
CS211
Advanced Computer Architecture

L03 Microcode, Instruction, ISA

Chundong Wang

September 24, 2025

CS211@ShanghaiTech 1

Instruction Set Architecture (ISA)

• The contract between software and hardware

• Typically described by giving all the programmer-visible state
(registers + memory) plus the semantics of the instructions that
operate on that state

• IBM 360 was first line of machines to separate ISA from
implementation (aka. microarchitecture)

• Many implementations possible for a given ISA
• e.g. 1., AMD Opteron and Intel Core i7, with the same 80x86 ISA

• e.g. 2: many cellphones use the ARM ISA with implementations from many
different companies including Apple, Qualcomm, Samsung, Huawei, etc.

3

Class of ISA

• ISA
• General-purpose register (GPR) architectures

• Operands are either registers or memory locations

• Stack
• The operands are implicitly on top of the stack

• Accumulator
• One operand is implicitly the accumulator

CS211@ShanghaiTech 4

Stack Accumulator GPR (reg/mem) GPR (load/store)

Push A Load A Load R1, A Load R1, A

Push B Add B Add R3, R1, B Load R2, B

Add Store C Store R3, C Add R3, R1, R2

Pop C Store R3, C

e.g., C  A + B

Stack and Accumulator

• Stack: no register, but stack
• Pros

• Simple Model of expression evaluation (Reverse Polish Notation)

• Short instruction, i.e., push, pop, etc.

• Cons
• Stack can't be randomly accessed

• Stack accessed every operation, to be a bottleneck

• Accumulator: one register, i.e., accumulator
• Pros

• Short instructions

• Cons
• Accumulator is only temporary storage, thus with high memory traffics

CS211@ShanghaiTech 5

CISC, RISC

• Both are widely used!!!

• CISC
• Complex instruction set computer
• Rep: x86

• RISC
• Reduced instruction set computer
• Reps: RSIC-V, MIPS, SPARC

• Main features of RISC, in contrast to CISC
• A large number of registers and a highly regular instruction pipeline, allowing

a low number of clock cycles per instruction (CPI) for high throughput
• SPARC and RISC-V both with 32 general-purpose integer registers

• X86, 8 general-purpose integer registers

• Uniform instruction format
• Load-store architecture

• Only load and store instruction can access memory to load/store data

CS211@ShanghaiTech 6

The RISC Tenets

• RISC
• Single-cycle execution

• Hardwired control

• Load/store architecture

• Few memory addressing modes

• Fixed-length inst. format

• Reliance on compiler optimizations

• Many registers (compilers are better
at using them)

• CISC
• Many multicycle operations

• Microcoded multi-cycle operations

• Register-mem and mem-mem

• Many more modes

• Many formats and lengths

• Hand assemble to get good performance

• Few registers

CS211@ShanghaiTech 7

ISA to Microarchitecture Mapping

• ISA often designed with particular microarchitectural style in mind,
e.g.,

Accumulator  hardwired, unpipelined
CISC microcoded
RISC  hardwired, pipelined
VLIW  fixed-latency in-order parallel pipelines
JVM  software interpretation

• But can be implemented with any microarchitectural style
– Intel Ivy Bridge: hardwired pipelined CISC (x86)

machine (with some microcode support)
– Spike: Software-interpreted RISC-V machine

– https://github.com/riscv/riscv-isa-sim
– ARM Jazelle: A hardware JVM processor

8

https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim

Hardwired vs. Microcoded

• Microcoded control
• Implemented using ROMs/RAMs

• Indirect next_state function: “here’s how to compute next state”

• Slower … but can do complex instructions

• Multi-cycle execution (of control)

• Hardwired control
• Implemented using logic (“hardwired” can’t re-program)

• Direct next_state function: “here is the next state”

• Faster … for simple instructions (speed is function of complexity)

• Single-cycle execution (of control)

CS211@ShanghaiTech 9

Why Learn Microcode/Microprogramming?

