash ROM

1. BIOS: Find a e 4. Init: Launch an

pool: <speedup>
fc: <speedup> x

storage device and application that waits

Which layer should we optimize?,

load first sector for input in loop (e.qg.,

~/src/proj3/proj3_starter $
answers.txt cnn cnnModule py data LICENSE Makefile,

block of data . ey | Terminal/Desktop/...

cnn.c main.c python.c util.c

cs6lc-ti@hive22
~/src/proj3/proj3_starter $ make cnn

make: “cnn' is up to date. G
Diskette Drive B : None Serial Port(s) i 3F0 2ro csblc-ti@hive22 Linux x86_64 ‘
Pri. Master Disk : LBA,ATA 100, Z50GB Parallel Port(s) : 370 ~/src/proj3/proj3_starter $ || =
Pri. Slave Disk : LBA,ATA 100, Z£50GB DDR at Bank(s) t012
Sec. Master Disk : None the KHDPPIX live GNU/Linux on DUD?
Sec. Slave Disk

. Master Disk HDD S5.M.A.R.T. capability . Dizabled ning Linux Kernel 2.6.24.4.)
. Slave Disk HDD S.M.A.R.T. capability ... Disabled Menol 3 124132kB, | 118180kB

1 It 3 hdc [QEMU CD-ROM1

Accessing KNOPPIX DUD at ~deushdc...

Found primary KNOPPIX compressed image at ~cdrom-KNOPPIX/KNDPPIX.

Found additional KNOPPIX compressed image at ~cdrom KNOPPIX-KNOPPIXZ.
srandisk m shared memory

PCI Devices Listing ...
Bus Dev Fun VUendor Device SVYID SSID Class Device Class

8086 2668 1458 A0OS 0403 Multimedia Dewvice
8086 2658 1458 2658 0C03 USB 1.1 Host Cntrlr nd
BoB6 2659 1458 2659 0C03 USB 1.1 Host Cntrlr > Read-only DUD system successfully merged with read-write sramdisk.
8086 265A 1458 265A4 0OCO3 USB 1.1 Host Cntrlr

8086 265B 1458 265a4 ©CO3 USB 1.1 Host Cntrlr)

8086 265C 1458 5006 0CO03 USB 1.1 Host Cotrlr INIT: version 2.86 booting

6066 2651 1458 2651 0101 IDE Cntrlr onfiguring for Linux Kernel 2.6.24.4.
B0B6 266A 1458 266A OCOS5 SHBus Cntrlr rocessor @ is Pentium I1 (Klamath) 1662MHz, 128 KB Cache
10DE 0421 10DE 0479 0300 Display Cntrlr pnd [16081: apnd 3.2.1 interfacing with apm driver 1.16ac and APM BIDS 1.2

1283 8212 0000 0000 0180 Mass Storage Cntrlr pins found, power management functions enabled.

d, managed by udeu
11AB 4320 1458 E000 0200 Network Cntrlr = found, managed by udeu
ACPI Controller udev hot-plug hardware detection...

nfiguring devices...

NNRCOOOOOOO
CERPUNNWUNRO O

2. BOOtIoader Stored . .ﬁ.24—15—generic (recovery Mode)
on, e.g., disk): Load the

OS kerne/ from disk into
a location in memory

3. OS Boot:
Initialize services,

Use the Tt and 4 keys to select which entry is highlighted.

-
M M M Press enter to boot the selected 05, 'e’ to edit the d rlve rS etC
a n Jl Il I Ip II l O I commands before booting, or 'c’ for a command-line. b} L]
.

UEFI: Unified Extensible Firmware Interface

 Successor of BIOS

* Much more powerful and complex /
 E.g.graphics menu; networking;

browsers
* All modern Intel & AMD-based

computer use UEFI

Extensible Firmware Interface

N~
| Fimware

Hardware

15

I/O, Interrupt & Exception

What does the OS do?

« |/O with the rest of computer

10

I/O, Interrupt & Exception

How to interact with devices?

