[
CL-
P g
JEGREE
i i, Jx

s
o s A
4/p5cH“l"«

EwBHRZKRT
ShanghaiTech University

CS211
Advanced Computer Architecture

LO3 Microcode, Instruction, ISA

Chundong Wang
September 24, 2025

EwBHRZKRT

g4 i, 42
A ¢/ ShanghaiTech University
sl

GRED
ERpAHE
fagas

ECH

Instruction Set Architecture (ISA)

* The contract between software and hardware

* Typically described by giving all the programmer-visible state
(registers + memory) plus the semantics of the instructions that

operate on that state

* IBM 360 was first line of machines to separate ISA from
implementation (aka. microarchitecture)

* Many implementations possible for a given ISA
* e.g. 1., AMD Opteron and Intel Core i7, with the same 80x86 ISA

e e.g. 2: many cellphones use the ARM ISA with implementations from many
different companies including Apple, Qualcomm, Samsung, Huawei, etc.

N kAT

£/ ShanghaiTech University

Class of ISA

* ISA

* General-purpose register (GPR) architectures
* Operands are either registers or memory locations
* Stack
* The operands are implicitly on top of the stack

e Accumulator
* One operand is implicitly the accumulator

e.g.,C< A+B
Push A Load A Load R1, A Load R1, A
Push B Add B Add R3, R1, B Load R2, B
Add Store C Store R3, C Add R3, R1l, R2

Pop C Store R3, C

EwBHRZKRT

ShanghaiTech University

Stack and Accumulator

 Stack: no register, but stack

* Pros
» Simple Model of expression evaluation (Reverse Polish Notation)
* Short instruction, i.e., push, pop, etc.

* Cons

» Stack can't be randomly accessed
» Stack accessed every operation, to be a bottleneck

* Accumulator: one register, i.e., accumulator
* Pros
* Short instructions
* Cons
e Accumulator is only temporary storage, thus with high memory traffics

D R EAY

ShanghaiTech University

CISC, RISC

* Both are widely used!!!
* CISC

* Complex instruction set computer
* Rep: x86

* RISC

* Reduced instruction set computer
* Reps: RSIC-V, MIPS, SPARC

* Main features of RISC, in contrast to CISC
* A large number of registers and a highly regular instruction pipeline, allowing
a low number of clock cycles per instruction (CPI) for high throughput

* SPARC and RISC-V both with 32 general-purpose integer registers
* X86, 8 general-purpose integer registers

e Uniform instruction format

* Load-store architecture
* Only load and store instruction can access memory to load/store data

7)) EW N A

H
oro A&/ ShanghaiTech University
SAireen v

The RISC Tenets

* RISC * CISC

* Single-cycle execution * Many multicycle operations

* Hardwired control Microcoded multi-cycle operations

 Load/store architecture Register-mem and mem-mem

* Few memory addressing modes * Many more modes

* Fixed-length inst. format Many formats and lengths

* Reliance on compiler optimizations Hand assemble to get good performance

* Many registers (compilers are better
at using them)

Few registers

EwBHRZKRT

EX el mm.IL 4) K R
% &/ ShanghaiTech University
sl

Wof
1B :
\-T 2
zaf A
EARZE
o3
ECH

ISA to Microarchitecture Mapping

* |SA often designed with particular microarchitectural style in mind,
e.g.,
Accumulator = hardwired, unpipelined
CISC = microcoded
RISC = hardwired, pipelined
VLIW = fixed-latency in-order parallel pipelines

JVM = software interpretation
* But can be implemented with any microarchitectural style

— Intel lvy Bridge: hardwired pipelined CISC (x86)
machine (with some microcode support)

— Spike: Software-interpreted RISC-V machine
— https://github.com/riscv/riscv-isa-sim
— ARM Jazelle: A hardware JVM processor

https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim

D) b R A

¢/ ShanghaiTech University

Hardwired vs. Microcoded

* Microcoded control
* Implemented using ROMs/RAMs
* Indirect next_state function: “here’s how to compute next state”
e Slower ... but can do complex instructions
* Multi-cycle execution (of control)

* Hardwired control
* Implemented using logic (“hardwired” can’t re-program)
* Direct next_state function: “here is the next state”
 Faster ... for simple instructions (speed is function of complexity)
* Single-cycle execution (of control)

EwBHRZKRT
5%3'” ‘Jg‘: ShanghaiTech University

Ut o

EELE
TARSE

e é: A
CH

Why Learn Microcode/Microprogramming?

