
CS 110
Computer Architecture

More I/O
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/5/29

Administratives

2

• Final exam, June 12th 8am-10am; you can bring 3-page A4-sized
double-sided cheat sheet, handwritten only! (Teaching center
201/202/203); the whole course will be covered. NO electronic
devices (no smart watches, no calculators, etc.) Answer sheet will
be provided! Only what is written on the answer sheet will be
marked and graded.

• All the assignments have been released!
• Project 3 ddl today!
• Project 4 released, ddl June 3rd. Will be checked the 17th

week during lab sessions. The Longan nano board will also
be collected during the lab session.

• HW 7 ddl tomorrow!
• HW 8 ddl June 5th.
• Lab 14 released, to check May 27th, 29th & June 4th (Lab

Session 1 only, 1D104); Prepare in advance!
• Discussion May 30th & June 6th on Final Review.

3

Review: I/O

DMA SSD Networking

• “Memory mapped I/O”: Device control/data registers mapped to CPU
address space

• CPU synchronizes with I/O device:
– Polling: wastes processor resources;
– Interrupts: Nothing to do with no I/O activity; high cost when lots of I/O -

expensive saving states and thrashing caches;
• e.g. mouse and keyboard; what about high data rate (e.g. network, disk)?

• “Programmed I/O”:
– CPU executes lw/sw instructions for all data movement to/from devices
– CPU spends time doing 2 things:

• Get data from device to main memory
• Use data to compute

– Not ideal, CPU can do something more important and complex

4

Direct Memory Access (DMA)
• “Programmed I/O”: DMA

• CPU execs lw/sw instructions for all data movement to/from devices
• CPU spends time doing 2 things:

1. Getting data from device to main memory
2. Using data to compute

• Allow I/O devices to directly read/write main memory;
• New hardware: the DMA engine
• DMA engine contains registers written by CPU

– Memory address to place data
– # of bytes
– I/O device #, direction of transfer
– Unit of transfer, amount to transfer per burst

DMA SSD Networking

5

DMA Transfer

Main
memory

CPU

DMA
controller

Disk
controller

Buffer

Addr.

Count

Ctrl.

Disk

Bus

CPU
programs
the DMA
controller

DMA
requests

transfer to
memory

Data
transfer

Ack

Interrupt
when done

DMA SSD Networking

6

DMA: Incoming Data
• Receive interrupt from device
• CPU takes interrupt, begins transfer

– Instructs DMA engine/device to place data @ certain address
• Device/DMA engine handle the transfer

– CPU is free to execute other things
• Upon completion, Device/DMA engine interrupt the CPU again

DMA SSD Networking

7

DMA: Outgoing Data
• CPU decides to initiate transfer, confirms that external device is ready
• CPU begins transfer

– Instructs DMA engine/device that data is available @ certain address
• Device/DMA engine handle the transfer

– CPU is free to execute other things
• Device/DMA engine interrupt the CPU again to signal completion

DMA SSD Networking

8

DMA: New Problems
• Where in the memory hierarchy do we plug in the DMA engine?
• Two extremes:

– Between CPU and L1:
• Pro: Free coherency
• Con: Thrash the CPU’s working set with transferred data

– Between Last-level cache and main memory:
• Pro: Don’t mess with caches
• Con: Need to explicitly manage coherency

DMA SSD Networking

9

DMA: New Problems
• How do we arbitrate between CPU and DMA Engine/Device access to memory?
• Three options:

– Burst Mode
• Start transfer of data block, CPU cannot access memory in the meantime

– Cycle Stealing Mode
• DMA engine transfers a byte, releases control, then repeats - interleaves

processor/DMA engine accesses
– Transparent Mode

• DMA transfer only occurs when CPU is not using the system bus

DMA SSD Networking

10

Common I/O device: SSD (Flash Memory)
• >15 years ago: Microdrives and Flash memory (e.g., CompactFlash) went head-

to-head
– Both non-volatile (retains contents without power supply)
– Flash benefits: lower power, seldom crashes (no moving parts, need to spin

µdrives up/down)
– Disk cost = fixed cost of motor + arm mechanics, but actual magnetic media

cost very low
– Flash cost = most cost/bit of flash chips
– Over time, cost/bit of flash came down, became cost-competitive

DMA SSD Networking

11

Flash Memory, SSD Technology
• NMOS transistor with an additional conductor between gate and source/drain

which “traps” electrons. The presence/absence is a 1 or 0;
• Memory cells can withstand a limited number of program-erase cycles.