« Assume a program running on a CPU. Operating System

How does it interact with the outside

world? Processor — Mem

 Need I/O interface for Keyboards,
Network, Mouse, Screen, etc.
PCI Bus >

— Connect to many types of devices

— Control these devices, respond
to them, and transfer data

— Present them to user

programs so < ‘ ‘ |
they are useful - -

ctrl reg.

data reqg.

17

I/O, Interrupt & Exception

Instruction Set Architecture for I/0

« Could define a separate scheme to handle each different I/0O device ...
« ...0r we could standardize the interface and let the /O device handle

any complications.
 What must the processor do for I/0O?
— Input: reads a sequence of bytes
— Output: writes a sequence of bytes
» Interface options
— Some processors have special input/output instructions
— Memory Mapped Input/Output (MMIO, used by RISC-V):
« Use normal load/store instructions, e.g., lw/sw, for input/output
— In small pieces
* A portion of the address space dedicated to I/O
 |/O device registers there (no memory there)

Memory Mapped |/O

I/O, Interrupt & Exception

Certain addresses are not regular memory, instead, they correspond to registers

in /0O devices

Shared abstraction: I/O devices read/write bytestreams.
Shared interface is therefore memory mapped I/O

This is a portion of address space
dedicated to I/O that does not
contain “regular” memory; rather,
it corresponds to registers in 1/O
devices!

Makes it easy to use normal load/

store instructions, e.g. lw/sw
(Very common, used by RISC-V)

OXFFFFFFFF

OxFFFFO000

address

ctrl. reg.

data reg.

19

I/O, Interrupt & Exception

Caveat: Speed Mismatch

In theory, simple. In practice, extremely difficult to standardize over 9 orders of
magnitude of data rate!

1 GHz microprocessor 1/0O throughput: 4 GiB/s (lw/sw)
Some |/O peak data rates:

— 10 B/s (keyboard)

— 3 MiB/s (Bluetooth 3.0)

— 0.06-1.25 GiB/s (USB 2/3.1)

— 7-250 MiB/s (WIFI, depends on standard)
— 125 MiB/s (G-bit Ethernet)

— 480 MiB/s (SATA3 HDD)

— 560 MiB/s (cutting edge SSD)

— 5 @GiB/s (Thunderbolt 3)

— 32 GiB/s (High-end DDR4 DRAM)

— 64 GiB/s (HBM2 DRAM)

Input may be waiting for human to act
Output device may not be ready to accept data (as fast as processor stores it)

I/O, Interrupt & Exception

Processor: Polls vs. Interrupts

* Polling * Interrupts
— e.g., “30 times per second” — Avoid wasting processor resources for
« Processor reads from control register in loop ISW (:;‘ta rate devices (e.g., mouse, key-
oar

— Wait for device to set ready bit in control
reg. (0—1) indicates “data available” (for
input device) or “ready to accept data” — Occurs when /O is ready
(for output device);

. Processor runs as usual

— Interrupt current program

— Then loads from/writes to data reg. — Transfer control to the trap handler in the

— I/O device resets control reg. (1—0) operating system

I/O, Interrupt & Exception

/0 Polling Example

* Input: Read from keyboard into a@

11 to,
Waitloop: Ww t1,
andi tl,
beq t1,
lw a0,

OxTffff0000 #fTTf0000
0(t0) #control
t1l,0x1

zero, Waitloop
4(t0) #data

* Qutput: Write to display from a@

11 to,
Waitloop: w tl,
andi t1,
beq t1,
sw al,

Oxffff0000 #TTTT0000

8(to) #control
t1l,0x1

zero, Waitloop
12(t0) #data

“Ready” bit is from processor’s point of view!

