
CS 110
Computer Architecture
Operating System & I/O

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao

Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html

School of Information Science and Technology (SIST)
ShanghaiTech University

2025/5/22

Administratives

2

• Final exam, June 12th 8am-10am; you can bring 3-page A4-
sized double-sided cheat sheet, handwritten only! (Teaching
center 201/202/203); the whole course will be covered. No
electronic devices (no smart watches, no calculators, etc.)

• Project 3 released. Speed Competition! ddl May 29th.

• Project 4 released, ddl June 3rd. Will be check the 17th week.

• HW 7 released, ddl approaching, May 30th.

• HW 8 will be released soon, ddl June 5th.

• To check Lab 13 this week, May 20th, 22nd & 26th

• Lab 14 released, to check May 27th, 29nd & June 4th (Lab Session
1 only, 1D104); Prepare in advance!

• Discussion May 23th & 26th on OS & Virtual memory.

3

CA so far ...

Intro. to OS Boot I/O, Interrupt & Exception Process Management

Memory

CPU

Caches

RISC-V
Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
 return

 fib(n-1) +
 fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo

nop

4

Different from Real Staff

Screen

Keyboard
Storage

Intro. to OS Boot I/O, Interrupt & Exception Process Management

5

Add I/O

Memory

CPU

Caches

RISC-V
Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
 return

 fib(n-1) +
 fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo

nop

I/O (Input/Output)

Screen Keyboard Storage

Intro. to OS Boot I/O, Interrupt & Exception Process Management

6

Respberry Pi
I/O controller

Arm processor

I/O

Network

USB 3.0

USB 2.0

mini-
HDMI

PCIe

SD card

GPIO

MIPI for
camera etc.

Main memory

Intro. to OS Boot I/O, Interrupt & Exception Process Management

7

It is a real computer!

Intro. to OS Boot I/O, Interrupt & Exception Process Management

8

Just Software?
• The biggest piece of software on your machine?
• How many lines of code? These are guesstimates (in millions of lines

of code)

CC BY-NC 3.0
David McCandless©2015
http://www.informationis
beautiful.net/visualization

s/million-lines-of-code/

Intro. to OS Boot I/O, Interrupt & Exception Process Management

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

9

Linux Kernel Over Time
• OS ≈ kernel

– User interface and other components not covered

All 7 fictions in txt format
zipped to be 2.5MB

Year Kernel Version Size of zipped file
1994 linux-1.0.tar.gz 1MB
1996 linux-2.0.tar.gz 6MB
2001 linux-2.4.0.tar.gz 23MB
2003 linux-2.6.0.tar.gz 40MB
2011 linux-3.0.tar.gz 92MB
2015 linux-4.0.tar.gz 118MB
2019 linux-5.0.tar.gz 155MB

Apr 2020 linux-5.6.8.tar.gz 166MB
May 2022 linux-5.17.5.tar.gz 189MB
May 2024 Linux-6.9.tar.gz 222MB
May 2025 Linux-6.14.7.tar.gz 231MB

Intro. to OS Boot I/O, Interrupt & Exception Process Management

10

Besides the Hardware
• That’s still not the same. CS 110 experience isn’t like the real world.
• When switching on a computer, get this

Yes, that is just the software!
The operating system (OS)

Intro. to OS Boot I/O, Interrupt & Exception Process Management

11

What does the OS do?
• One of the first things that runs when your computer starts (right

after firmware/bootloader)
– Provides services (100+): File System, Network stack, printer, etc.

• Loads, runs and manages programs (recall CALL):
– Isolate programs from each other (isolation), each program/process runs

(appears to run) in its own little world; (later, virtual memory)
– Multiplex resources between applications (e.g., hardware threads memory,

I/O devices: disk, keyboard, diaplay, network, etc.)

• I/O with the rest of computer
– Provide interaction with the outside world;
– Finds and controls all the devices in the machine in a general way (using

“device drivers”)

Intro. to OS Boot I/O, Interrupt & Exception Process Management

12

What does the OS do?
• One of the first things that runs when your computer starts (right

after firmware/bootloader)
• Loads, runs and manages programs
• I/O with the rest of computer

Intro. to OS Boot I/O, Interrupt & Exception Process Management

13

What happens at Boot?
• When the computer switches on, the CPU executes instructions

from some start address (stored in Flash ROM)

CPU

PC = 0x2000 (some default value) Address Space

0x2000:
addi t0, zero, 0x1000

lw t0, 4(t0)
…

(Code to copy firmware
into regular memory
and jump into it)

Memory
mapped

• Bootstrapping: https://en.wikipedia.org/wiki/Bootstrapping

Intro. to OS Boot I/O, Interrupt & Exception Process Management

https://en.wikipedia.org/wiki/Bootstrapping

14

What happens at Boot?
• When the computer switches on, the CPU executes instructions

from some start address (stored in Flash ROM)

1. BIOS: Find a
storage device and

load first sector
(block of data)

2. Bootloader (stored
on, e.g., disk): Load the
OS kernel from disk into

a location in memory
and jump into it.