Controllers use a technique called wear leveling to distribute writes as evenly as
possible across all the flash blocks in the solid-state drive (SSD);

• Even compute using flash memory, more in EE219.

DMA SSD Networking

12

SSD in Real Computing Systems

DMA SSD Networking

13

HDD vs. SSD

DMA SSD Networking

14

HDD vs. SSD

HDD SSD
Cost per bit Cheaper

Capacity Larger
Durable More durable (shock-resistant)

Performance Faster
Power consumption Lower

Size More compact
Endurance Better

DMA SSD Networking

15

Common I/O Devices 2: Networking
• Originally sharing I/O devices between computers

– E.g., printers
• Then communicating between computers

– E.g., file transfer protocol (FTP)
• Then communicating between people

– E.g., e-mail
• Then communicating between networks of computers

– E.g., file sharing, www, …

DMA SSD Networking

16

The Internet (1962)
• History
• 1963: JCR Licklider, while at DoD’s ARPA, writes a memo describing desire to

connect the computers at various research universities: Stanford, Berkeley,
UCLA, ...

• 1969 : ARPA deploys 4 “nodes” @ UCLA, SRI, Utah, & UCSB
• 1973 Robert Kahn & Vint Cerf invent TCP, now part of the Internet Protocol

Suite
• Internet growth rates

– Exponential since start!

en.wikipedia.org/wiki/Internet_Protocol_Suite

“Lick”

Vint Cerf

DMA SSD Networking

17

The World Wide Web (1989)
• “System of interlinked hypertext documents on the Internet”
• History

– 1945: Vannevar Bush describes hypertext system called “memex” in article
– 1989: Sir Tim Berners-Lee proposed and implemented the first successful

communication between a Hypertext Transfer Protocol (HTTP) client and
server using the internet.

– ~2000 Dot-com entrepreneurs rushed in, 2001 bubble burst
• Today : Access anywhere!

en.wikipedia.org/wiki/History_of_the_World_Wide_Web

Tim Berners-Lee
World’s First web
server in 1990

DMA SSD Networking

18

Shared vs. Switch-Based Networks
• Shared vs. Switched:

– Shared: 1 at a time (CSMA/CD)
– Switched: pairs (“point-to-point” connections) communicate at same time

• Aggregate bandwidth (BW) in switched network is many times that of shared
– point-to-point faster since no arbitration, simpler interface

Node Node Node

Shared

Crossbar
Switch

Node

Node

Node

Node

DMA SSD Networking

19

What Makes Networks Work?
• Links connect switches and/or routers to each other and to computers or devices
• Ability to name the components and to route packets of information - messages -

from a source to a destination
• Layering, redundancy, protocols, and encapsulation as means of abstraction (big

idea in Computer Architecture)

Computer

network
interface

switch

switch

switch

DMA SSD Networking

20

Software Protocol to Send and Receive
• SW Send steps

– 1: Application copies data to OS buffer
– 2: OS calculates checksum, starts timer
– 3: OS sends data to network interface HW and says start

• SW Receive steps
– 3: OS copies data from network interface HW to OS buffer
– 2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends

when timer expires)
– 1: If OK, OS copies data to user address space, & signals application to continue

Header Payload

Checksum

Trailer

CMD/ Address /DataNet ID Net ID Len ACK
INFO

Dest Src

Packets of data

DMA SSD Networking

21

Protocols for Networks of Networks?
• What does it take to send packets across the globe?

– Bits on wire or air
– Packets on wire or air
– Delivery packets within a single physical network
– Deliver packets across multiple networks
– Ensure the destination received the data
– Create data at the sender and make use of the data at the receiver

Header Payload

Checksum

Trailer

CMD/ Address /DataNet ID Net ID Len ACK
INFO

Dest Src

Packets of data

DMA SSD Networking

22

Protocols for Networks of Networks?
• Lots to do and at multiple levels!
• Use abstraction to cope with complexity of communication
• Hierarchy of layers:

– Application (chat client, game, etc.)
– Transport (TCP, UDP)
– Network (IP)
– Data Link Layer (Ethernet)
– Physical Link (copper wires, wireless, etc.)

