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Administratives
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• Final exam, June 12th 8am-10am; you can bring 3-page A4-sized 
double-sided cheat sheet, handwritten only! (Teaching center 
201/202/203); the whole course will be covered. No electronic devices 
(no smart watches, no calculators, etc.)

• All the assignments have been released! 
• Project 3 ddl approaching, May 29th.

• Project 4 released, ddl June 3rd. Will be check the 17th week during 
lab sessions.

• HW 7 ddl approaching, May 30th.

• HW 8 released, ddl June 5th.

• To check Lab 13 for Monday sessions if not done, May 26th 

• Lab 14 released, to check May 27th, 29th & June 4th (Lab Session 1 only, 
1D104); Prepare in advance!

• Discussion May 30th & June 6th on Final Review.
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CA up to now ...

Memory

CPU

Caches

RISC-V 
Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
  return

    fib(n-1) +
    fib(n-2);

}

.foo
lw   t0, 4(s1)
addi t1, t0, 3
beq  t1, t2, foo

nop

I/O (Input/Output)

Screen Keyboard Storage

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB

Operating system
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Protection, Translation, Paging

• Supervisor mode does not fully isolate applications from each other or from the OS.

– Application could overwrite another application’s memory.

– Also, may want to address more memory than we actually have (e.g., for sparse 
data structures).

• Solution: Virtual Memory (this lecture). Gives each process the illusion of a full 
memory address space that it has completely for itself.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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“Bare 5-Stage Pipeline” 

• In a bare machine, the only kind of address is a physical address

PC
L1 

Inst. 
Cache

D Decode E M
L1 

Data 
Cache

W+

Physical 
Address

Physical 
Address

Main Memory (DRAM)

Memory Controller

Physical Address

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Motivation for Virtual Memory
• Adding disks to memory hierarchy 

– Need to devise a mechanism to “connect” memory and disk in the memory 
hierarchy

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Motivation for Virtual Memory
• Adding disks to memory hierarchy 

– Need to devise a mechanism to “connect” memory and disk in the memory 
hierarchy

• Simplifying memory for applications

– Applications should see the straightforward 
memory layout we saw earlier ->

– User-space applications should think they 
own all of memory

– So we give them a virtual view of memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0000 0000hex

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Motivation for Virtual Memory
• Adding disks to memory hierarchy 

– Need to devise a mechanism to “connect” memory and disk in the memory 
hierarchy

• Simplifying memory for applications

– Applications should see the straightforward memory layout we saw earlier ->

– User-space applications should think they own all of memory

– So we give them a virtual view of memory

• Protection between processes

– With a bare system, addresses issued with loads/stores are real physical 
addresses

– This means any program can issue any address, therefore can access any 
part of memory, even areas which it doesn’t own

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Address Spaces
• The set of addresses labeling all of memory that we can access

• Now, 2 kinds:

– Virtual Address Space - the set of addresses that the user program knows 
about

– Physical Address Space - the set of addresses that map to actual physical 
cells in memory

• Hidden from user applications

• So, we need a way to map between these two address spaces

– We should send all addresses through a mechanism that the OS controls, 
before they make it out to DRAM - a translation mechanism

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Virtual vs. Physical Addresses
• Processes use virtual addresses, e.g., 0 ~ 0xFFFF FFFF;

– Many processes, all using same (conflicting) addresses
• Memory uses physical addresses (also, e.g., 0 ~ 0xFFFF FFFF)

– Memory manager maps virtual to physical addresses

Processor

Control

Datapath
PC

Registers

Arithmetic & 
Logic Unit (ALU)

Memory

Program

Data
code

static data

heap

stack~ FFFF FFFFhex

~ 0000 0000hex

Currently unused 
but available 

memory

Vi
rt

ua
l A

dd
re

ss

Ph
ys

ic
al

 A
dd

re
ss

Many of these (software & hardware cores) One main memory

?