• To show how to build very small processors with complex ISAs

• To help you understand where CISC* machines came from

• Because still used in common machines (x86, IBM360, PowerPC)

• As a gentle introduction into machine structures

• To help understand how technology drove the move to RISC*

* “CISC”/”RISC” names much newer than style of
machines they refer to.

10

Control versus Datapath
• Processor designs can be split between datapath, where numbers are

stored and arithmetic operations computed, and control, which
sequences operations on datapath

11

▪ Biggest challenge for early computer
designers was getting control circuitry
correct

▪ Maurice Wilkes invented the idea of
microprogramming to design the
control unit of a processor for EDSAC-
II, 1958
- Foreshadowed by Babbage’s “Barrel”

and mechanisms in earlier
programmable calculators

Condition?

Control

Main Memory

Address Data

D
at

ap
at

h

P
C

In
st

. R
eg

.

R
eg

is
te

rs

A
LU

Instruction

Busy?

Control Lines

Microcoded CPU

12

Datapath

Main Memory
(holds user program written in macroinstructions, e.g., x86, RISC-V)

Address Data

Decoder

µPC

Microcode ROM
(holds fixed µcode
instructions)

Next State

Control Lines

O
p

co
d

e

C
o

n
d

it
io

n

B
u

sy
?

Technology Influence

•When microcode appeared in 1950s, different
technologies for:
• Logic: Vacuum Tubes
• Main Memory: Magnetic cores
• Read-Only Memory: Diode matrix, punched metal cards,

…

• Logic very expensive compared to ROM or RAM

•ROM cheaper than RAM

•ROM much faster than RAM

13

RISC-V ISA

• New fifth-generation RISC design from UC Berkeley

• Realistic & complete ISA, but open & small

• Not over-architected for a certain implementation style

• Both 32-bit (RV32) and 64-bit (RV64) address-space variants

• Designed for multiprocessing

• Efficient instruction encoding

• Easy to subset/extend for education/research

• RISC-V spec available on Foundation website and github

• Increasing momentum with industry adoption

14

RV32 Processor State

15

Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit
IEEE FP)

FP status register (fcsr), used for FP
rounding mode & exception reporting

RISC-V Instruction Encoding

• Can support variable-length instructions.

• Base instruction set (RV32) always has fixed 32-bit instructions
lowest two bits = 112

• All branches and jumps have targets at 16-bit granularity (even in
base ISA where all instructions are fixed 32 bits)

16

RISC-V Instruction Formats

17

Destination
Reg.

Reg. Source 1

Reg. Source 2

7-bit opcode
field (but low 2
bits =112)

Additional
opcode
bits/immediate

Single-Bus Datapath for Microcoded RISC-V

18

Microinstructions written as register transfers:

• MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

• B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

• Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1

Condition?

Main
Memory

P
C

R
eg

is
te

rs

A
LU

3
2

(P
C

)

rdrs
1

rs
2

R
eg

is
te

r
R

A
M

Address

InData OutIn
st

ru
ct

io
n

 R
eg

.

M
em

. A
d

d
re

ssB
A

Im
m

e
d

ia
te

ImmEn RegEn ALUEn MemEn

A
LU

O
p

M
em

W

Im
m

Se
l

R
eg

W

B
LdIn

st
Ld

M
A

Ld

A
Ld

RegSel

Busy?Opcode

RISC-V Instruction Execution Phases

• Instruction Fetch

• Instruction Decode

• Register Fetch

• ALU Operations

• Optional Memory Operations

• Optional Register Writeback

• Calculate Next Instruction Address

19

Microcode Sketches (1)

Instruction Fetch: MA,A:=PC

PC:=A+4

wait for memory

IR:=Mem

dispatch on opcode

ALU: A:=Reg[rs1]

B:=Reg[rs2]

Reg[rd]:=ALUOp(A,B)

goto instruction fetch

ALUI: A:=Reg[rs1]