DMA SSD Networking

23

Protocol Family Concept
• Protocol: packet structure and control commands to manage communication
• Protocol families (suites): a set of cooperating protocols that implement the

network stack

• Key to protocol families is that communication occurs logically at the same level
of the protocol, called peer-to-peer…but is implemented via services at the next
lower level

• Encapsulation: carry higher level information within lower level “envelope”

DMA SSD Networking

24

Analogy: Send a Letter
• Li Hua writes letter to Li Lei

– Folds letter and hands it to assistant
• Assistant:

– Puts letter in envelope with Li Lei’s full name
– Takes to China Post

• China Post Office
– Puts letter in larger envelope
– Puts name and street address on China Post envelope
– Puts package on China Post delivery truck

• China Post delivers to other company

DMA SSD Networking

25

The Path of the Letter
• “Peers” on each side understand the same things
• Lowest level has most packaging

Li Hua

Aide

China Post

Li Lei

Aide

China PostLocationChina Post

Letter

Envelope

Semantic Content

Identity

DMA SSD Networking

26

Protocol Family Concept
• Each lower level of stack “encapsulates” information from layer above

by adding header and trailer.

Message Message

TH Message TH Message TH TH
Actual Actual

Physical

Message TH Message TH
Actual ActualLogical

Logical

DMA SSD Networking

27

Most Popular Protocol for Network of Networks
• Transmission Control Protocol/Internet Protocol (TCP/IP) stack

• This protocol family is the basis of the
Internet, a WAN (wide area network)
protocol
• IP makes best effort to deliver

• Packets can be lost, corrupted
• TCP guarantees delivery
• TCP/IP so popular it is used even

when communicating locally: even
across homogeneous LAN (local
area network)

• UDP/IP: video or sound streaming;
video call….

• More in CS120

Application

Transport

Network

Network
access

HTTP, FTP
SMTP, etc.

TCP/UDP

IP (route),
etc.

 Ethernet,
(PYH.,

Frame Relay,
etc,) etc.

DMA SSD Networking

28

Conclusion
• I/O speed range is 100-million to one
• Polling vs. Interrupts
• DMA to avoid wasting CPU time on data transfers
• Disks for persistent storage, replaced by flash
• Networks: computer-to-computer I/O
• Protocol suites allow networking of heterogeneous components.

Abstraction!!!

DMA SSD Networking

CS 110
Computer Architecture

Warehouse Scale Computing (WSC)
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/5/29

30

Parallelism Overview

• Parallel Requests
Assigned to computer
e.g., Search “CS110”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Smart
Phone

Warehouse
Scale

Computer

Logic Gates

Today’s
Lecture

 Functional
Unit(s)

A1+B1A0+B0

Cache Memory

Core Core…
 Memory (Cache)

Input/Output

Computer

31

Ex: In Oregon

Google’s WSC
Intro. to WSC More Parallelism MapReduce

32

Containers in WSCs
Inside WSC Inside container

Intro. to WSC More Parallelism MapReduce

33

Array, Rack, Server

Intro. to WSC More Parallelism MapReduce

34

A Giant Computer

http://www.nsccwx.cn/swsource/5d2fe23624364f0351459262

• Sunway TaihuLight

系统峰值性能 125.436PFlops
实测持续运算性能 93.015PFlops

处理器型号 "申威26010" 众核处理器

整机处理器个数 40960个
实整机处理器核数 10649600个

系统总内存 1310720 GB
操作系统 Raise Linux
编程语言 C、C++、Fortran

并行语言及环境
MPI、OpenMP、

OpenACC等

SSD存储 230TB
在线存储 10PB，带宽288GB/s
近线存储 10PB，带宽32GB/s

Intro. to WSC More Parallelism MapReduce

35

Google Server Internals

Intro. to WSC More Parallelism MapReduce

36

Open Compute Project

• Share designs of data center products

– Facebook, Intel, Nokia, Google, Apple,
Microsoft, Seagate Technology, Dell,
Cisco, Goldman Sachs, Lenovo, …

• Design and enable the delivery of the most
efficient server, storage and data center
hardware designs for scalable computing.

