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Instruction Set Architecture (ISA)

• The contract between software and hardware

• Typically described by giving all the programmer-visible state 
(registers + memory) plus the semantics of the instructions that 
operate on that state

• IBM 360 was first line of machines to separate ISA from 
implementation (aka. microarchitecture)

• Many implementations possible for a given ISA
• e.g. 1., AMD Opteron and Intel Core i7, with the same 80x86 ISA

• e.g. 2: many cellphones use the ARM ISA with implementations from many 
different companies including Apple, Qualcomm, Samsung, Huawei, etc.

3



Class of ISA

• ISA
• General-purpose register (GPR) architectures

• Operands are either registers or memory locations

• Stack
• The operands are implicitly on top of the stack

• Accumulator
• One operand is implicitly the accumulator
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Stack Accumulator GPR (reg/mem) GPR (load/store)

Push A Load A Load R1, A Load R1, A

Push B Add B Add R3, R1, B Load R2, B

Add Store C Store R3, C Add R3, R1, R2

Pop C Store R3, C

e.g., C  A + B



Stack and Accumulator

• Stack: no register, but stack
• Pros

• Simple Model of expression evaluation (Reverse Polish Notation)

• Short instruction, i.e., push, pop, etc.

• Cons
• Stack can't be randomly accessed

• Stack accessed every operation, to be a bottleneck

• Accumulator: one register, i.e., accumulator
• Pros

• Short instructions

• Cons
• Accumulator is only temporary storage, thus with high memory traffics
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CISC, RISC

• Both are widely used!!!

• CISC
• Complex instruction set computer
• Rep: x86

• RISC
• Reduced instruction set computer 
• Reps: RSIC-V, MIPS, SPARC

• Main features of RISC, in contrast to CISC
• A large number of registers and a highly regular instruction pipeline, allowing 

a low number of clock cycles per instruction (CPI) for high throughput
• SPARC and RISC-V  both with 32 general-purpose integer registers

• X86, 8 general-purpose integer registers

• Uniform instruction format
• Load-store architecture

• Only load and store instruction can access memory to load/store data
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The RISC Tenets

• RISC
• Single-cycle execution

• Hardwired control

• Load/store architecture

• Few memory addressing modes

• Fixed-length inst. format

• Reliance on compiler optimizations

• Many registers (compilers are better 
at using them)

• CISC
• Many multicycle operations

• Microcoded multi-cycle operations

• Register-mem and mem-mem

• Many more modes

• Many formats and lengths

• Hand assemble to get good performance

• Few registers
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ISA to Microarchitecture Mapping

• ISA often designed with particular microarchitectural style in mind, 
e.g.,

Accumulator  hardwired, unpipelined
CISC microcoded
RISC  hardwired, pipelined
VLIW  fixed-latency in-order parallel pipelines
JVM  software interpretation

• But can be implemented with any microarchitectural style
– Intel Ivy Bridge: hardwired pipelined CISC (x86) 

machine (with some microcode support)
– Spike: Software-interpreted RISC-V machine

– https://github.com/riscv/riscv-isa-sim
– ARM Jazelle: A hardware JVM processor
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Hardwired vs. Microcoded

• Microcoded control
• Implemented using ROMs/RAMs

• Indirect next_state function: “here’s how to compute next state”

• Slower … but can do complex instructions

• Multi-cycle execution (of control)

• Hardwired control
• Implemented using logic (“hardwired” can’t re-program)

• Direct next_state function: “here is the next state”

• Faster … for simple instructions (speed is function of complexity)

• Single-cycle execution (of control)
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Why Learn Microcode/Microprogramming?

• To show how to build very small processors with complex ISAs

• To help you understand where CISC* machines came from

• Because still used in common machines (x86, IBM360, PowerPC)

• As a gentle introduction into machine structures

• To help understand how technology drove the move to RISC*

* “CISC”/”RISC” names much newer than style of 
machines they refer to.
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Control versus Datapath
• Processor designs can be split between datapath, where numbers are 

stored and arithmetic operations computed, and control, which 
sequences operations on datapath
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▪ Biggest challenge for early computer 
designers was getting control circuitry 
correct

▪ Maurice Wilkes invented the idea of 
microprogramming to design the 
control unit of a processor for EDSAC-
II, 1958
- Foreshadowed by Babbage’s “Barrel” 

and mechanisms in earlier 
programmable calculators
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Microcoded CPU
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Technology Influence

•When microcode appeared in 1950s, different 
technologies for:
• Logic: Vacuum Tubes
• Main Memory: Magnetic cores
• Read-Only Memory: Diode matrix, punched metal cards, 

…

• Logic very expensive compared to ROM or RAM

•ROM cheaper than RAM

•ROM much faster than RAM
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RISC-V ISA

• New fifth-generation RISC design from UC Berkeley

• Realistic & complete ISA, but open & small

• Not over-architected for a certain implementation style

• Both 32-bit (RV32) and 64-bit (RV64) address-space variants

• Designed for multiprocessing

• Efficient instruction encoding

• Easy to subset/extend for education/research

• RISC-V spec available on Foundation website and github

• Increasing momentum with industry adoption
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RV32 Processor State
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Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit 
IEEE FP)

FP status register (fcsr), used for FP 
rounding mode & exception reporting



RISC-V Instruction Encoding

• Can support variable-length instructions.