22

I/O, Interrupt & Exception

Cost of Polling

« Assume for a processor with a 1GHz clock it takes 400 clock cycles
for a polling operation (call polling routine, accessing the device, and
returning). Determine % of processor time for polling

— Mouse: polled 30 times/sec so as not to miss user movement

I/O, Interrupt & Exception

Cost of Polling

Assume for a processor with a 1GHz clock it takes 400 clock cycles
for a polling operation (call polling routine, accessing the device, and
returning). Determine % of processor time for polling

— Mouse: polled 30 times/sec so as not to miss user movement
Mouse Polling [clocks/sec]

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

% Processor for polling:

12*103 [clocks/s] / 1*109° [clocks/s] = 0.0012%

=> Polling mouse little impact on processor

I/O, Interrupt & Exception

Alternative to Polling: Interrupts

Wasteful to have processor spend most of its time “spin-waiting” for
/O to be ready

Would like an unplanned procedure call that would be invoked only
when |/O device is ready

Solution: use interrupts to help I/0O.

— Interrupt program when |/O ready, return when done with data
transfer

Allow to register (post) interrupt handlers: functions that are called
when an interrupt is triggered

25

I/O, Interrupt & Exception

Interrupt-driven 1/O

Low 1. Incoming interrupt suspends instruction
Handler Execution stream
2. Looks up the vector (function address) of a
Stack Frame handler in an interrupt vector table stored
within the CPU
Stack Frame 3. Perform a jal to the handler (needs to store
any state)
Stack Frame 4. Handler run on current stack and returns on
High finish (thread doesn’t notice that a handler
was run)
Label: sll t1,s3,2 handter: hlv E? 8)((5)1;1:0000
addu t1,t1,s5 R P R
lw t1,0(t1) sw tl, 8(t0)
add s1,s1,tl <— < ret

addu s3,s3,s54

bne s3,s2,label Interrupt CPU Interrupt Table
(SPIO)
— >

SPIO handler

I/O, Interrupt & Exception

Terminologies

In CA (you’ll see other definitions in use elsewhere):

Interrupt — caused by an event externalto current running program (e.g. key
press, mouse activity)

— Asynchronous to current program, can handle interrupt on any convenient
Instruction

Exception — caused by some event during execution of one instruction of
current running program (e.g., page fault, bus error, illegal instruction)

— Synchronous, must handle exception on instruction that causes exception

Trap — action of servicing interrupt or exception by hardware jump to “trap
handler” code

27

I/O, Interrupt & Exception

Traps, Interrupts & Exceptions

* Altering the normal flow of control

An external or internal event
that needs to be processed-by
another program-the OS. The
event is often unexpected from
original program’s point of
view.

program

trap
handler

28

I/O, Interrupt & Exception

Precise Traps

« Trap handler’s view of machine state is that every instruction prior to the
trapped one has completed, and no instruction after the trap has executed.

* Implies that handler can return from an interrupt by restoring user registers
and jumping back to interrupted instruction (Supervisor exception program
counter (SEPC) register will hold the instruction address)

— Interrupt handler software doesn’t need to understand the pipeline of the
machine, or what program was doing!

— More complex to handle trap caused by an exception than interrupt

* Providing precise traps is tricky in a pipelined superscalar out-of-order
processor!
— But handling imprecise interrupts in software is even worse.

I/O, Interrupt & Exception

Trap Handling in 5-stage Pipeline

Inst.
PC Mem

PC address
Exception

Decode

Illegal
Opcode

*Asynchronous Interrupts

Data

Mem

C

Overflow

D

Data address

Exceptions

« How to handle multiple simultaneous exceptions in different pipeline stages?

 How and where to handle external asynchronous interrupts?

30

I/O, Interrupt & Exception

Handling Traps in In-Order Pipeline

« Hold exception flags in pipeline until commit point (M stage)

 EXxceptions in earlier instructions override exceptions in later
Instructions

« EXceptions in earlier pipe stages override later exceptions for one
given instruction

* Inject external interrupts at commit point

 If exception/interrupt at commit: update Cause and SEPC registers,
Kill all stages, inject handler PC into fetch stage

I/O, Interrupt & Exception

Save Exceptions until Commit
(cause

Decode

Illegal
Opcode

Commit:

point |

Data

Overflow

Inst.
PC <> Mem
PC address
Exception
Select _ E
Handler Kill F
PC Stage

Kill D |

Stage

»
»

Mem

@

Data addressi

Exceptions |

i

PC

\\1 .
!