• Openly sharing ideas, specifications and
other intellectual property is the key to
maximiz ing innovat ion and reduc ing
operational complexity

• All Facebook Data Centers are 100% OCP

Intro. to WSC More Parallelism MapReduce

37

Warehouse-Scale Computers
• Datacenter

– Collection of 10,000 to 100,000 servers

– Networks connecting them together

• Single gigantic machine

• Very large applications (Internet service): search, email, video
sharing, social networking

• Very high availability

• “…WSCs are no less worthy of the expertise of computer systems
architects than any other class of machines” Barroso and Hoelzle,
2009

Intro. to WSC More Parallelism MapReduce

38

Unique to WSCs
• Ample Parallelism

– Request-level Parallelism: e.g., web search
– Data-level Parallelism: e.g., image classifier training

• Scale and its Opportunities/Problems
– Scale of economy: low per-unit cost
– Cloud computing: rent computing power with low costs (e.g., AWS)
– High # of failures

• e.g.: 4 disks/server, annual failure rate: 4% WSC of 50,000 servers: 1
disk fail/hour

• Operation Cost Count
– Longer life time (>10 years)
– Cost of equipment purchases << cost of ownership

50000 × 4 × 4%
365 × 24

≈ 0.913

Intro. to WSC More Parallelism MapReduce

39

WSC Architecture

1U Server:
8 cores,

16 GB DRAM,
4x1 TB disk

Rack:
40-80 severs,

Local Ethernet (1-10Gbps) switch

Array (aka cluster):
16-32 racks

Expensive switch
(10X bandwidth  100x cost)

Intro. to WSC More Parallelism MapReduce

40

WSC Storage Hierarchy
• Lower latency to DRAM in another server than local disk
• Higher bandwidth to local disk than to DRAM in another server

1U Server:
DRAM: 16GB, 0.1us, 20GB/s
Disk: 2TB, 104us, 200MB/s

Rack(80 severs):
DRAM: 1TB, 300us, 100MB/s
Disk: 160TB, 11ms, 100MB/s

Array(30 racks):
DRAM: 30TB, 500us, 10MB/s
Disk: 4.80PB, 12ms, 10MB/s

Intro. to WSC More Parallelism MapReduce

41

Workload Variation
• Online service: Peak usage 2X off-peak

Noon Midnight

W
or

kl
oa

d

2X

Intro. to WSC More Parallelism MapReduce

42

Impact on WSC software
• Latency, bandwidth → Performance

– Independent data set within an array
– Locality of access within server or rack

• High failure rate → Reliability, Availability
– Preventing failures is expensive
– Cope with failures gracefully

• Varying workloads → Scalability, Availability
– Scale up and down gracefully

• More challenging than software for single computers!

Intro. to WSC More Parallelism MapReduce

43

Power Usage Effectiveness
• Energy efficiency

– Primary concern in the design of WSC
– Important component of the total cost of ownership

• Power Usage Effectiveness (PUE):

– A power efficiency measure for WSC
– Not considering efficiency of servers, networking
– Perfection = 1.0
– Google WSC’s PUE = 1.2

Total Building Power
IT Equipment Power

Intro. to WSC More Parallelism MapReduce

44

Where Data Center Power Goes

Electricity Transformer/UPS
Lighting, etc.
IT Equipment
Air Movement
Cooling

Intro. to WSC More Parallelism MapReduce

45

Load Profile of WSCs

• Average CPU utilization of
5,000 Google servers, 6
month period

• Servers rarely idle or fully
utilized, operating most of the
time at 10% to 50% of their
maximum utilization

Intro. to WSC More Parallelism MapReduce

46

Energy-Proportional Computing:
Design Goal of WSC

• Energy = Power x Time
• Efficiency = Computation/Energy
• Desire:

– Consume almost no power
when idle (Doing nothing well)

– Gradually consume more
power as the activity level
increases

Intro. to WSC More Parallelism MapReduce

47

Cause of Poor Energy Proportionality
• DRAM, disks, networking: 70% at idle!
• Need to improve the energy efficiency of peripherals

Intro. to WSC More Parallelism MapReduce

48

More Parallelism
• Request-Level Parallelism (RLP)

– Hundreds of thousands of requests per sec.
– Popular Internet services like web search, social networking, …
– Such requests are largely independent

• Often involve read-mostly databases
• Rarely involve read-write sharing or synchronization across

requests
– Computation easily partitioned across different requests and

even within a request

Intro. to WSC More Parallelism MapReduce

49

Google Query-Serving Architecture

Index servers Document servers
Index servers Document serversIndex servers Document serversIndex servers Document servers