• Base instruction set (RV32) always has fixed 32-bit instructions 
lowest two bits = 112

• All branches and jumps have targets at 16-bit granularity (even in 
base ISA where all instructions are fixed 32 bits)

16



RISC-V Instruction Formats
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Single-Bus Datapath for Microcoded RISC-V
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Microinstructions written as register transfers:

• MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

• B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

• Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1
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RISC-V Instruction Execution Phases

• Instruction Fetch

• Instruction Decode

• Register Fetch

• ALU Operations

• Optional Memory Operations

• Optional Register Writeback

• Calculate Next Instruction Address
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Microcode Sketches (1)

Instruction Fetch: MA,A:=PC

PC:=A+4

wait for memory

IR:=Mem

dispatch on opcode

ALU: A:=Reg[rs1]

B:=Reg[rs2]

Reg[rd]:=ALUOp(A,B)

goto instruction fetch

ALUI: A:=Reg[rs1]

B:=ImmI //Sign-extend 12b immediate

Reg[rd]:=ALUOp(A,B)

goto instruction fetch
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Microcode Sketches (2)
LW: A:=Reg[rs1]

B:=ImmI //Sign-extend 12b immediate

MA:=A+B

wait for memory

Reg[rd]:=Mem

goto instruction fetch

JAL: Reg[rd]:=A  // Store return address

A:=A-4        // Recover original PC

B:=ImmJ // Jump-style immediate

PC:=A+B

goto instruction fetch

Branch: A:=Reg[rs1]

B:=Reg[rs2]

if (!ALUOp(A,B)) goto instruction fetch //Not taken

A:=PC  //Microcode fall through if branch taken

A:=A-4

B:=ImmB// Branch-style immediate

PC:=A+B

goto instruction fetch 21



Pure ROM Implementation

• How many address bits?
|µaddress| = |µPC|+|opcode|+ 1 + 1

• How many data bits?
|data| = |µPC|+|control signals| = |µPC| + 18

• Total ROM size = 2|µaddress|x|data|
22

µPC

ROM

Address

Data

Opcode Cond? Busy?

Next µPC Control Signals

Why 18-bit? Check Figure C.5.1 of 
Computer Organization and Design 
The Hardware/Software Interface: 
RISC-V Edition (Textbook for CS110)



Pure ROM Contents
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Address | Data                                               

µPC  Opcode  Cond?  Busy? | Control Lines Next µPC 

fetch0 X X X | MA,A:=PC fetch1

fetch1 X X 1 | fetch1

fetch1 X X 0 | IR:=Mem fetch2

fetch2 ALU X X | PC:=A+4 ALU0

fetch2 ALUI X X | PC:=A+4 ALUI0

fetch2 LW X X | PC:=A+4 LW0

….

ALU0 X X X | A:=Reg[rs1] ALU1

ALU1 X X X | B:=Reg[rs2] ALU2

ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetch0



Single-Bus Microcode RISC-V ROM Size

• Instruction fetch sequence 3 common steps

•~12 instruction groups

•Each group takes ~5 steps (1 for dispatch)

•Total steps 3+12*5 = 63, needs 6 bits for µPC

•Opcode is 5 bits, ~18 control signals

•Total size = 2(6+5+2)x(6+18)=213x24 = ~25KiB!
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|µaddress| = |µPC|+|opcode|+ 1 + 1



Reducing Control Store Size

•Reduce ROM height (#address bits)
• Use external logic to combine input signals

• Reduce #states by grouping opcodes

•Reduce ROM width (#data bits)
• Restrict µPC encoding (next, dispatch, wait on memory, …)

• Encode control signals (vertical µcoding, nanocoding)
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Single-Bus RISC-V Microcode Engine
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µPC Jump Types

• next increments µPC

• spin waits for memory

• fetch jumps to start of instruction fetch

• dispatch jumps to start of decoded opcode group

• ftrue/ffalse jumps to fetch if Cond? true/false
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Encoded ROM Contents
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Address | Data                                               

µPC  | Control Lines Next µPC 

fetch0 | MA,A:=PC next

fetch1 | IR:=Mem spin

fetch2 | PC:=A+4 dispatch

ALU0 | A:=Reg[rs1] next

ALU1 | B:=Reg[rs2] next

ALU2 | Reg[rd]:=ALUOp(A,B) fetch

Branch0 | A:=Reg[rs1] next

Branch1 | B:=Reg[rs2] next

Branch2 | A:=PC ffalse

Branch3 | A:=A-4 next

Branch4 | B:=ImmB next

Branch5 | PC:=A+B fetch



Implementing Complex Instructions
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Memory-memory add: M[rd] = M[rs1] + M[rs2]