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Virtual vs. Physical Addresses-lscpu

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Motivation
– Multiprogramming, multitasking:  Desire to execute more than one process 

at a time (more than one process can reside in main memory at the same 
time).

• Location-independent programs
– Programming and storage management ease

• => base register  add offset to each address
• Protection

– Independent programs should not affect
– each other inadvertently

• => bound register  check range of access

Note: Multiprogramming drives requirement for resident supervisor (OS) software 
to manage context switches between multiple programs
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Dynamic Address Translation

Ph
ys

ic
al

 M
em

or
y

Prog. 1

Prog. 2

OS

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Base and bounds registers are visible/accessible only when 
processor is running in supervisor mode
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Simple Base and Bound Translation

Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+
Physical
AddressLogical

Address

Base Physical Address

Segment Length

≤

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Can fold addition of base register into (register+immediate) address 
calculation using an adder
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Base and Bound Machine

PC
L1 

Inst. 
Cache

D Decode E M
L1 

Data 
Cache

W+

Physical 
Address Physical 

Address

Main Memory (DRAM)

Memory Controller

Physical Address

Prog. 
Bound 

Register
≤ Bounds 

Violation?

Program 
Base 

Register

+

Physical Address
Physical 
Address

Data 
Base 

Register

+

Data 
Bound 

Register
≤ Bounds 

Violation?

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• As programs come and go, the storage is “fragmented”. 

• Therefore, at some stage programs have to be moved around to 
compact the storage. 
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Memory Fragmentation

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4
8K

Users 4 & 5 
arrive

Users 2 & 5
leave OS

Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



Recall: Memory Hierarchy Management
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Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Instructions
• Either by assembly programers or generated by a compiler;
• Does not define how it is achieved.

Load
Store

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



Recall: Memory Hierarchy Management
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Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Hardware cache controller

• With cache, the datapath/core does not directly access the main memory;
• Instead the core asks the caches for data with improved speed;
• A hardware cache controller is deviced to provide the desired data
(with various strategies that will be covered in future lectures).

Data request

Data 

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



Recall: Memory Hierarchy Management
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Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Operating system

• By the operating system (virtual memory)
• Virtual to physical address mapping assisted by the hardware 
(‘translation lookaside buffer’ or TLB, also a cache, this lecture)

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Virtual Memory Management
• Map virtual addresses to physical addresses.
• Use both memory and disk.

• Give illusion of larger memory by storing some content on disk.
• Disk is usually much larger and slower than DRAM.

• Protection:
• Isolate memory between processes.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Physical memory or DRAM is bro-
ken into pages.

• A disk access loads an entire 
page into memory.

• Should be large enough to 
amortize high access time.

• Typical page size: 4 KiB+ (on 
modern OSes)

• Need 12 bits of page offset 
to address all 4 KiB bytes.
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Paged Memory

Word

Pages on disk

memory pages

0xF…F

0x0…0
text

heap
data

stack

Page Number 0

Page Number 1

(Paged) virtual 
address space

... ...

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• In caches, we dealt with individual blocks

• Usually ~64B on modern systems

• We could “divide” memory into a set of blocks

• In VM, we deal with individual pages

• Usually ~4 KB on modern systems

• Larger sizes also available: 2MB, very modern 1GB!

• Now, we “divide” memory into a set of pages

• Common point of confusion: bytes, words, blocks, pages are all just 
different ways of looking at memory!

21

Blocks vs. Pages

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Bytes, Words, Blocks, Pages

Page 3

Page 2

Page 1

Page 0

1 Memory

Can think of 
memory as:
- 4 Pages

OR
- 128 Blocks

OR
- 4096 Words

16 KB

Block 0

Block 63

1 Page

Can think of a page as:
- 32 Blocks

OR
- 1024 Words

Word 0

Word 15
1 Block

64 B

4 KB

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• A page table translates virtual addresses to physical addresses for a 
given process. Each entry in the table:

• Corresponds to a virtual page number.
• If page is in memory, entry has corresponding physical page number. 
• Else, entry should tell OS to trigger page fault to load page from disk.
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Address Translation
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?Virtual Page Number

Virtual address (e.g. 32 bits) Physical address (e.g. 48 bits)

Physical Page NumberOffset Offset

Simply 
copy

● Memory translation maps a Virtual Page Number (VPN) to a Physi-
cal Page Number (PPN).