Google Web Server Spell checker

Ad server

Ad
server

Ad
server

Intro. to WSC More Parallelism MapReduce

50

Anatomy of a Web Search
Intro. to WSC More Parallelism MapReduce

51

Anatomy of a Web Search (cont’d)
• Google “Ne Zha 2”

– Direct request to “closest” Google WSC
– Front-end load balancer directs request to one of many arrays

(cluster of servers) within WSC
– Within array, select one of many Google Web Servers (GWS) to

handle the request and compose the response pages
– GWS communicates with Index Servers to find documents that

contains the search word, “Ne Zha 2”
– Return document list with associated relevance score

Intro. to WSC More Parallelism MapReduce

52

Anatomy of a Web Search (cont’d)
• In parallel, Ad system: run ad auction for bidders on search terms
• Use docids (Document IDs) to access indexed documents
• Compose the page

– Result document extracts (with keyword in context) ordered by
relevance score

– Sponsored links (along the top) and advertisements (along the
sides)

Intro. to WSC More Parallelism MapReduce

53

Anatomy of a Web Search (cont’d)
• Implementation strategy

– Randomly distribute the entries
– Make many copies of data (a.k.a. “replicas”)
– Load balance requests across replicas

• Redundant copies of indices and documents
– Breaks up search hot spots, e.g., “Ne Zha 2”
– Increases opportunities for request-level parallelism
– Makes the system more tolerant of failures

Intro. to WSC More Parallelism MapReduce

54

Data-level Parallelism in WSC
• SIMD

– Supports data-level parallelism in a single machine
– Additional instructions & hardware
– e.g., Matrix multiplication in memory

• DLP on WSC
– Supports data-level parallelism across multiple machines
– MapReduce & scalable file systems

Intro. to WSC More Parallelism MapReduce

55

Problem Statement
• How to process large amounts of raw data (crawled documents,

request logs, …) every day to compute derived data (inverted
indices, page popularity, …), when computation is conceptually
simple but input data is large and distributed across 100s to 1000s
of servers, so as to finish in reasonable time?

• Challenge: Parallelize computation, distribute data, tolerate faults
without obscuring simple computation with complex code to deal
with issues

Intro. to WSC More Parallelism MapReduce

56

Solution: MapReduce
• Simple data-parallel programming model and implementation for

processing large datasets
• Users specify the computation in terms of

– a map function, and
– a reduce function

• Underlying runtime system
– Automatically parallelize the computation across large scale

clusters of machines
– Handles machine failure
– Schedule inter-machine communication to make efficient use of

the networks

Intro. to WSC More Parallelism MapReduce

57

MapReduce: Real Applications
• At Google

– Index construction for Google Search
– Article clustering for Google News
– Statistical machine translation
– For computing multi-layers street maps

• At Yahoo!
– “Web map” powering Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook
– Data mining
– Ad optimization
– Spam detection

Intro. to WSC More Parallelism MapReduce

58

MapReduce Programming Model
• Map computation across many objects

– E.g., 1010 Internet web pages
• Aggregate results in many different ways
• System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

  

  

Key-Value
Pairs

Intro. to WSC More Parallelism MapReduce

59

Inspiration: Map & Reduce Functions
• Calculate:

• In Python

from functools import reduce
A = [1, 2, 3, 4]
def square(x):
 return x * x
def sum(x, y):
 return x + y

reduce(sum,
 map(square, A))

1 2 3 4

1 4 9 16

5 25

30

Intro. to WSC More Parallelism MapReduce

60

MapReduce Programming Model
• Map: (in_key,in_value)→list(interm_key,interm_val)
 map(in_key, in_val):
 // DO WORK HERE
 emit(interm_key, interm_val)

– Slice data into “shards” or “splits” and distribute to workers
– Compute set of intermediate key/value pairs

• Reduce:(interm_key,list(interm_value))→list(out_value)
 reduce(interm_key, list(interm_val)):
 // DO WORK HERE
 emit(out_key, out_val)

– Combines all intermediate values for a particular key
– Produces a set of merged output values (usually just one)

Intro. to WSC More Parallelism MapReduce

61

MapReduce Word Count Example
• Distribute

that that is is that that is not is not is that it it is

is 1, that 1, that 1 is 1, that 1, that 1 is 1, is 1, not 1,not 1 is 1, is 1, it 1, it 1, that 1

