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• Lab 1
• Do not miss the deadline

• HW 1
• To be issued soon in Piazza

• Submissions on Gradescope
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Previously in CS211

• Datapath is the collection of hardware components and their 
connection in a processor

• Determines the static structure of processor

• e.g., inst/data caches, register file, ALU(s), lots of multiplexers, etc.

• Control logic determines the dynamic flow of data between the 
components, e.g.,

• the control lines of MUXes and ALU

• read/write controls of caches and register files

• enable/disable controls of flip-flops

• Microarchitecture = datapath + control logic
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Previously in CS211

• Microcoding, an effective technique to manage control unit 
complexity, invented in era when logic (tubes), main memory 
(magnetic core), and ROM (diodes) used different technologies

• Difference between ROM and RAM speed motivated additional 
complex instructions

• Technology advances leading to fast SRAM made technology 
assumptions invalid

• Complex instructions sets impede parallel and pipelined 
implementations
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“Iron Law” of Processor Performance

• Instructions per program depends on source code, compiler 
technology, and ISA

• Cycles per instructions (CPI) depends on ISA and microarchitecture

• Time per cycle depends upon the microarchitecture and base 
technology

9

Time   =   Instructions Cycles    Time
Program         Program *  Instruction   *  Cycle



Inst 3

CPI for Microcoded Machine
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7 cycles

Inst 1 Inst 2

5 cycles 10 cycles

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPI = 22/3 = 7.33 

CPI is always an arithmetic average over 
a large number of instructions.

Time



IC Technology Changes Tradeoffs

• Logic, RAM, ROM all implemented using MOS transistors

• Semiconductor RAM ~ same speed as ROM
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Reconsidering Microcode Machine
(Nanocoded 68000 example)
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• Motorola 68000 had 17-bit µcode containing either 10-bit µjump or 9-bit 
nanoinstruction pointer

• Nanoinstructions were 68 bits wide, decoded to give 196 control signals

µcode ROM

nanoaddress

µcode 
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control 
signal patterns in µcode, 
e.g., 

ALU0 A ← Reg[rs1] 
...
ALUI0 A ← Reg[rs1]
...



From CISC to RISC

• Use fast RAM to build fast instruction cache of user-visible 
instructions, not fixed hardware micro-routines

• Contents of fast instruction memory change to fit application needs 

• Use simple ISA to enable hardwired pipelined implementation
• Most compiled code only used few CISC instructions

• Simpler encoding allowed pipelined implementations

• RISC ISA comparable to vertical microcode

• Further benefit with integration
• In early ’80s, finally fit 32-bit datapath + small caches on single chip

• No chip crossings in common case allows faster operation
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Chapter 1.4 “Trends in Technology” of Textbook for CS211 
“Computer Architecture: A Quantitative Approach, Sixth 
Edition. ”



Berkeley RISC Chips
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RISC-I (1982) Contains 44,420 
transistors, fabbed in 5 µm NMOS, 
with a die area of 77 mm2, ran at 
1 MHz. This chip is probably the 
first VLSI RISC.

RISC-II (1983) contains 40,760 
transistors, was fabbed in 3 
µm NMOS, ran at 3 MHz, and 
the size is 60 mm2.

Stanford built some too…



“Iron Law” of Processor Performance

• Instructions per program depends on source code, compiler 
technology, and ISA

• Cycles per instructions (CPI) depends on ISA and microarchitecture

• Time per cycle depends upon the microarchitecture and base 
technology
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Time   e
Program 

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

Instructions
Program     

C Cycles      s
Instruction    

C Time      s
Cycle  

= * *



MemoryEXecuteDecodeFetch

Classic 5-Stage RISC Pipeline
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CPI Examples
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Time

Inst 3

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles
Microcoded machine

3 instructions, 22 cycles, CPI=7.33

Unpipelined machine

3 instructions, 3 cycles, CPI=1

Inst 1 Inst 2 Inst 3

Pipelined machine

3 instructions, 3 cycles, CPI=1
Inst 1

Inst 2

Inst 3 5-stage pipeline CPI≠5!!!



Pipeline Design

• Balancing work in pipeline stages 
• How many stages and what is done in each stage?