20 bits 12 bits 36 bits 12 bits

Processor -genera ted 
address can be split into 
page number and offset

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Program executes a load specifying a virtual address (VA).
• A page table contains the physical address of the base of each page
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Address Translation (Cont’d)

Page 
Table

Virtual 
Address

Physical
Address

Offset Offset

Simply 
copy

Page tables make it 
possible to store the 
pages of a program 
non-contiguously.

Address Space
of User-1

Virtual Page Number Physical Page Number

Load byte @ 0xFFFF F004 
to register t0

Program
(32b virtual address space)

Page Table 
(user-1)

VPN PPN
0x40000 disk
0x60000 disk

… …
0xFFFFF 1

Conceptual image 
for now; design 
discussed later

Physical Page 0
Physical Page 1
Physical Page 2
Physical Page 3

DRAM
(physical address space)
assume 4 x 4KB pages

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Program executes a load specifying a virtual address (VA).
• A page table contains the physical address of the base of each page
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Address Translation (Cont’d)

Page 
Table

Virtual 
Address

Physical
Address

Offset Offset

Simply 
copy

Page tables make it 
possible to store the 
pages of a program 
non-contiguously.

Address Space
of User-1

Virtual Page Number Physical Page Number

Load byte @ 0xFFFF F004 
to register t0

Program
(32b virtual address space)

Page Table 
(user-1)

VPN PPN
0x40000 disk
0x60000 disk

… …
0xFFFFF 1

Conceptual image 
for now; design 
discussed later

Physical Page 0
Physical Page 1
Physical Page 2
Physical Page 3

DRAM
(physical address space)
assume 4 x 4KB pages

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Page table entry is valid! No page fault because page is in memory.
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Address Translation (Cont’d)

Address Space
of User-1

Load byte @ 0xFFFF F004 
to register t0

Program
(32b virtual address space)

Page Table 
(user-1)

VPN PPN
0x40000 disk
0x60000 disk

… …
0xFFFFF 1

Physical Page 0
Physical Page 1
Physical Page 2
Physical Page 3

DRAM
(physical address space)
assume 4 x 4KB pages

• Read memory at the physical address and return the data to the program.

Assume no cache

Physical Page 1

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Program executes a load specifying a virtual address (VA).
• OS translates VA to the physical address (PA) in memory. 

• Extract virtual page number (VPN) from VA
• Look up physical page number (PPN) in page table
• Construct PA: physical page number + offset (from virtual address)

• Page Fault: If physical page not in memory, then OS loads page from disk.
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Address Translation: Page not in Memory

Address Space
of User-1

Load byte @ 0xFFFF F004 
to register t0

Load byte @ 0x6000 0030 to 
register 50

Program
(32b virtual address space)

Page Table 
(user-1)

VPN PPN
0x40000 disk
0x60000 disk

… …
0xFFFFF 1

Physical Page 0
Physical Page 1
Physical Page 2
Physical Page 3

DRAM
(physical address space)
assume 4 x 4KB pages

Page fault 
exception!!!

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Program executes a load specifying a virtual address (VA).
• OS translates VA to the physical address (PA) in memory. 

• Extract virtual page number (VPN) from VA
• Look up physical page number (PPN) in page table
• Construct PA: physical page number + offset (from virtual address)

• Page Fault: If physical page not in memory, then OS loads page from disk.
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Address Translation: Page not in Memory

Page fault 
exception!!!

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Program executes a load specifying a virtual address (VA).
• OS translates VA to the physical address (PA) in memory. 