* To show how to build very small processors with complex ISAs

* To help you understand where CISC* machines came from

e Because still used in common machines (x86, IBM360, PowerPC)
* As a gentle introduction into machine structures

* To help understand how technology drove the move to RISC*

* “CISC”/”RISC” names much newer than style of
machines they refer to.

R LE TN

¢/ ShanghaiTech University

Control versus Datapath

* Processor designs can be split between datapath, where numbers are
stored and arithmetic operations computed, and control, which
sequences operations on datapath

Control = Biggest challenge for early computer
A . A . designers was getting control circuitr
Instruction| Cantral [Lines | Condition? corrgct & g Y

= Maurice Wilkes invented the idea of
microprogramming to design the
control unit of a processor for EDSAC-

lI, 1958
- Foreshadowed by Babbage’s “Barrel”

and mechanisms in earlier
Busy? Agdress Data
v programmable calculators

Main Memory

11

T B R Bk

% % #¢/ ShanghaiTech University

N
Ol
Ut o

2
TEen U

Microcoded CPU

) Next State
u5 ...

Microcode ROM
(holds fixed ucode
instructions)

)

Decoder

Busy?
Opcode
Condition

Control Lines

Datapath

Address

Main Memory
(holds user program written in macroinstructions, e.g., x86, RISC-V)

12

ey B R ERT

i i ¢/ ShanghaiTech University

3
HuY

v
Jireg

Technology Influence

* When microcode appeared in 1950s, different
technologies for:
* Logic: Vacuum Tubes
* Main Memory: Magnetic cores
* Read-Only Memory: Diode matrix, punched metal cards,

* Logic very expensive compared to ROM or RAM
* ROM cheaper than RAM
* ROM much faster than RAM

EELE
TARSE

e é: A
CH

Y B A Bk

o ‘Jg‘: ShanghaiTech University

RISC-V ISA

* New fifth-generation RISC design from UC Berkeley

* Realistic & complete ISA, but open & small

* Not over-architected for a certain implementation style

* Both 32-bit (RV32) and 64-bit (RV64) address-space variants
* Designed for multiprocessing

e Efficient instruction encoding

* Easy to subset/extend for education/research

* RISC-V spec available on Foundation website and github

* Increasing momentum with industry adoption

Farresios

EwBHRZKRT

ShanghaiTech University

RV32 Processor State 72— ® ”

x1 f1
x2 f2
x3 £3
x4 fa
Program counter (pc) = o
x7 £7
ey » . x8 £8
32x32-bit integer registers (x0-x31) %9 9
* X0 always containsa 0 X190 =
x12 f12
. . . x13 f13
32 floating-point (FP) registers (f0-f31) x14 £14
. . x15 f15
* each can contain a single- or double- X16 £16
precision FP value (32-bit or 64-bit ar 2
IEEE FP) 19
x20 £20
x21 f21
. x22 £22
FP status register (fcsr), used for FP %23 £23
rounding mode & exception reporting 2 o
x26 26
x27 £27
x28 f28
x29 £29
x30 £30
x31 £31

XLEN FLEN

XLEN-1 0 31 0
Pc | | fesr

XLEN 32

10

RISC-V Instruction Encoding

EXXXXEXXXXEXXXXX

KXAXAXAXXX XXX Xaa

xxxxxxxxxxxbbbll

P cKARA

ARAXEEKKEXEARAXK

xxxxxxxxxx011111

fr XXX

EEXXE XXX XXX XXXXX

xxxxxxxxx0111111

c o cXEXX

EXXXXXXXXXEXXXXXX

xnnnxxxxxi111111

v cKXXX

REXXXXEXXEEXXXEEX

x1llxxxxx1111111

Byte Address: base+4

hase+2

hase

* Can support variable-length instructions.