• Keeping the pipeline correct, moving, and full in the presence of 
events that disrupt pipeline flow

• Hazards

• Do not forget long-latency (multi-cycle) operations 
• mul/div vs. add/sub vs. shl/xor

• Handling exceptions, interrupts 

• Improving pipeline throughput
• Minimizing stalls
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Instructions interact with each other in pipeline

• An instruction in the pipeline may need a resource 
being used by another instruction in the pipeline →
structural hazard

• An instruction may depend on something produced by 
an earlier instruction

• Dependence may be for a data value

→ data hazard
• Dependence may be for the next instruction’s address
→ control hazard (branches, exceptions)

• Handling hazards generally introduces bubbles into pipeline and reduces 
ideal CPI > 1
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Pipeline CPI Examples
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Time

3 instructions finish in 3 cycles
CPI = 3/3 =1

Inst 1

Inst 2
Inst 3

3 instructions finish in 4 cycles
CPI = 4/3 = 1.33

Inst 1
Inst 2

Inst 3

Bubble

Measure from when first instruction finishes 
to when last instruction in sequence finishes.

3 instructions finish in 5cycles
CPI = 5/3 = 1.67

Inst 1

Inst 2

Inst 3

Bubble 1

Bubble 2
Inst 3



Resolving Structural Hazards

• Structural hazard occurs when two instructions 
need same hardware resource at same time

• Can resolve in hardware by stalling newer instruction till older 
instruction finished with resource

• A structural hazard can always be avoided by adding 
more hardware to design

• E.g., if two instructions both need a port to memory at same time, 
could avoid hazard by adding second port to memory

• Classic RISC 5-stage integer pipeline has no 
structural hazards by design

• Many RISC implementations have structural hazards on multi-cycle 
units such as multipliers, dividers, floating-point units, etc., and can 
have on register writeback ports
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Types of Data Hazards 
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Consider executing a sequence of register-register 
instructions of type: 

rk ← ri op  rj

Data-dependence
r3 ←  r1 op r2 Read-after-Write  
r5 ←  r3 op r4 (RAW) hazard

Anti-dependence
r3 ←  r1 op r2 Write-after-Read 
r1 ←  r4 op r5 (WAR) hazard

Output-dependence
r3 ←  r1 op r2 Write-after-Write 
r3 ←  r6 op r7 (WAW) hazard



Three Strategies for Data Hazards

•Interlock
• Wait for hazard to clear by holding dependent instruction 

in issue stage

•Bypass
• Resolve hazard earlier by bypassing value as soon as 

available

•Speculate
• Guess on value, correct if wrong
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Interlocking Versus Bypassing
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add x1, x3, x5

sub x2, x1, x4
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MemoryEXecuteDecodeFetch

Example Bypass Path
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MemoryEXecuteDecodeFetch

Fully Bypassed Data Path
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in a W cycle is readable in parallel 
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Value Speculation for RAW Data Hazards 

• Rather than wait for value, can guess value!

• So far, only effective in certain limited cases:
• Branch prediction

• Stack pointer updates

• Memory address disambiguation

27

The impact of 
misprediction might be 
horrible, e.g., Spectre



Control Hazards

What do we need to calculate next PC?

•For Unconditional Jumps
• Opcode, PC, and offset

•For Jump Register
• Opcode, Register value, and offset

•For Conditional Branches
• Opcode, Register (for condition), PC and offset

•For all other instructions
• Opcode and PC (and have to know it’s not one of above )
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MemoryEXecuteDecodeFetch

Control flow information in pipeline
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EXecuteDecodeFetch

RISC-V Unconditional PC-Relative Jumps
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Pipelining for Unconditional PC-Relative 
Jumps
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Branch Delay Slots

• Early RISCs adopted idea from pipelined microcode engines, 
and changed ISA semantics so instruction after branch/jump 
is always executed before control flow change occurs:
0x100 j target

0x104 add x1, x2, x3 // Executed before target

…

0x205 target: xori x1, x1, 7

• Software has to fill delay slot with useful work, or fill with 
explicit NOP instruction
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M W

X M W

D X M W

j targetF D

F

target: xori x1, x1, 7

X

D

F

add x1, x2, x3

There was only one delay slot for most RISC 
architectures that incorporated them, e.g., MIPS.