• Extract virtual page number (VPN) from VA
• Look up physical page number (PPN) in page table
• Construct PA: physical page number + offset (from virtual address)

• Page Fault: If physical page not in memory, then OS loads page from disk.
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Address Translation: Page not in Memory

Address Space
of User-1

Load byte @ 0xFFFF F004 
to register t0

Load byte @ 0x6000 0030 to 
register 50

Program
(32b virtual address space)

Page Table 
(user-1)

VPN PPN
0x40000 disk
0x60000 2

… …
0xFFFFF 1

Physical Page 0
Physical Page 1
Physical Page 2
Physical Page 3

DRAM
(physical address space)
assume 4 x 4KB pages

Physical Page 2

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Processor-generated address can be split into page number and offset;
• A page table contains the physical address of the base of each page;
• Page tables make it possible to store the pages of a program non-contiguously.
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Summary: Paged Memory System

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table 
of User-1

1
0

2

3

Physical 
Memory

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Processor-generated address can be split into page number and offset;
• A page table contains the physical address of the base of each page;
• Page tables make it possible to store the pages of a program non-contiguously.
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Summary: Paged Memory System (Cont’d)

• Each user has a page table 
• Page table contains an entry for each 
user page

VA1User 1

Page Table 

VA1User 2

Page Table 

VA1User 3

Page Table 

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• What Physical Address does this Virtual Address translate to?
0x00003450

32

Practice: Translation

A. 0x00003450
B. 0x0000250
C. 0x00503450
D. 0x0F543450
E. 0x0F54450
F. Disk/Other



• What Physical Address does this Virtual Address translate to?
0x00003450

33

Practice: Translation

A. 0x00003450
B. 0x0000250
C. 0x00503450
D. 0x0F543450
E. 0x0F54450
F. Disk/Other



• Assume a 32-bit machine with 8GB of RAM and 16KB pages.
• How many bits would there be for each of the following?
• 1. Page offset
• 2. Virtual page number
• 3. Physical page numer

34

Setup of Virtual Memory

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Assume a 64-bit machine with 8GB of RAM and 16KB pages.
• How many bits would there be for each of the following?
• 1. Page offset

• 2. Virtual page number

• 3. Physical page numer

35

Setup of Virtual Memory

log2(16K) = 14 bits
64-14 = 50 bits

≧ log2(8G)-14 = 19 bits

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Space required by the page tables (PT) is proportional to the 
address space, number of users, ...

• => Too large to keep in CPU registers

• What about cache?

36

Where Should Page Tables Reside?

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Assume a 32-bit machine and 16KB pages;

• Suppose each entry in the page table is 4B. How large the page 
table, in MB when making full use of the virtual memory? (1 entry 
per VPN);

37

Setup: Page Tables

218 entries x 4 B/entry = 220 B = 1 MB

• There may be multiple users, so in total several tens of MB space.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



• Space required by the page tables (PT) is proportional to the 
address space, number of users, ...

• => Too large to keep in CPU registers

• Idea: Keep PTs in the main memory

• Needs one reference to retrieve the page base address and 
another to access the data word

• => Cost: doubles the number of memory references!

38

Where Should Page Tables Reside?

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Page Tables in Physical Memory

VA1

User 1 Virtual 
Address Space

User 2 Virtual 
Address Space

PT User 1 

PT User 2 

VA1
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Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Page Tables-More Details
• One page table per process/user.

• One entry per virtual page number.

• Entry has physical page number (if in 
memory) as well as status/protection bits 
(read, write, exec, disk/physical memory, 
etc.).

• A page table is NOT a cache!!!

• A page table is a lookup table!

• It does NOT have data.

• All VPNs have an entry in the page table.

0x00000 0
…

0x06000 2
…

0x09001 disk
…

0xFFFFF 1

PPN
status 

bits

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Demand Paging
• Modern Virtual Memory Systems use address 

translation to provide the illusion of a large, 
private, and uniform storage.

• Price: Address translation (via page tables) 
on each memory reference.

• Loading a ton of pages for every new 
program is wasteful.

• What if the program is just “hello world”? 
Most pages are never used. 