Map 1 Map 2 Map 3 Map 4
that 1, that 1, is 1 is 1, that 1, that 1 is 1, not 1, is 1, not 1 is 1, that 1, it 1, it 1, is 1 Local Sort

Intro. to WSC More Parallelism MapReduce

62

MapReduce Word Count Example
• Distribute

that that is is that that is not is not is that it it is

is 1, that 1, that 1 is 1, that 1, that 1 is 1, is 1, not 1,not 1 is 1, is 1, it 1, it 1, that 1

Map 1 Map 2 Map 3 Map 4
Local Sort

• Shuffle

Reduce 1 Reduce 2

is 1,1 that 1,1,1,1is 1,1,1,1,1,1
it 1,1

that 1,1,1,1,1
not 1,1

is 6; it 2 not 2; that 5

is 1 that 1,1

Intro. to WSC More Parallelism MapReduce

63

MapReduce Word Count Example
• Distribute

that that is is that that is not is not is that it it is

is 1, that 1, that 1 is 1, that 1, that 1 is 1, is 1, not 1,not 1 is 1, is 1, it 1, it 1, that 1

Map 1 Map 2 Map 3 Map 4
Local Sort

• Shuffle

Reduce 1 Reduce 2

is 1,1,1,1,1,1
it 1,1

that 1,1,1,1,1
not 1,1

is 6; it 2 not 2; that 5

• Collect

is 6; it 2; not 2; that 5

Intro. to WSC More Parallelism MapReduce

64

Big Data Framework: Hadoop & Spark
• Apache Hadoop

– Open-source MapReduce Framework
– Hadoop Distributed File System (HDFS)
– Hadoop YARN Resource Management
– MapReduce Java APIs
– more than half of the Fortune 50 used Hadoop (2013)

• Apache Spark
– Fast and general engine for large-scale data processing.
– Running on HDFS
– Provides Java, Scala, Python APIs for

• Database
• Machine learning
• Graph algorithm

Intro. to WSC More Parallelism MapReduce

65

Conclusion
• Warehouse-Scale Computers (WSCs)

– New class of computers
– Scalability, energy efficiency, high failure rate

• Cloud Computing
– Benefits of WSC computing for third parties
– “Elastic” pay as you go resource allocation

• Request-Level Parallelism
– High request volume, each largely independent of other
– Use replication for better request throughput, availability

• MapReduce Data Parallelism
– Map: Divide large data set into pieces for independent parallel processing
– Reduce: Combine and process intermediate results to obtain final result
– Hadoop, Spark

Happy Dragon Boat Festival!

66

Common I/O Devices: Magnetic Disk
• A kind of computer memory

– Information stored by magnetizing ferrite material on surface of rotating disk
• Similar to tape recorder except digital rather than analog data

• A type of non-volatile storage
– Retains its value without applying power to disk.

• Magnetic Disk
– Hard Disk Drives (HDD) – faster compared to tape, more dense, non-

removable.

• Purpose in computer systems (Hard Drive):
– Working file system + long-term backup for files
– Secondary “backing store” for main-memory. Large, inexpensive, slow level

in the memory hierarchy (virtual memory)

Slides after this page are appendix

67

Internal Look

Arm
Head

Spindle

68

Internal Look

Photo of Disk Head, Arm, Actuator

Arm Head

Spindle

69

Hard Disk Drive Terminologies
• Several platters, with information recorded magnetically usually on both surfaces
• Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)
• Actuator moves head (end of arm) over track (“seek”), wait for sector rotate under

head, then read or write

Outer
Track

Inner
TrackSector

Actuator

HeadArm
Platter

Platter bird’s-eye view

Sector

70

Hard Drives are Sealed. Why?
• The closer the head to the disk, the

smaller the “spot size” and thus the
denser the recording.
– Measured in Gbit/in2

– ~900 Gbit/in2 is state of the art
– Started out at 2 Kbit/in2

– ~450,000,000x improvement in
~60 years

• Disks are sealed to keep the dust out.
– Heads are designed to “fly” at

around 3-20nm above the surface
of the disk.

– 99.999% of the head/arm weight
is supported by the air bearing
force (air cushion) developed
between the disk and the head.