3. OS Boot:
Initialize services,

drivers, etc.

4. Init: Launch an
application that waits
for input in loop (e.g.,
Terminal/Desktop/...

Intro. to OS Boot I/O, Interrupt & Exception Process Management

15

UEFI: Unified Extensible Firmware Interface
• Successor of BIOS
• Much more powerful and complex
• E.g.graphics menu; networking;

browsers
• All modern Intel & AMD-based

computer use UEFI

Intro. to OS Boot I/O, Interrupt & Exception Process Management

16

What does the OS do?
• One of the first things that runs when your computer starts (right

after firmware/bootloader)
• Loads, runs and manages programs
• I/O with the rest of computer

Intro. to OS Boot I/O, Interrupt & Exception Process Management

17

How to interact with devices?
• Assume a program running on a CPU.

How does it interact with the outside
world?

• Need I/O interface for Keyboards,
Network, Mouse, Screen, etc.
– Connect to many types of devices
– Control these devices, respond

to them, and transfer data
– Present them to user

programs so
they are useful

ctrl reg.
data reg.

Operating System

Processor Mem

PCI Bus

SCSI Bus

Intro. to OS Boot I/O, Interrupt & Exception Process Management

18

Instruction Set Architecture for I/O
● Could define a separate scheme to handle each different I/O device …

● …or we could standardize the interface and let the I/O device handle
any complications.

• What must the processor do for I/O?
– Input: reads a sequence of bytes
– Output: writes a sequence of bytes

• Interface options
– Some processors have special input/output instructions
– Memory Mapped Input/Output (MMIO, used by RISC-V):

• Use normal load/store instructions, e.g., lw/sw, for input/output
– In small pieces

• A portion of the address space dedicated to I/O
• I/O device registers there (no memory there)

Intro. to OS Boot I/O, Interrupt & Exception Process Management

19

Memory Mapped I/O
• Certain addresses are not regular memory, instead, they correspond to registers

in I/O devices
• Shared abstraction: I/O devices read/write bytestreams.
• Shared interface is therefore memory mapped I/O

ctrl. reg.
data reg.

0

0xFFFFFFFF
address

0xFFFF0000

• This is a portion of address space
dedicated to I/O that does not
contain “regular” memory; rather,
it corresponds to registers in I/O
devices!

• Makes it easy to use normal load/
store instructions, e.g. lw/sw

• (Very common, used by RISC-V)

Intro. to OS Boot I/O, Interrupt & Exception Process Management

20

Caveat: Speed Mismatch
• In theory, simple. In practice, extremely difficult to standardize over 9 orders of

magnitude of data rate!
• 1 GHz microprocessor I/O throughput: 4 GiB/s (lw/sw)
• Some I/O peak data rates:

– 10 B/s (keyboard)
– 3 MiB/s (Bluetooth 3.0)
– 0.06-1.25 GiB/s (USB 2/3.1)
– 7-250 MiB/s (WIFI, depends on standard)
– 125 MiB/s (G-bit Ethernet)
– 480 MiB/s (SATA3 HDD)
– 560 MiB/s (cutting edge SSD)
– 5 GiB/s (Thunderbolt 3)
– 32 GiB/s (High-end DDR4 DRAM)
– 64 GiB/s (HBM2 DRAM)

• Input may be waiting for human to act
• Output device may not be ready to accept data (as fast as processor stores it)

Intro. to OS Boot I/O, Interrupt & Exception Process Management

21

Processor: Polls vs. Interrupts
• Polling

– e.g., “30 times per second”

• Processor reads from control register in loop

– Wait for device to set ready bit in control
reg. (0→1) indicates “data available” (for
input device) or “ready to accept data”
(for output device);

– Then loads from/writes to data reg.

– I/O device resets control reg. (1→0)

• Interrupts
– Avoid wasting processor resources for

low data rate devices (e.g., mouse, key-
board)

• Processor runs as usual

– Occurs when I/O is ready

– Interrupt current program

– Transfer control to the trap handler in the
operating system

Intro. to OS Boot I/O, Interrupt & Exception Process Management

22

I/O Polling Example
• Input: Read from keyboard into a0

li t0, 0xffff0000 #ffff0000
Waitloop: lw t1, 0(t0) #control

andi t1, t1,0x1
beq t1, zero, Waitloop
lw a0, 4(t0) #data

• Output: Write to display from a0
li t0, 0xffff0000 #ffff0000

Waitloop: lw t1, 8(t0) #control
andi t1, t1,0x1
beq t1, zero, Waitloop
sw a0, 12(t0) #data

“Ready” bit is from processor’s point of view!