* Base instruction set (RV32) always has fixed 32-bit instructions
lowest two bits = 11,

* All branches and jumps have targets at 16-bit granularity (even in
base ISA where all instructions are fixed 32 bits)

NSRRI

ShanghaiTech University

16-bit (aa # 11)

32-bit (bbb # 111)

48-bit

64-bit

(80+16*nnn)-bit, nnn#111

Reserved for >192-bits

16

R LT

42/ ShanghaiTech University

RISC-V Instruction Formats

7-bit opcode
Additional Reg. Source 2 Destination field (but low 2
opcode Reg. bits =11,)
bits/immediate
Z Reg. Source 1
31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm [11:0] rsl funct3 rd opcode | I-type
imm|[11:5] rs2 rsl funct3 imm 4:0] opcode | S-type
imm[12] | imm[10:5] rs2 rsl funct3 |imm|4:1] | imm[11] | opcode | B-type
imm|31:12] rd opcode | U-type
imm|[20] imm[10:1] imm|[11] imm|[19:12] rd opcode | J-type

17

' : Ch) WA goky
Single-Bus Datapath for Microcoded RISC-V &2 smmeraninese
Opcode S Condition? Busy?
» oo =
— o L-Em e:; - E
7 |2 v 8 5| 32
|- g RegSe_r\—J O\T/ 5 2 S 7
v 1 Address DJD, < v
o = NP
Qe < _Joal &
ks 5 |a TN 3!/l Main
- S U |- >_| L e
gl |eh |2 < <M Memory
S|IEN] |® =
-E £ e N / %
| [| |DataOut LN | .
I —J
—% / ‘i < ?
ImmEn RegEn T ALUEN x MemEn

Microinstructions written as register transfers:

* MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

* B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

* Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1 18

1) E iR Bk
%2 7%/ ShanghaiTech University

%
Ut

EELE
TARSE

BT
\,f‘jé e
CH

RISC-V Instruction Execution Phases

* Instruction Fetch

* Instruction Decode

* Register Fetch

* ALU Operations

* Optional Memory Operations

* Optional Register Writeback

* Calculate Next Instruction Address

19

G B R Ay

¢/ ShanghaiTech University

Microcode Sketches (1)

Instruction Fetch: MA,A:=PC
PC:=A+4
wait for memory
IR:=Mem

dispatch on opcode

ALU: A:=Reg[rs1]
B:=Reg[rs2]
Reg[rd]:=ALUOp(A,B)

goto instruction fetch

ALUI: A:=Reg[rs1]
B:=Imml //Sign-extend 12b immediate
Reg[rd]:=ALUOp(A,B)
goto instruction fetch

20

G b Bk

%%/ ShanghaiTech University
s

Microcode Sketches (2)

LW: A:=Reg[rs1]
B:=Imml //Sign-extend 12b immediate
MA:=A+B
wait for memory
Reg[rd]:=Mem
goto instruction fetch
JAL: Reg[rd]:=A // Store return address
A:=A-4 // Recover original PC
B:=ImmJ // Jump-style immediate
PC:=A+B
goto instruction fetch
Branch: A:=Reg[rs1]
B:=Reg[rs2]
if (IALUOPpP(A,B)) goto instruction fetch //Not taken
A:=PC //Microcode fall through if branch taken
A:=A-4
B:=ImmB// Branch-style immediate
PC.:=A+B
goto instruction fetch)

#

T EmR Ay
%r;::“:f ShanghaiTech University
Pure ROM Implementation
Opccide Conf? BUfy?
\ J
f Why 18-bit? Check Figure C.5.1 of
Address Computer Organization and Design
ROM The Hardware/Software Interface:
RISC-V Edition (Textbook for CS110)
Data
Next uPC lControI Signals