71

Disk Device Performance (1/2)
• Disk Access Time = Seek Time + Rotation Time + Transfer Time + Controller

Overhead
– Seek Time: time to position the head assembly at the proper track
– Rotation Time: time for the disk to rotate to the point where the first sectors of

the block to access reach the head
– Transfer Time: time taken by the sectors of the block and any gaps between

them to rotate past the head

Platter

Arm

Actuator

HeadSectorInner
TrackOuter

Track ControllerSpindle

72

Disk Device Performance (2/2)
• Average values to plug into the formula:
• Rotation Time: Average distance of sector from head?

– 1/2 time of a rotation

• 7200 Revolutions Per Minute 120 Rev/sec
• 1 revolution = 1/120 sec 8.33 milliseconds
• 1/2 rotation (revolution) 4.17 ms

• Seek time: Average no. tracks to move arm?
– ～Number of tracks / 3

• Check Page 9 at http://pages.cs.wisc.edu/~remzi/OSFEP/file-disks.pdf
– Then, seek time = number of tracks moved × time to move across one track

73

But Wait!
• Performance estimates are different in practice:
• Many disks have on-disk caches, which are completely hidden from the outside

world
– Previous formula completely replaced with on-disk cache access time

74

Cloud Computing: Scale of Economy

• Closest computer
in WSC example
is Standard Extra

• At these low rates,
Amazon EC2 can
make money!
– even if used

only 50% of
time

• Virtual Machine
(VM) plays an
important role

Name Memory vCPUsStorage Arch
Network

Performance
Linux On
Demand

M1 General Purpose Small 1.7 GB 1 160 GB 32/64-bit Low $0.044 hourly
M1 General Purpose
Medium 3.75 GB 1 410 GB 32/64-bit Moderate $0.087 hourly
M1 General Purpose Extra
Large 15.0 GB 4 1680 GB 64-bit High $0.35 hourly
C1 High-CPU Medium 1.7 GB 2 350 GB 32/64-bit Moderate $0.13 hourly

C1 High-CPU Extra Large 7.0 GB 8 1680 GB 64-bit High $0.52 hourly
I2 Extra Large 30.5 GB 4 800 GB 64-bit Moderate $0.853 hourly

I2 Double Extra Large 61.0 GB 8 1600 GB 64-bit Moderate $1.705 hourly

M4 Large 8.0 GB 2 EBS only 64-bit Moderate $0.108 hourly

M4 Extra Large 16.0 GB 4 EBS only 64-bit High $0.215 hourly

M4 16xlarge
256.0

GB 64 EBS only 64-bit 20 Gigabit $3.447 hourly
General Purpose GPU
Extra Large 61.0 GB 4 EBS only 64-bit High $0.9 hourly
General Purpose GPU
16xlarge

732.0
GB 64 EBS only 64-bit 20 Gigabit $14.4 hourly

X1 Extra High-Memory
16xlarge

976.0
GB 64 1920 GB 64-bit 10 Gigabit $6.669 hourly

May 2017 AWS Instances & Prices

75

Example: Sparse Matrix Multiplication
• Compute matrix multiplication with plenty of 0’s
• Challenging for parallel execution
• Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B

-10 -80

-60 -250

-170 -460

C

X =

1 110
A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

• Represent matrix as list of nonzero
entries
row, col, value, matrixID

• Strategy
• Phase 1: Compute all products ai,k · bk,j
• Phase 2: Sum products for each entry i,j
• Each phase involves a Map/Reduce

76

Phase 1 “Map” of Matrix Multiply
• Group values ai,k and bk,j according to key k

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = row

1 110
A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = col

77

Phase 1 “Reduce” of Matrix Multiply
• Generate all products ai,k · bk,j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

X

X

X

78

Phase 2 “Map” of Matrix Multiply
• Group products ai,k · bk,j with matching values of i and j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = row,col

79

Phase 2 “Reduce” of Matrix Multiply
• Sum partial sums to get final results

1 1-10
C

2 1-60
C

2 2-250
C

3 1-170
C

1 2-80
C

3 2-460
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

-10 -80

-60 -250

-170-460

C

80

Lessons from Sparse Matrix Example
• Associative matching is powerful communication primitive

– Intermediate step in Map/Reduce
• Similar strategy applies to other problems

– Shortest path in graph
– Database join

• Many performance considerations
– Pairwise element computation with MapReduce (HPDC ’10)
– By Kiefer, Volk, Lehner from TU Dresden
– Should do systematic comparison to other sparse matrix implementations