B:=ImmI //Sign-extend 12b immediate

Reg[rd]:=ALUOp(A,B)

goto instruction fetch

20

Microcode Sketches (2)
LW: A:=Reg[rs1]

B:=ImmI //Sign-extend 12b immediate

MA:=A+B

wait for memory

Reg[rd]:=Mem

goto instruction fetch

JAL: Reg[rd]:=A // Store return address

A:=A-4 // Recover original PC

B:=ImmJ // Jump-style immediate

PC:=A+B

goto instruction fetch

Branch: A:=Reg[rs1]

B:=Reg[rs2]

if (!ALUOp(A,B)) goto instruction fetch //Not taken

A:=PC //Microcode fall through if branch taken

A:=A-4

B:=ImmB// Branch-style immediate

PC:=A+B

goto instruction fetch 21

Pure ROM Implementation

• How many address bits?
|µaddress| = |µPC|+|opcode|+ 1 + 1

• How many data bits?
|data| = |µPC|+|control signals| = |µPC| + 18

• Total ROM size = 2|µaddress|x|data|
22

µPC

ROM

Address

Data

Opcode Cond? Busy?

Next µPC Control Signals

Why 18-bit? Check Figure C.5.1 of
Computer Organization and Design
The Hardware/Software Interface:
RISC-V Edition (Textbook for CS110)

Pure ROM Contents

23

Address | Data

µPC Opcode Cond? Busy? | Control Lines Next µPC

fetch0 X X X | MA,A:=PC fetch1

fetch1 X X 1 | fetch1

fetch1 X X 0 | IR:=Mem fetch2

fetch2 ALU X X | PC:=A+4 ALU0

fetch2 ALUI X X | PC:=A+4 ALUI0

fetch2 LW X X | PC:=A+4 LW0

….

ALU0 X X X | A:=Reg[rs1] ALU1

ALU1 X X X | B:=Reg[rs2] ALU2

ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetch0

Single-Bus Microcode RISC-V ROM Size

• Instruction fetch sequence 3 common steps

•~12 instruction groups

•Each group takes ~5 steps (1 for dispatch)

•Total steps 3+12*5 = 63, needs 6 bits for µPC

•Opcode is 5 bits, ~18 control signals

•Total size = 2(6+5+2)x(6+18)=213x24 = ~25KiB!

24

|µaddress| = |µPC|+|opcode|+ 1 + 1

Reducing Control Store Size

•Reduce ROM height (#address bits)
• Use external logic to combine input signals

• Reduce #states by grouping opcodes

•Reduce ROM width (#data bits)
• Restrict µPC encoding (next, dispatch, wait on memory, …)

• Encode control signals (vertical µcoding, nanocoding)

25

Single-Bus RISC-V Microcode Engine

26

µPC

Decode

ROM

Address

Data

Opcode

Cond?

Busy?

Control Signals

+1

fetch0

µPC Jump
Logic

µPC jump

µPC jump = next | spin | fetch | dispatch | ftrue | ffalse

µPC Jump Types

• next increments µPC

• spin waits for memory

• fetch jumps to start of instruction fetch

• dispatch jumps to start of decoded opcode group

• ftrue/ffalse jumps to fetch if Cond? true/false

27

Encoded ROM Contents

28

Address | Data

µPC | Control Lines Next µPC

fetch0 | MA,A:=PC next

fetch1 | IR:=Mem spin

fetch2 | PC:=A+4 dispatch

ALU0 | A:=Reg[rs1] next

ALU1 | B:=Reg[rs2] next

ALU2 | Reg[rd]:=ALUOp(A,B) fetch

Branch0 | A:=Reg[rs1] next

Branch1 | B:=Reg[rs2] next

Branch2 | A:=PC ffalse

Branch3 | A:=A-4 next

Branch4 | B:=ImmB next

Branch5 | PC:=A+B fetch

Implementing Complex Instructions

29

Memory-memory add: M[rd] = M[rs1] + M[rs2]

Address | Data

µPC | Control Lines Next µPC

MMA0 | MA:=Reg[rs1] next

MMA1 | A:=Mem spin

MMA2 | MA:=Reg[rs2] next

MMA3 | B:=Mem spin

MMA4 | MA:=Reg[rd] next

MMA5 | Mem:=ALUOp(A,B) spin

MMA6 | fetch

Complex instructions usually do not require datapath modifications, only extra
space for control program

Very difficult to implement these instructions using a hardwired controller
without substantial datapath modifications

Single-Bus Datapath for Microcoded RISC-V

30

Datapath unchanged for complex instructions!