* How many address bits?
|naddress| = |uUPC|+|opcode|+1+ 1

* How many data bits?
|data| = |[uPC|+]|control signals| = |uPC| + 18
* Total ROM size = 2|waddress|y | data |

22

Pure ROM Contents

#

A

& an

=R A g
CH

) Bl R B A
%2 7%/ ShanghaiTech University

Farresios

TANE

Address | Data

uPC Opcode Cond? Busy? | Control Lines Next uPC
fetchO X X X | MA,A:=PC fetchl
fetchl X X 1 | fetchl
fetchl X X 0 | IR:=Mem fetch2
fetch2 ALU X X | PC:=A+4 ALUO
fetch2 ALUI X X | PC:=A+4 ALUIO
fetch2 LW X X | PC:=A+4 LWO
ALUO X X X | A:=Reg[rs1] ALU1
ALU1 X X X | B:=Reg[rs2] ALU2
ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetchO

23

é':"}él-

) EM A BRT

i Ae/ ShanghaiTech University

3
HuY

v
Jirec

Single-Bus Microcode RISC-V ROM Size

* Instruction fetch sequence 3 common steps
*~12 instruction groups

e Each group takes ~5 steps (1 for dispatch)

* Total steps 3+12*5 = 63, needs 6 bits for uPC

* Opcode is 5 bits, ~18 control signals

* Total size = 2(6+>+2)x(6+18)=213x24 = ~25KiB!

|uaddress| = |uPC|+|opcode|+ 1 + 1

24

\ B R B kY
%2 7%/ ShanghaiTech University

Farresios

EELE
TARSE

e é: A
CH

Reducing Control Store Size

* Reduce ROM height (#address bits)

* Use external logic to combine input signals
» Reduce #istates by grouping opcodes

* Reduce ROM width (#data bits)

* Restrict uPC encoding (next, dispatch, wait on memory, ...)
* Encode control signals (vertical pcoding, nanocoding)

25

o
& S
@A
EAQTE
g4 i, 42
3,5, “fs
L
irga W

Single-Bus RISC-V Microcode Engine

Opcode fetchO

Decode l

\

\

UPC

+1

Cond?—{ uPC Jump
Busy? -1 Logic

Address

ROM
Data

UPC jump

|

-

lControI Signals

UPC jump = next | spin | fetch | dispatch | ftrue | ffalse

EwBHRZKRT

ShanghaiTech University

26

#

SR
=R A g
CH

NSRS X S AN
H f ShanghaiTech University

&
e

TANE

UPC Jump Types

* next increments uPC

* spin waits for memory

e fetch jumps to start of instruction fetch

* dispatch jumps to start of decoded opcode group
* ftrue/ffalse jumps to fetch if Cond? true/false

27

#

£
GRS
cH

) Bl R B A
%2 7%/ ShanghaiTech University

Farresios

TANE

Encoded ROM Contents

Address | Data
uPC | Control Lines Next uPC
fetchO | MA,A:=PC next
fetchl | IR:=Mem spin
fetch2 | PC:=A+4 dispatch
ALUO | A:=Reg][rs1] next
ALU1 | B:=Reg[rs2] next
ALU2 | Reg[rd]:=ALUOp(A,B) fetch
BranchO | A:=Reg][rs1] next
Branchl | B:=Reg][rs2] next
Branch2 | A:=PC ffalse
Branch3 | A:=A-4 next
Branch4 | B:=ImmB next
Branch5 | PC:=A+B fetch 28

GRED
ERpAHE
fagas

ECH

Y B A Bk

g4 i, o=
A ¢/ ShanghaiTech University
sl

Implementing Complex Instructions

Memory-memory add: M[rd] = M[rs1] + M[rs2]

Address | Data
UPC | Control Lines Next uPC
MMAO | MA:=Reg[rs1] next
MMA1 | A:=Mem spin
MMA2 | MA:=Reg[rs2] next
MMA3 | B:=Mem spin
MMA4 | MA:=Reg]rd] next
MMADS | Mem:=ALUOp(A,B) spin
MMAG6 | fetch