• Solution: Demand paging.
• Only load a page into memory if the user 

requests it.
• When a program starts, the page table 

says “Disk” for every entry.

Stack

Heap

Data

Code

Unused
Stack

Unused
Heap

Unused
Data

Unused
Code

Unused

Our VM abstraction 
allows a program to 
use the full virtual 
address space...

...but some 
programs use only 
a tiny amount of 

memory.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Steps of Address Translation, Revisited
• Program wants to access memory at a given virtual 

address (VA);

• OS translates VA to the physical address (PA) in memory; 

• Extract virtual page number (VPN) from VA;

• Look up physical page number (PPN) in page table;

• Construct PA: physical page number + offset (offset 
same as in virtual address);

• Page Fault: If physical page not in memory, then OS 
loads page from disk;

• Read memory at the physical address and return the data 
to the program.

Demand paging 
means possible 
disk access here

Memory access 1 
called page table 

walk (PTW)

Memory access 2

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Status Bits
• On each memory access, first check if page table entry is “valid”. 

• Valid/on → In main memory, read/write data as directed by 
process.

• Not Valid/off → On disk
• Trigger page fault exception, OS intervenes to allocate the 

page into DRAM (trap handler);
• If out of memory, select a page to replace in DRAM 
• Store outgoing page to disk, and page table entry that maps 

that VPN->PPN is marked as invalid/DPN
• Read requested page from disk into DRAM and update with a 

valid PPN
• Finally, read/write data as directed by process.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Dirty Bits
• Main memory acts like a “cache” for secondary memory/disk.

• Should writes always go directly to disk (write-through), or
• Should writes only go to disk when page is evicted (write-back)?

• All virtual memory systems use write-back.
• Disk accesses take way too long!

• Recall that write-back policy requires a dirty bit to keep track of pages 
that have an unsynced write.
• When a page gets replaced:
• Dirty bit on: Write outgoing page back to disk.
• Dirty bit off: No disk write.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Program Isolation: Goals and Solutions
• OS goals for protection:

• Isolate memory between processes.
• Each process gets dedicated “private” memory.

• Errors in one program won’t corrupt memory of other programs.
• Prevent user programs from messing with OS’s memory.

• Allow memory sharing where safe.
• Protection with Page Tables:

• One page table per process, provides isolation 
• Memory sharing + write/read protection bits on page table entries
• Page table managed by OS

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Protection

• Every instruction and data access needs address 
translation and protection checks

Physical 
Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

 Protection
Check

Protection 
exception?

Kernel/User Mode

Read/Write

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Linear (Simple) Page Table Summary

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE) contains:

• 1 bit to indicate if page exists and 
either PPN or DPN:

• PPN (physical page number) for a 
memory-resident page

• DPN (disk page number) for a page 
on the disk

• Status bits for protection and usage 
(read, write, exec, dirty, etc.)

• OS sets the Page Table Base Register 
whenever active user process changes

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Hierarchical (Multi-level) Page Table
• Assume 32-bit machine and 4-KB pages => 220 entries * 4 B/entry = 4 MB
• If 256 processes, PT = 256 * 4 MB = 1 GB
• Exploit sparsity of virtual address space use

Level 1 
Page Table

Level 2
Page Tables 

Data Pages

page in primary memory 
page in secondary memory

Root of the Current
Page Table p1

p2

Virtual Address

Processor
Register

PTE of a non-existent page

p1             p2             offset
01112212231

10-bit
L1 index

10-bit 
L2 index

Ph
ys

ic
al

 M
em

or
y

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Translation Lookaside Buffer
• Address Translation: Avoid page table walks 

(PTWs)
• Good Virtual Memory design should be fast (~1 

clock cycle) and space efficient.
• However, every instruction/data access 

needs address translation.
• A PTW is the process of accessing the page 

table in memory.
• If page tables are in memory, then we must 

perform a PTW per instruction/data access!
• Solution: Cache some address translations in 

the Translation Lookaside Buffer (TLB) in a 
seperate “cache”.