Intro. to OS Boot I/O, Interrupt & Exception Process Management

23

Cost of Polling
• Assume for a processor with a 1GHz clock it takes 400 clock cycles

for a polling operation (call polling routine, accessing the device, and
returning). Determine % of processor time for polling
– Mouse: polled 30 times/sec so as not to miss user movement

Intro. to OS Boot I/O, Interrupt & Exception Process Management

24

Cost of Polling
• Assume for a processor with a 1GHz clock it takes 400 clock cycles

for a polling operation (call polling routine, accessing the device, and
returning). Determine % of processor time for polling
– Mouse: polled 30 times/sec so as not to miss user movement

• Mouse Polling [clocks/sec]
= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling:
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
=> Polling mouse little impact on processor

Intro. to OS Boot I/O, Interrupt & Exception Process Management

25

Alternative to Polling: Interrupts
• Wasteful to have processor spend most of its time “spin-waiting” for

I/O to be ready

• Would like an unplanned procedure call that would be invoked only
when I/O device is ready

• Solution: use interrupts to help I/O.
– Interrupt program when I/O ready, return when done with data

transfer
• Allow to register (post) interrupt handlers: functions that are called

when an interrupt is triggered

Intro. to OS Boot I/O, Interrupt & Exception Process Management

26

Interrupt-driven I/O

Label: sll t1,s3,2
 addu t1,t1,s5
 lw t1,0(t1)
 add s1,s1,t1
 addu s3,s3,s4
 bne s3,s2,label

Stack Frame

Stack Frame

Stack Frame

handler: li t0, 0xffff0000
lw t1, 0(t0)
andi t1, t1,0x1

 lw a0, 4(t0)
 sw t1, 8(t0)

 ret

Interrupt
(SPI0)

CPU Interrupt Table
SPI0 handler

… …

Handler Execution
1. Incoming interrupt suspends instruction

stream
2. Looks up the vector (function address) of a

handler in an interrupt vector table stored
within the CPU

3. Perform a jal to the handler (needs to store
any state)

4. Handler run on current stack and returns on
finish (thread doesn’t notice that a handler
was run)

Intro. to OS Boot I/O, Interrupt & Exception Process Management

High

Low

27

Terminologies
In CA (you’ll see other definitions in use elsewhere):

• Interrupt – caused by an event external to current running program (e.g. key
press, mouse activity)
– Asynchronous to current program, can handle interrupt on any convenient

instruction

• Exception – caused by some event during execution of one instruction of
current running program (e.g., page fault, bus error, illegal instruction)
– Synchronous, must handle exception on instruction that causes exception

• Trap – action of servicing interrupt or exception by hardware jump to “trap
handler” code

Intro. to OS Boot I/O, Interrupt & Exception Process Management

28

Traps, Interrupts & Exceptions
• Altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap

handler

An external or internal event
that needs to be processed-by
another program-the OS. The
event is often unexpected from
original program’s point of
view.

Intro. to OS Boot I/O, Interrupt & Exception Process Management

29

Precise Traps
• Trap handler’s view of machine state is that every instruction prior to the

trapped one has completed, and no instruction after the trap has executed.

• Implies that handler can return from an interrupt by restoring user registers
and jumping back to interrupted instruction (Supervisor exception program
counter (SEPC) register will hold the instruction address)
– Interrupt handler software doesn’t need to understand the pipeline of the

machine, or what program was doing!
– More complex to handle trap caused by an exception than interrupt

• Providing precise traps is tricky in a pipelined superscalar out-of-order
processor!
– But handling imprecise interrupts in software is even worse.

Intro. to OS Boot I/O, Interrupt & Exception Process Management

30

Trap Handling in 5-stage Pipeline

• How to handle multiple simultaneous exceptions in different pipeline stages?