Complex instructions usually do not require datapath modifications, only extra

space for control program

Very difficult to implement these instructions using a hardwired controller
without substantial datapath modifications

29

{&“\ %

EwBHRZKRT

ShanghaiTech University

Single-Bus Datapath for Microcoded RISC-V

Opcode S Condition? Busy?
DO & =
5 — [Lgﬁ\fl/) \,%D = E
2 | @ 2 S Z s
ElEregssl) § 53| = 3
\ 1 Address OJC‘/ i v
9 o <§t ool) ﬁ
o - (a'ed o
| c . s (O - 2L S Main
21 |2k 5 - ><—':I <M Memory
SUIEN] B < 5
S5 |= T RIE
=N Data Out In éi
| A z,[[T
ImmEn l RegEn ALUEni MemEn

Datapath unchanged for complex instructions!

30

Horizontal vs Vertical uCode

P

<
«

1 ¢

uPC

. .
HO”Z(Horizontal

e M U control

siore
* Fey

" ope HM HM

e \ertic
* Ty

Fou|

3

no

* Mc
* Mc

* Nano¢
* Trie

Vertical
control
store

L

n to 2n decoder

;%Eiﬁﬂ&k%

4l ShanghaiTech University

Bits per ulnstruction

Data
path

WELVALVAY,

PC

out

MA,

in

Inc4

31

() o m sk
Nanocoding
E.pr0|ts recurrlpg control LPC (state) ucode
signal patterns in pcode, I next-state
e.g., paddress

Licode ROM

ALUO A < Reg|rsl]

nanoaddress

ALUIO A & Reg|rsi]
nanoinstruction ROM

data

ERRERREN

* Motorola 68000 had 17-bit pcode containing either 10-bit yjump or 9-bit
nanoinstruction pointer

* Nanoinstructions were 68 bits wide, decoded to give 196 control
signals

33

Microprogramming in IBM 360

) b M A ¥

O Jg‘: ShanghaiTech University
o

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64
tinst width (bits) 50 52 85 87
ncode size (K pinsts) 4 4 2.75 2.75
ustore technology CCROS| TCROS BCROS| BCROS
pstore cycle (ns) 750 625 500 200
memory cycle (ns) 1500 2500 2000 750
Rental fee (SK/month) 4 7 15 35

* Only the fastest models (75 and 95) were hardwired

34

¢/ ShanghaiTech University

LI
F 5
zagza

é "

s

ECH

) EM A BRT

Microcode Emulation

* IBM initially miscalculated the importance of software compatibility
with earlier models when introducing the 360 series

* Honeywell stole some IBM 1401 customers by offering translation
software (“Liberator”) for Honeywell H200 series machine

* IBM retaliated with optional additional microcode for 360 series that
could emulate IBM 1401 ISA, later extended for IBM 7000 series

* one popular program on 1401 was a 650 simulator, so some customers ran
many 650 programs on emulated 1401s

* j.e., 650 simulated on 1401 emulated on 360

35

40 R Bk
5%3'” ”"‘.@5 ShanghaiTech University

e o

EELE
TARSE

g Aéw.ﬁ_
CH

Microprogramming thrived in ‘60s and ‘70s

* Significantly faster ROMs than DRAMs were available

* For complex instruction sets, datapath and controller were cheaper
and simpler

* New instructions, e.g., floating point, could be supported without
datapath modifications

* Fixing bugs in the controller was easier

* ISA compatibility across various models could be achieved easily and
cheaply

Except for the cheapest and fastest machines, all
computers were microprogrammed

36

#

1% 3
N
CH

1) E iR Bk
%2 7%/ ShanghaiTech University

%
Ut

TANE

Microprogramming: early 1980s

* Evolution bred more complex micro-machines

* Complex instruction sets led to need for subroutine and call stacks in
ucode

* Need for fixing bugs in control programs was in conflict with read-
only nature of uROM

* =»\Writable Control Store (WCS) (B1700, QMachine, Intel i432, ...)