VPN offset

PPN offset

Physical address

Virtual address

Possible 
page table 

walk?

address 
translation

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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TLB Address Lookup
• Recall that a page table stores VPN-PPN mappings in memory.
• The translation lookaside buffer (TLB) is a cache of VPN-PPN 

mappings.
• The TLB is much closer to CPU and caches.

VPN PPN
0x00004 0x60C25E6
0x00005 0x71DB139
0x00009 0x45099CD

The TLB

VPN PPN
... ...

0x00004 0x60C25E6
0x00005 0x71DB139
0x00006 0xEC70DB7
0x00007  0xAB12BF4
0x00008 0x2158D55
0x00009 0x45099CD

... ...
Process 1
Page Table

The TLB is a cache—not for 
program data, but for page 
table entries. The TLB speeds 
up address translation.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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TLB Details
• Address translation is very expensive!
• In a two-level page table, each reference becomes several memory 

accesses
• Solution: Cache some translations in TLB
• TLB hit => Single-Cycle Translation
•      TLB miss => Page-Table Walk to refill 

VPN PPN
0x00004 0x60C25E6
0x00005 0x71DB139
0x00009 0x45099CD

The TLB

VPN PPN
... ...

0x00004 0x60C25E6
0x00005 0x71DB139
0x00006 0xEC70DB7
0x00007  0xAB12BF4
0x00008 0x2158D55
0x00009 0x45099CD

... ...
Process 1
Page Table

The TLB is a cache—not for 
program data, but for page 
table entries. The TLB speeds 
up address translation.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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TLB Details (Cont’d)
• Technical details:

• Typically 32-128 entries
• Fully associative (or 2-way set associative)
• Replacement policy: FIFO, random

• Each entry maps a large page, hence 
less spatial locality across pages => 
more likely that two entries conflict

• Sometimes larger TLBs (256-512 
entries) are 4-8 way set-associative

• Larger systems sometimes have multi-
level (L1 and L2) TLBs

VPN PPN
0x00004 0x60C25E6
0x00005 0x71DB139
0x00009 0x45099CD

The TLB

Virtual address

Hit

Physical address

Miss

Memory 
for PTW

Update 
TLB

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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TLB Details (Cont’d)
• Technical details:

• TLB Reach tells us how many virtual 
addresses can get immediately translated 
by the TLB.
• TLB Reach = # TLB entries · Page size
• If the TLB “hits”, we don’t need a page 

table walk (avoid additional memory 
access for address translation).

• There is just one TLB per core, but recall 
page tables are per process.

VPN PPN
0x00004 0x60C25E6
0x00005 0x71DB139
0x00009 0x45099CD

The TLB

I support instant lookup 
for up to 3 × 212 = 12288 

virtual addresses.

(assuming 4KiB pages, i.e., 
12-bit page offset)

This VPN translation is for 
Process 1. If we switch to 

Process 2, entry isn't valid.

• When the OS performs a context switch to run a different program:
• Easier: OS flushes all/part of the TLB by invalidating its entries.
• Harder: track which process corresponds to which entries

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Address Translation Example
• Different cases of address translation impact the end-to-end latency of 

a single memory access.
• Memory access = address translation + data access

firefox

intelliJ

"I want to read 
0x00004ABC."

CPU

orange

TLB
Disk

Page Table 1.

Page Table 2.

…banana…

…apple…

…orange…

…

(page with 
data)

Page Tables
Each entry 4 bytes.

Main Memory
Each page 0x1000 bytes.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Best Case (~ 1 clock cycle) 
• Different cases of address translation impact the end-to-end latency of 

a single memory access.
• Memory access = address translation + data access

firefox
lw   s5 12(a2)
srli t2 t0 3
…

intelliJ

CPU

VPN PPN
0x00004 0x8C121D
0x00005 0x71DB139
0x00009 0x45099CD

VPN 4 in TLB!
✅

...

VPN 3 0xAB12BF5

VPN 4 0x82C121D

VPN 5 0xD01A3F1

...