Condition?

Main
Memory

P
C

R
eg

is
te

rs

A
LU

3
2

(P
C

)

rdrs
1

rs
2

R
eg

is
te

r
R

A
M

Address

InData OutIn
st

ru
ct

io
n

 R
eg

.

M
em

. A
d

d
re

ssB
A

Im
m

e
d

ia
te

ImmEn RegEn ALUEn MemEn
A

LU
O

p

M
em

W

Im
m

Se
l

R
eg

W

B
LdIn

st
Ld

M
A

Ld

A
Ld

RegSel

Busy?Opcode

Horizontal vs Vertical µCode

31

• Horizontal µcode has wider µinstructions
• Multiple parallel operations per µinstruction

• Fewer microcode steps per macroinstruction

• Sparser encoding more bits

• Vertical µcode has narrower µinstructions
• Typically a single datapath operation per µinstruction

• separate µinstruction for branches

• More microcode steps per macroinstruction

• More compact  less bits

• Nanocoding
• Tries to combine best of horizontal and vertical µcode

µInstructions

Bits per µInstruction

Nanocoding

33

• Motorola 68000 had 17-bit µcode containing either 10-bit µjump or 9-bit
nanoinstruction pointer
• Nanoinstructions were 68 bits wide, decoded to give 196 control

signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control
signal patterns in µcode,
e.g.,

ALU0 A ← Reg[rs1]
...
ALUI0 A ← Reg[rs1]
...

Microprogramming in IBM 360

34

• Only the fastest models (75 and 95) were hardwired

M30 M40 M50 M65

Datapath width (bits) 8 16 32 64

µinst width (bits) 50 52 85 87

µcode size (K µinsts) 4 4 2.75 2.75

µstore technology CCROS TCROS BCROS BCROS

µstore cycle (ns) 750 625 500 200

memory cycle (ns) 1500 2500 2000 750

Rental fee ($K/month) 4 7 15 35

Microcode Emulation

• IBM initially miscalculated the importance of software compatibility
with earlier models when introducing the 360 series

• Honeywell stole some IBM 1401 customers by offering translation
software (“Liberator”) for Honeywell H200 series machine

• IBM retaliated with optional additional microcode for 360 series that
could emulate IBM 1401 ISA, later extended for IBM 7000 series
• one popular program on 1401 was a 650 simulator, so some customers ran

many 650 programs on emulated 1401s

• i.e., 650 simulated on 1401 emulated on 360

35

Microprogramming thrived in ‘60s and ‘70s

• Significantly faster ROMs than DRAMs were available

• For complex instruction sets, datapath and controller were cheaper
and simpler

• New instructions , e.g., floating point, could be supported without
datapath modifications

• Fixing bugs in the controller was easier

• ISA compatibility across various models could be achieved easily and
cheaply

36

Except for the cheapest and fastest machines, all
computers were microprogrammed

Microprogramming: early 1980s

• Evolution bred more complex micro-machines
• Complex instruction sets led to need for subroutine and call stacks in

µcode

• Need for fixing bugs in control programs was in conflict with read-
only nature of µROM

•➔Writable Control Store (WCS) (B1700, QMachine, Intel i432, …)

• With the advent of VLSI technology assumptions about ROM
& RAM speed became invalid →more complexity

• Better compilers made complex instructions less important.