* With the advent of VLS| technology assumptions about ROM
& RAM speed became invalid 2> more complexity

* Better compilers made complex instructions less important.

e Use of numerous micro-architectural innovations, e.g.,
pipelining, caches and buffers, made multiple-cycle
execution of reg-reg instructions unattractive

37

VAX 11-780 Microcode

! PiIWFUD,!

6557K

6557K
6856K

6856K

6856K

6856K

6856K

7763k

21

21M

11600,1208)
! CALL2 ,Mic '(600,1205)

11F4,

11F5,

134a,

134c¢,

11F8,

11F9,

1340,

134E,

1350,

1381,

MICRD2 (F(12)
Procedure call

129744

129745

129746

129747
0811,2035,0180,F910,0000,0CDA

129749

129750

129751
0000,003C,0180,3270,0000,134A

129753

129754
0018,0000,0180,FAF0,0200,134C

129756

129787
0800,003C,0180,FA68,0000,11F8

129759

129760

129761

129762

129763
0000,003D,6D80,3270,0084,6CD9

129765

129766

129767
0800,003C, 30F0,2E60,0000, 1340

129769

129770

129771

: 129772
0019,2024,80€0,3270,0000,134E

129774

1297758
2010,0038,0180,F909,4200,1350

129777

129778

129779

129780

129781
0D10,0038,0DC0,6114,0084,9351

129783

129784

129785

129786
0010,0038,F5C0,F920,0084,9352

129788

26=May=81

1415811
t CALLG, CALLS

EwBHRZKRT

ShanghaiTech University

VAX11/780 Microcode ¢ PCS 01, FPLA 0D, WCS122 ‘age

JHERE FOR CALLG OR CALLS, AFTER PROBING THE EXTENT OF THE STACK

=0

CALL,7: D.Q,AND,RC(T2),

129748

129752

129755

129758

=0

129764

129768

129773

129776

129782

129787

,--.-----..--..-..--..--..-.-.-.,CALL SITE FOR MPUSH
JSTRIP MASK TO BITS 11=0
CALL,J/MPUSH tPUSH REGISTERS
’.----------..--------.--..---..,R[TURN FROM MPUSH
CACHE.D([LONG), JPUSH PC

LAB.R(SP) !} BY SP

,---------..---------.---------.,

CALL.8Bt RISPI&VA_LA=K[,8) JUPDATE 8P FOR PUSH OF PC &

D.R(FP) JREADY TO PUSH FRAME POINTER

| remconsccsesoncccnnnnnnnnnsnse)CALL SITE FOR PSHSP

CACHELD[LONG),)STORE FP,
LAB_R(SP],) GET SP AGAIN
SC.K[.FFFO), 1=16 TO S8C
CALL,J/PSHSP
'.-.-......-..---.-...----.-.--.'
D.R[AP], JREADY TO PUSH AP
Q.ID(PSL) ? AND GET PSW FOR COMBINATIO

'.-.-.--.-.-........----.-----.-,
CACHELD[LONG) ,)STORE OLD AP
Q.0,ANDNOT,K[.1F), $CLEAR PSW<T,N,Z,V,C>
LAR.R[SP) JGET SP INTO LATCHES AGAIN

PC&VALRC(T1), FLUSH,IB # LOAD NEW PC AND CLEAR OUT

jemsrcsanennnesccncannenssansnes)
D.DAL,SC,)PSW TO D<31116>
0RC(T2), JRECOVER MASK
8C.8C+K([,3), JPUT «13 IN SC
LOAD,IB, PC.PC+i JSTART FETCHING SUBROUTINE I

,-...----..-..-.--.----.---.--.-’

D.DAL,.SC, JMASK AND PSW IN D<31:03>
0.RC(T4), JGET LOW BITS OF OLD SP TO Q<1:0>
8C.8C+K[,A) JPUT =3 IN SC

38

CAD) Ei R B AT

X j ShanghaiTech University

Writable Control Store (WCS)