Address | Data                                               

µPC  | Control Lines Next µPC 

MMA0 | MA:=Reg[rs1] next

MMA1 | A:=Mem spin

MMA2 | MA:=Reg[rs2] next

MMA3 | B:=Mem spin

MMA4 | MA:=Reg[rd] next

MMA5 | Mem:=ALUOp(A,B) spin

MMA6 | fetch

Complex instructions usually do not require datapath modifications, only extra 
space for control program

Very difficult to implement these instructions using a hardwired controller 
without substantial datapath modifications



Single-Bus Datapath for Microcoded RISC-V
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Datapath unchanged for complex instructions!
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Horizontal vs Vertical µCode

31

• Horizontal µcode has wider µinstructions
• Multiple parallel operations per µinstruction

• Fewer microcode steps per macroinstruction

• Sparser encoding more bits

• Vertical µcode has narrower µinstructions
• Typically a single datapath operation per µinstruction

• separate µinstruction for branches

• More microcode steps per macroinstruction

• More compact   less bits

• Nanocoding
• Tries to combine best of horizontal and vertical µcode

# µInstructions

Bits per µInstruction



Nanocoding
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• Motorola 68000 had 17-bit µcode containing either 10-bit µjump or 9-bit 
nanoinstruction pointer
• Nanoinstructions were 68 bits wide, decoded to give 196 control 

signals

µcode ROM

nanoaddress

µcode 
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control 
signal patterns in µcode, 
e.g., 

ALU0 A ← Reg[rs1] 
...
ALUI0 A ← Reg[rs1]
...



Microprogramming in IBM 360
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• Only the fastest models (75 and 95) were hardwired

M30 M40 M50 M65

Datapath width (bits) 8 16 32 64

µinst width (bits) 50 52 85 87

µcode size (K µinsts) 4 4 2.75 2.75

µstore technology CCROS TCROS BCROS BCROS

µstore cycle (ns) 750 625 500 200

memory cycle (ns) 1500 2500 2000 750

Rental fee ($K/month) 4 7 15 35



Microcode Emulation

• IBM initially miscalculated the importance of software compatibility 
with earlier models when introducing the 360 series

• Honeywell stole some IBM 1401 customers by offering translation 
software (“Liberator”) for Honeywell H200 series machine

• IBM retaliated with optional additional microcode for 360 series that 
could emulate IBM 1401 ISA, later extended for IBM 7000 series
• one popular program on 1401 was a 650 simulator, so some customers ran 

many 650 programs on emulated 1401s

• i.e., 650 simulated on 1401 emulated on 360
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Microprogramming thrived in ‘60s and ‘70s

• Significantly faster ROMs than DRAMs were available

• For complex instruction sets, datapath and controller were cheaper 
and simpler 

• New instructions , e.g., floating point, could be supported without 
datapath modifications

• Fixing bugs in the controller was easier

• ISA compatibility across various models could be achieved easily and 
cheaply
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Except for the cheapest and fastest machines, all 
computers were microprogrammed



Microprogramming: early 1980s

• Evolution bred more complex micro-machines
• Complex instruction sets led to need for subroutine and call stacks in 

µcode

• Need for fixing bugs in control programs was in conflict with read-
only nature of µROM 

•➔Writable Control Store (WCS)  (B1700, QMachine, Intel i432, …)

• With the advent of VLSI technology assumptions about ROM 
& RAM speed became invalid →more complexity

• Better compilers made complex instructions less important.

• Use of numerous micro-architectural innovations, e.g., 
pipelining, caches and buffers, made multiple-cycle 
execution of reg-reg instructions unattractive
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VAX 11-780 Microcode

38



Writable Control Store (WCS)

• Implement control store in RAM not ROM
• MOS SRAM memories now almost as fast as control store (core 

memories/DRAMs were 2-10x slower)
• Bug-free microprograms difficult to write

• User-WCS provided as option on several minicomputers
• Allowed users to change microcode for each processor

• User-WCS failed
• Little or no programming tools support
• Difficult to fit software into small space
• Microcode control tailored to original ISA, less useful for others
• Large WCS part of processor state - expensive context switches
• Protection difficult if user can change microcode
• Virtual memory required restartable microcode
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Microprogramming is far from extinct

• Played a crucial role in micros of the Eighties
• DEC uVAX, Motorola 68K series, Intel 286/386

• Plays an assisting role in most modern micros
• e.g., AMD Zen, Intel Sky Lake, Intel Atom, IBM PowerPC, …

• Most instructions executed directly, i.e., with hard-wired control

• Infrequently-used and/or complicated instructions invoke microcode

• Patchable microcode common for post-fabrication bug fixes, e.g. Intel 
processors load µcode patches at bootup
• Intel had to scramble to resurrect microcode tools and find original 

microcode engineers to patch Meltdown/Spectre security vulnerabilities
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Conclusion

• From instructions to microcodes

• ROP
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