• Use of numerous micro-architectural innovations, e.g.,
pipelining, caches and buffers, made multiple-cycle
execution of reg-reg instructions unattractive

37

VAX 11-780 Microcode

38

Writable Control Store (WCS)

• Implement control store in RAM not ROM
• MOS SRAM memories now almost as fast as control store (core

memories/DRAMs were 2-10x slower)
• Bug-free microprograms difficult to write

• User-WCS provided as option on several minicomputers
• Allowed users to change microcode for each processor

• User-WCS failed
• Little or no programming tools support
• Difficult to fit software into small space
• Microcode control tailored to original ISA, less useful for others
• Large WCS part of processor state - expensive context switches
• Protection difficult if user can change microcode
• Virtual memory required restartable microcode

39

Microprogramming is far from extinct

• Played a crucial role in micros of the Eighties
• DEC uVAX, Motorola 68K series, Intel 286/386

• Plays an assisting role in most modern micros
• e.g., AMD Zen, Intel Sky Lake, Intel Atom, IBM PowerPC, …

• Most instructions executed directly, i.e., with hard-wired control

• Infrequently-used and/or complicated instructions invoke microcode

• Patchable microcode common for post-fabrication bug fixes, e.g. Intel
processors load µcode patches at bootup
• Intel had to scramble to resurrect microcode tools and find original

microcode engineers to patch Meltdown/Spectre security vulnerabilities

40

Conclusion

• From instructions to microcodes

• ROP

CS211@ShanghaiTech 47

48

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Krste Asanovic (UC Berkeley)

• Prof. Hakim Weatherspoon (Cornell)

• Prof. Xi Li (USTC)

• Prof. Michel Boyer (Université de Montréal)

• Prof. Hovav Shacham (UT Austin)

• Prof. Daniel J. Sorin (Duke)

• Dr. Paul Durand (Kent University)

• Prof. Daniel Sanchez (MIT)

• Prof. Mengjia Yan (MIT)

• Prof. Anthony Stone (Cambridge)

• Prof. John Wawrzynek (UC Berkeley)

CS211@ShanghaiTech

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L03 Microcode, Instruction, ISA

	ISA
	Slide 3: Instruction Set Architecture (ISA)
	Slide 4: Class of ISA
	Slide 5: Stack and Accumulator
	Slide 6: CISC, RISC
	Slide 7: The RISC Tenets
	Slide 8: ISA to Microarchitecture Mapping
	Slide 9: Hardwired vs. Microcoded
	Slide 10: Why Learn Microcode/Microprogramming?
	Slide 11: Control versus Datapath
	Slide 12: Microcoded CPU
	Slide 13: Technology Influence
	Slide 14: RISC-V ISA
	Slide 15: RV32 Processor State
	Slide 16: RISC-V Instruction Encoding
	Slide 17: RISC-V Instruction Formats
	Slide 18: Single-Bus Datapath for Microcoded RISC-V
	Slide 19: RISC-V Instruction Execution Phases
	Slide 20: Microcode Sketches (1)
	Slide 21: Microcode Sketches (2)
	Slide 22: Pure ROM Implementation
	Slide 23: Pure ROM Contents
	Slide 24: Single-Bus Microcode RISC-V ROM Size
	Slide 25: Reducing Control Store Size
	Slide 26: Single-Bus RISC-V Microcode Engine
	Slide 27: µPC Jump Types
	Slide 28: Encoded ROM Contents
	Slide 29: Implementing Complex Instructions
	Slide 30: Single-Bus Datapath for Microcoded RISC-V
	Slide 31: Horizontal vs Vertical µCode
	Slide 33: Nanocoding
	Slide 34: Microprogramming in IBM 360
	Slide 35: Microcode Emulation
	Slide 36: Microprogramming thrived in ‘60s and ‘70s
	Slide 37: Microprogramming: early 1980s
	Slide 38: VAX 11-780 Microcode
	Slide 39: Writable Control Store (WCS)
	Slide 40: Microprogramming is far from extinct

	ROP
	Slide 47: Conclusion

	Acknowledgement
	Slide 48: Acknowledgements