• How and where to handle external asynchronous interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

Intro. to OS Boot I/O, Interrupt & Exception Process Management

31

Handling Traps in In-Order Pipeline
• Hold exception flags in pipeline until commit point (M stage)

• Exceptions in earlier instructions override exceptions in later
instructions

• Exceptions in earlier pipe stages override later exceptions for one
given instruction

• Inject external interrupts at commit point

• If exception/interrupt at commit: update Cause and SEPC registers,
kill all stages, inject handler PC into fetch stage

Intro. to OS Boot I/O, Interrupt & Exception Process Management

32

Save Exceptions until Commit

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow

Data address
Exceptions

PC address
Exception

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
S
EP

C

Asynchronous
Interrupts

Commit
point

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler

PC
Kill

Writeback

C
au

se

C
au

se

Intro. to OS Boot I/O, Interrupt & Exception Process Management

Cause

33

Handling Traps in In-Order Pipeline
• Hold exception flags in pipeline until commit point (M stage)

• Exceptions in earlier instructions override exceptions in later
instructions

• Exceptions in earlier pipe stages override later exceptions for a
given instruction

• Inject external interrupts at commit point

• If exception/interrupt at commit: update Cause and SEPC registers,
kill all stages, inject handler PC into fetch stage

Intro. to OS Boot I/O, Interrupt & Exception Process Management

34

Trap Pipeline Diagram

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5MA5 WB5

Intro. to OS Boot I/O, Interrupt & Exception Process Management

35

What does the OS do?
• One of the first things that runs when your computer starts (right

after firmware/bootloader)
• Loads, runs and manages programs
• I/O with the rest of computer

Intro. to OS Boot I/O, Interrupt & Exception Process Management

36

Launching Applications
• Applications are called “processes” in most OSes.

– Process: separate memory;
– Thread: shared memory

• Created by another process calling into an OS routine (using a
“syscall”, more details later).
– Depends on OS, but Linux uses fork to create a new process,

and execve to load application.
• Loads executable file from disk (using the file system service) and

puts instructions & data into memory (.text, .data sections), prepare
stack and heap.

• Set argc and argv, jump into the main function.

Intro. to OS Boot I/O, Interrupt & Exception Process Management

37

Processes Management
• The OS manages multiprogramming.

– Multiplexing (i.e., running “simultaneously”) multiple applications
(processes) on one CPU.

– This is achieved via process-level context switches, i.e., switches
between processes very quickly (on the human time scale)

• The OS also manages multiprocessing.
– Running processes simultaneously on different CPUs.

• The OS also manages processes calling other programs.
– Current process requests this from the OS via a syscall.

Intro. to OS Boot I/O, Interrupt & Exception Process Management

38

System Call: Request OS Service (1/2)
• A system call (syscall) is a “software interrupt” that allows a (user) process to

request a service from the operating system.
– Similar to a function call, except now executed by the kernel.

• Example service requests:
– Creating and deleting files; reading/writing files;
– Accessing external devices (e.g., scanner);
– printf, malloc, etc. (ecalls in RISC-V); etc.
– Launch a new process

Intro. to OS Boot I/O, Interrupt & Exception Process Management

39

System Call: Request OS Service (2/2)
• A system call (syscall) is a “software interrupt” that allows a (user) process to

request a service from the operating system.
– Similar to a function call, except now executed by the kernel.

• Example service requests:
– Creating and deleting files; reading/writing files;
– Accessing external devices (e.g., scanner);
– printf, malloc, etc. (ecalls in RISC-V); etc.
– Launch a new process

• Suppose a user process (e.g., Linux shell) wants to launch a new app:
– Shell forks: a syscall that traps into the OS kernel process
– OS (supervisor mode): Loads program (see CALL); jumps to start of new app’s

main. Returns to user mode.
– Shell: “waits” for new app’s main to return (joins)

Intro. to OS Boot I/O, Interrupt & Exception Process Management

40

Multiprogramming
• The OS runs multiple applications at the same time.
• But not really (unless you have a core per process)

– Time-sharing processor
• When jumping into process, set timer interrupt.

– When it expires, store PC, registers, etc. (process state).
– Pick a different process to run and load its state.
– Set timer, change to user mode, jump to the new PC.

• Switches between processes very quickly. This is called a “context switch”.
• Deciding what process to run is called scheduling.

Intro. to OS Boot I/O, Interrupt & Exception Process Management

41

Protection, Translation, Paging

• Supervisor mode does not fully isolate applications from each other or from the OS.

– Application could overwrite another application’s memory.

– Also, may want to address more memory than we actually have (e.g., for sparse
data structures).

• Solution: Virtual Memory (Next lecture). Gives each process the illusion of a full
memory address space that it has completely for itself.

Intro. to OS Boot I/O, Interrupt & Exception Process Management

42

Summary
● Once we have a basic machine, it’s mostly up to the OS to use it and

define application interfaces.
● Main functions of an OS

● Startup the computer (boot)
● I/O by polling or interrupt

● Exception, interrupt, trap
● Precise trap

● Resources management, etc.
● More to explore in CS 130