Asynchronous
Interrupts

SEPC Cause

v v

Kill
Writeback

|

32

I/O, Interrupt & Exception

Handling Traps in In-Order Pipeline

« Hold exception flags in pipeline until commit point (M stage)

 EXxceptions in earlier instructions override exceptions in later
Instructions

 EXxceptions in earlier pipe stages override later exceptions for a
given instruction

* Inject external interrupts at commit point

 If exception/interrupt at commit: update Cause and SEPC registers,
Kill all stages, inject handler PC into fetch stage

I/O, Interrupt & Exception

Trap Pipeline Diagram

time
t0 t1 t2 t3 t4 t5 t6 t7
(I,) 096: ADD IF, 1D, EX;MA, — - overflow!
(I,) 100: XOR IF, ID, Ex2§ - -
(I,) 104: SUB IF, ID; \ - - -
108: ADD - - - -

Trap Handler code

34

What does the OS do?

* Loads, runs and manages programs

35

Process Management

Launching Applications

Applications are called “processes” in most OSes.
— Process: separate memory;,
— Thread: shared memory

Created by another process calling into an OS routine (using a
“syscall”, more details later).

— Depends on OS, but Linux uses fork to create a new process,
and execve to load application.

Loads executable file from disk (using the file system service) and
puts instructions & data into memory (.text, .data sections), prepare
stack and heap.

Set argc and argv, jump into the main function.

Process Management

Processes Management

* The OS manages multiprogramming.

— Multiplexing (i.e., running “simultaneously”) multiple applications
(processes) on one CPU.

— This is achieved via process-level context switches, I.e., switches
between processes very quickly (on the human time scale)

 The OS also manages multiprocessing.
— Running processes simultaneously on different CPUs.

 The OS also manages processes calling other programs.
— Current process requests this from the OS via a syscall.

37

Process Management

System Call: Request OS Service (1/2)

« A system call (syscall) is a “software interrupt” that allows a (user) process to
request a service from the operating system.

— Similar to a function call, except now executed by the kernel.
 Example service requests:

— Creating and deleting files; reading/writing files;

— Accessing external devices (e.g., scanner);

— printf, malloc, etc. (ecalls in RISC-V); etc.

— Launch a new process

38

Process Management

System Call: Request OS Service (2/2)

« A system call (syscall) is a “software interrupt” that allows a (user) process to
request a service from the operating system.

Similar to a function call, except now executed by the kernel.

 Example service requests:

Creating and deleting files; reading/writing files;
Accessing external devices (e.g., scanner);
printf, malloc, etc. (ecalls in RISC-V); etc.
Launch a new process

* Suppose a user process (e.g., Linux shell) wants to launch a new app:

Shell forks: a syscall that traps into the OS kernel process

OS (supervisor mode): Loads program (see CALL); jumps to start of new app’s
main. Returns to user mode.

Shell: “waits” for new app’s main to return (joins)

39

Process Management

Multiprogramming

The OS runs multiple applications at the same time.

But not really (unless you have a core per process)

— Time-sharing processor

When jumping into process, set timer interrupt.

— When it expires, store PC, registers, etc. (process state).

— Pick a different process to run and load its state.

— Set timer, change to user mode, jump to the new PC.

Switches between processes very quickly. This is called a “context switch”.
Deciding what process to run is called scheduling.

40

Process Management

Protection, Translation, Paging

« Supervisor mode does not fully isolate applications from each other or from the OS.
— Application could overwrite another application’s memory.

— Also, may want to address more memory than we actually have (e.g., for sparse
data structures).

« Solution: Virtual Memory (Next lecture). Gives each process the illusion of a full
memory address space that it has completely for itself.

M

Summary

e Once we have a basic machine, it’s mostly up to the OS to use it and
define application interfaces.
e Main functions of an OS
o Startup the computer (boot)
e 1/O by polling or interrupt
e EXxception, interrupt, trap
e Precise trap

e Resources management, etc.
e More to explore in CS 130