* Implement control store in RAM not ROM

* MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 2-10x slower)

* Bug-free microprograms difficult to write

* User-WCS provided as option on several minicomputers
* Allowed users to change microcode for each processor

e User-WCS failed

Little or no programming tools support

Difficult to fit software into small space

Microcode control tailored to original ISA, less useful for others
Large WCS part of processor state - expensive context switches
Protection difficult if user can change microcode

Virtual memory required restartable microcode

39

SIS N .
AR Bk
10%”5:&“"‘ z

ol 2 ¢/ ShanghaiTech University

Microprogramming is far from extinct

* Played a crucial role in micros of the Eighties
* DEC uVAX, Motorola 68K series, Intel 286/386

* Plays an assisting role in most modern micros
* e.g., AMD Zen, Intel Sky Lake, Intel Atom, IBM PowerPC, ...
* Most instructions executed directly, i.e., with hard-wired control
* Infrequently-used and/or complicated instructions invoke microcode

 Patchable microcode common for post-fabrication bug fixes, e.g. Intel
processors load pcode patches at bootup

* Intel had to scramble to resurrect microcode tools and find original
microcode engineers to patch Meltdown/Spectre security vulnerabilities

D R EAY

ShanghaiTech University

Conclusion

* From instructions to microcodes
* ROP

CS211@ShanghaiTech 47

G B R Ry

¢/ ShanghaiTech University

Acknowledgements

* These slides contain materials developed and copyright by:
* Prof. Krste Asanovic (UC Berkeley)
* Prof. Hakim Weatherspoon (Cornell)
* Prof. Xi Li (USTC)
* Prof. Michel Boyer (Université de Montréal)
* Prof. Hovav Shacham (UT Austin)
* Prof. Daniel J. Sorin (Duke)
* Dr. Paul Durand (Kent University)
* Prof. Daniel Sanchez (MIT)
* Prof. Mengjia Yan (MIT)
* Prof. Anthony Stone (Cambridge)
* Prof. John Wawrzynek (UC Berkeley)

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L03 Microcode, Instruction, ISA

	ISA
	Slide 3: Instruction Set Architecture (ISA)
	Slide 4: Class of ISA
	Slide 5: Stack and Accumulator
	Slide 6: CISC, RISC
	Slide 7: The RISC Tenets
	Slide 8: ISA to Microarchitecture Mapping
	Slide 9: Hardwired vs. Microcoded
	Slide 10: Why Learn Microcode/Microprogramming?
	Slide 11: Control versus Datapath
	Slide 12: Microcoded CPU
	Slide 13: Technology Influence
	Slide 14: RISC-V ISA
	Slide 15: RV32 Processor State
	Slide 16: RISC-V Instruction Encoding
	Slide 17: RISC-V Instruction Formats
	Slide 18: Single-Bus Datapath for Microcoded RISC-V
	Slide 19: RISC-V Instruction Execution Phases
	Slide 20: Microcode Sketches (1)
	Slide 21: Microcode Sketches (2)
	Slide 22: Pure ROM Implementation
	Slide 23: Pure ROM Contents
	Slide 24: Single-Bus Microcode RISC-V ROM Size
	Slide 25: Reducing Control Store Size
	Slide 26: Single-Bus RISC-V Microcode Engine
	Slide 27: µPC Jump Types
	Slide 28: Encoded ROM Contents
	Slide 29: Implementing Complex Instructions
	Slide 30: Single-Bus Datapath for Microcoded RISC-V
	Slide 31: Horizontal vs Vertical µCode
	Slide 33: Nanocoding
	Slide 34: Microprogramming in IBM 360
	Slide 35: Microcode Emulation
	Slide 36: Microprogramming thrived in ‘60s and ‘70s
	Slide 37: Microprogramming: early 1980s
	Slide 38: VAX 11-780 Microcode
	Slide 39: Writable Control Store (WCS)
	Slide 40: Microprogramming is far from extinct

	ROP
	Slide 47: Conclusion

	Acknowledgement
	Slide 48: Acknowledgements