...

banana 0xD01A3F1000

...

apple 0xAB12BF5000

potato 0xAB12BF4000

...

orange 0x82C121D000

...

carrot 0x2158D55000

...

Page Table 0x120331D000

Page Table 0x120331C000

...

VPN 3 0xAB12BF4

VPN 4 disk

VPN 5 0x2158D55
...

Disk

...

...

...

beans

orange

...

...

...

...

Page Tables
Each entry 4 bytes.

Main Memory
Each page 0x1000 

bytes.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Worse Case (TLB miss + PTW) 
• Different cases of address translation impact the end-to-end latency of 

a single memory access.
• Page table walk (~100 cycles): Go to main memory, read page table.

firefox
lw   s5 12(a2)
srli t2 t0 3
…

intelliJ

CPU

VPN PPN
0x00002 0x30219D
0x00005 0x71DB139
0x00009 0x45099CD

VPN 4 not in TLB!
❌

...

VPN 3 0xAB12BF5

VPN 4 0x82C121D

VPN 5 0xD01A3F1

...

...

banana 0xD01A3F1000

...

apple 0xAB12BF5000

potato 0xAB12BF4000

...

orange 0x82C121D000

...

carrot 0x2158D55000

...

Page Table 0x120331D000

Page Table 0x120331C000

...

VPN 3 0xAB12BF4

VPN 4 disk

VPN 5 0x2158D55
...

Disk

...

...

...

beans

orange

...

...

...

...

Page Tables
Each entry 4 bytes.

Main Memory
Each page 0x1000 

bytes.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Worse Case (TLB miss + PTW, cont’d) 
• Different cases of address translation impact the end-to-end latency of 

a single memory access.
• Page table walk (~100 cycles): Go to main memory, read page table.
• Update TLB so we have this VPN/PPN mapping handy for next time.

firefox
lw   s5 12(a2)
srli t2 t0 3
…

intelliJ

CPU

VPN PPN
0x00004 0x82C121D
0x00005 0x71DB139
0x00009 0x45099CD

VPN 4 in TLB!
✅

...

VPN 3 0xAB12BF5

VPN 4 0x82C121D

VPN 5 0xD01A3F1

...

...

banana 0xD01A3F1000

...

apple 0xAB12BF5000

potato 0xAB12BF4000

...

orange 0x82C121D000

...

carrot 0x2158D55000

...

Page Table 0x120331D000

Page Table 0x120331C000

...

VPN 3 0xAB12BF4

VPN 4 disk

VPN 5 0x2158D55
...

Disk

...

...

...

beans

orange

...

...

...

...

Page Tables
Each entry 4 bytes.

Main Memory
Each page 0x1000 

bytes.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Worst Case (Page Fault) 

firefox
lw   s5 12(a2)
srli t2 t0 3
…

intelliJ

CPU

VPN PPN
0x00002 0x30219D
0x00005 0x71DB139
0x00009 0x45099CD

VPN 4 not in TLB!
❌

...

VPN 3 0xAB12BF5

VPN 4 disk

VPN 5 0xD01A3F1

...

...

banana 0xD01A3F1000

...

apple 0xAB12BF5000

potato 0xAB12BF4000

...

...

carrot 0x2158D55000

...

Page Table 0x120331D000

Page Table 0x120331C000

...

VPN 3 0xAB12BF4

VPN 4 disk

VPN 5 0x2158D55
...

Disk

...

...

...

beans

orange

...

...

...

...

Page Tables
Each entry 4 bytes.

Main Memory
Each page 0x1000 

bytes.❌

• Page fault. Go to disk to load page (~1000s cycles)

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Worst Case (Page Fault, Cont’d) 

firefox
lw   s5 12(a2)
srli t2 t0 3
…

intelliJ

CPU

VPN PPN
0x00002 0x30219D
0x00005 0x71DB139
0x00009 0x45099CD

VPN 4 not in TLB!
❌

...