Post-1990 RISC ISAs don’t have delay slots

• Encodes microarchitectural detail into ISA
• c.f. IBM 650 drum layout

• Performance issues
• Increased I-cache misses from NOPs in unused delay slots

• I-cache miss on delay slot causes machine to wait, even if delay slot is 
a NOP

• Complicates more advanced microarchitectures
• Consider 30-stage pipeline with four-instruction-per-cycle issue

• Better branch prediction reduced need
• Branch prediction in later lecture
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EXecuteDecodeFetch

RISC-V Conditional Branches
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Pipelining for Conditional Branches
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Why instruction may not be dispatched 
every cycle in classic 5-stage pipeline (CPI>1)

• Full bypassing may be too expensive to implement
• typically all frequently used paths are provided
• some infrequently used bypass paths may increase cycle time and 

counteract the benefit of reducing CPI

• Loads have two-cycle latency
• Instruction after load cannot use load result
• MIPS-I ISA defined load delay slots, a software-visible pipeline 

hazard (compiler schedules independent instruction or inserts NOP 
to avoid hazard). Removed in MIPS-II (pipeline interlocks added in 
hardware)
• MIPS:“Microprocessor without Interlocked Pipeline Stages”

• Jumps/Conditional branches may cause bubbles
• kill following instruction(s) if no delay slots

36

Machines with software-visible delay slots may execute significant 
number of NOP instructions inserted by the compiler.
NOPs reduce CPI, but increase instructions/program!



Traps and Interrupts

In class, we’ll use following terminology

•Exception: An unusual internal event caused by 
program during execution

• E.g., page fault, arithmetic underflow

• Interrupt: An external event outside of running 
program

•Trap: Forced transfer of control to supervisor 
caused by exception or interrupt

• Not all exceptions cause traps (c.f. IEEE 754 floating-point standard)
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History of Exception Handling

• Analytical Engine had overflow exceptions
• First system with traps was Univac-I, 1951

• Arithmetic overflow would either
• 1. trigger the execution a two-instruction fix-up routine at address 

0, or
• 2. at the programmer's option, cause the computer to stop

• Later Univac 1103, 1955, modified to add external interrupts
• Used to gather real-time wind tunnel data

• First system with I/O interrupts was DYSEAC, 1954
• Had two program counters, and I/O signal caused switch between 

two PCs
• Also, first system with DMA (Direct Memory Access by I/O device)
• And, first mobile computer!

39



DYSEAC, first mobile computer!

40

• Carried in two tractor trailers, 12 tons + 8 tons

• Built for US Army Signal Corps
[Courtesy Mark Smotherman]



Asynchronous Interrupts

• An I/O device requests attention by asserting one of 
the prioritized interrupt request lines

• When the processor decides to process the 
interrupt 

• It stops the current program at instruction Ii , completing 
all the instructions up to Ii-1  (precise interrupt)

• It saves the PC of instruction Ii in a special register (EPC)

• It disables interrupts and transfers control to a designated 
interrupt handler running in supervisor mode
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Trap:

altering the normal flow of control
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Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap 
handler

An external or internal event that needs to be processed by another (system) 
program. The event is usually unexpected or rare from program’s point of view. 



Trap Handler

• Saves EPC before enabling interrupts to allow 
nested interrupts 

• need an instruction to move EPC into GPRs 

• need a way to mask further interrupts at least until EPC can be saved

• Needs to read a status register that indicates the 
cause of the trap

• Uses a special indirect jump instruction ERET 
(return-from-environment) which

• enables interrupts

• restores the processor to the user mode

• restores hardware status and control state
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Synchronous Trap

• A synchronous trap is caused by an exception on a particular 
instruction

• In general, the instruction cannot be completed and needs 
to be restarted after the exception has been handled

• requires undoing the effect of one or more partially executed 
instructions

• In the case of a system call trap, the instruction is considered 
to have been completed  

• a special jump instruction involving a change to a privileged mode
• Check https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-
2020/resources/trap.pdf for system calls, interrupt, etc.
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https://toast-lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-2020/resources/trap.pdf
https://toast-lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-2020/resources/trap.pdf
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Exception Handling 5-Stage Pipeline
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• How to handle multiple simultaneous exceptions in different 
pipeline stages?

• How and where to handle external asynchronous 
interrupts?
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Exception Handling 5-Stage Pipeline
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Exception Handling 5-Stage Pipeline

• Hold exception flags in pipeline until commit point 
(M stage)

• Exceptions in earlier pipe stages override later 
exceptions for a given instruction

• Inject external interrupts at commit point (override 
others)

• If trap at commit: update Cause and EPC registers, 
kill all stages, inject handler PC into fetch stage
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Speculating on Exceptions

• Prediction mechanism
• Exceptions are rare, so simply predicting no exceptions is very 

accurate!

• Check prediction mechanism
• Exceptions detected at end of instruction execution pipeline, special 

hardware for various exception types

• Recovery mechanism
• Only write architectural state at commit point, so can throw away 

partially executed instructions after exception
• Launch exception handler after flushing pipeline

• Bypassing allows use of uncommitted instruction 
results by following instructions
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Conclusion

• Pipeline design

• Hazards

• Exception handling
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