VPN 3 0xAB12BF5

VPN 4 disk

VPN 5 0xD01A3F1

...

...

banana 0xD01A3F1000

...

apple 0xAB12BF5000

potato 0xAB12BF4000

...

orange 0x82C121D000

...

carrot 0x2158D55000

...

Page Table 0x120331D000

Page Table 0x120331C000

...

VPN 3 0xAB12BF4

VPN 4 disk

VPN 5 0x2158D55
...

Disk

...

...

...

beans

orange

...

...

...

...

Page Tables
Each entry 4 bytes.

Main Memory
Each page 0x1000 

bytes.❌

• Page fault. Go to disk to load page (~1000s cycles)

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Worst Case (Page Fault, Cont’d) 

firefox
lw   s5 12(a2)
srli t2 t0 3
…

intelliJ

CPU

VPN PPN
0x00004 0x82C121D
0x00005 0x71DB139
0x00009 0x45099CD

VPN 4 in TLB!
✅

...

VPN 3 0xAB12BF5

VPN 4 0x82C121D

VPN 5 0xD01A3F1

...

...

banana 0xD01A3F1000

...

apple 0xAB12BF5000

potato 0xAB12BF4000

...

orange 0x82C121D000

...

carrot 0x2158D55000

...

Page Table 0x120331D000

Page Table 0x120331C000

...

VPN 3 0xAB12BF4

VPN 4 disk

VPN 5 0x2158D55
...

Disk

...

...

...

beans

orange

...

...

...

...

Page Tables
Each entry 4 bytes.

Main Memory
Each page 0x1000 

bytes.✅

• Page fault. Go to disk to load page (~1000s cycles)
• Update page table with PPN of the newly-loaded page.
• Update TLB so we have this VPN/PPN mapping handy for next time.

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB



61

WM-related Events in Pipeline
• Handling a TLB miss needs a hardware or software mechanism to refill 

TLB (usually done in hardware now)
• Handling a page fault (e.g., page is on disk) needs a precise trap so 

software handler can easily resume after retrieving page
• Handling protection violation may abort process

PC
Inst. 

Cache D Decode E M
Data 
Cache W+

TLB miss? Page Fault? 
Protection violation?

Inst.
TLB

Data
TLB

TLB miss? Page Fault? 
Protection violation?

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Page-based Virtual-Memory Machine with Hardware PTW

PC
Inst. 

Cache D Decode E M
Data 
Cache W+

Page Fault? 
Protection violation?

Inst.
TLB

Data
TLB

Page Fault? 
Protection violation?

Miss?
Miss?

Hardware Page 
Table Walker

Page-Table 
Base Register

Memory Controller

Physical 
address

Physical 
address

Main Memory (DRAM)

• Assume base addresses of page tables held in untranslated physical memory

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Address Translation: Wrap it Up

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT
Where?

Page in
memory

Page not in
memory

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Modern Virtual Memory Systems
• Protection & Privacy

• Several users, each with their 
private address space and one or 
more shared address spaces

• Page table = name space
• Demand Paging

• Provides the ability to run programs 
larger than the primary memory

• Hides differences in machine 
configurations

• The price is address translation on 
each memory reference

OS

useri

Primary
Memory

Swapping Store
(Disk)

VA PAmapping

TLB

Intro. to Virtual Memory Address Translation Paged Memory Page Table TLB
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Conclusion: VM Features Track Historical Uses
● Bare machine, only physical addresses

● One program owned entire machine
● Batch-style multiprogramming

● Several programs sharing CPU while waiting for I/O
● Base & bound: translation and protection between programs (not virtual 

memory)
● Problem with external fragmentation (holes in memory), needed occasional 

memory defragmentation as new jobs arrived
● Time sharing

● More interactive programs, waiting for user. Also, more jobs/second.
● Motivated move to fixed-size page translation and protection, no external 

fragmentation (but now internal fragmentation, wasted bytes in page)
● Motivated adoption of virtual memory to allow more jobs to share limited 

physical memory resources while holding working set in memory


