
CS211
Advanced Computer Architecture

L04 Pipeline I

Chundong Wang

September 26th, 2025

CS211@ShanghaiTech 1

• Lab 1
• Do not miss the deadline

• HW 1
• To be issued soon in Piazza

• Submissions on Gradescope

CS211@ShanghaiTech 2

Admin

Previously in CS211

• Datapath is the collection of hardware components and their
connection in a processor

• Determines the static structure of processor

• e.g., inst/data caches, register file, ALU(s), lots of multiplexers, etc.

• Control logic determines the dynamic flow of data between the
components, e.g.,

• the control lines of MUXes and ALU

• read/write controls of caches and register files

• enable/disable controls of flip-flops

• Microarchitecture = datapath + control logic

CS211@ShanghaiTech 3

Previously in CS211

• Microcoding, an effective technique to manage control unit
complexity, invented in era when logic (tubes), main memory
(magnetic core), and ROM (diodes) used different technologies

• Difference between ROM and RAM speed motivated additional
complex instructions

• Technology advances leading to fast SRAM made technology
assumptions invalid

• Complex instructions sets impede parallel and pipelined
implementations

4

“Iron Law” of Processor Performance

• Instructions per program depends on source code, compiler
technology, and ISA

• Cycles per instructions (CPI) depends on ISA and microarchitecture

• Time per cycle depends upon the microarchitecture and base
technology

9

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

Inst 3

CPI for Microcoded Machine

10

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPI = 22/3 = 7.33

CPI is always an arithmetic average over
a large number of instructions.

Time

IC Technology Changes Tradeoffs

• Logic, RAM, ROM all implemented using MOS transistors

• Semiconductor RAM ~ same speed as ROM

11

Reconsidering Microcode Machine
(Nanocoded 68000 example)

12

• Motorola 68000 had 17-bit µcode containing either 10-bit µjump or 9-bit
nanoinstruction pointer

• Nanoinstructions were 68 bits wide, decoded to give 196 control signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring control
signal patterns in µcode,
e.g.,

ALU0 A ← Reg[rs1]
...
ALUI0 A ← Reg[rs1]
...

From CISC to RISC

• Use fast RAM to build fast instruction cache of user-visible
instructions, not fixed hardware micro-routines

• Contents of fast instruction memory change to fit application needs

• Use simple ISA to enable hardwired pipelined implementation
• Most compiled code only used few CISC instructions

• Simpler encoding allowed pipelined implementations

• RISC ISA comparable to vertical microcode

• Further benefit with integration
• In early ’80s, finally fit 32-bit datapath + small caches on single chip

• No chip crossings in common case allows faster operation

13

Chapter 1.4 “Trends in Technology” of Textbook for CS211
“Computer Architecture: A Quantitative Approach, Sixth
Edition. ”

Berkeley RISC Chips

14

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 µm NMOS,
with a die area of 77 mm2, ran at
1 MHz. This chip is probably the
first VLSI RISC.

RISC-II (1983) contains 40,760
transistors, was fabbed in 3
µm NMOS, ran at 3 MHz, and
the size is 60 mm2.

Stanford built some too…

“Iron Law” of Processor Performance

• Instructions per program depends on source code, compiler
technology, and ISA

• Cycles per instructions (CPI) depends on ISA and microarchitecture

• Time per cycle depends upon the microarchitecture and base
technology

15

Time e
Program

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

Instructions
Program

C Cycles s
Instruction

C Time s
Cycle

= * *

MemoryEXecuteDecodeFetch

Classic 5-Stage RISC Pipeline

16

R
eg

is
te

rs

A
LU

B
A

Data
Cache

P
C

Instruction
Cache

St
o

re

Im
m

In
st

. R
eg

is
te

r

Writeback

This version designed for regfiles/memories
with synchronous reads and writes.

CPI Examples

17

Time

Inst 3

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles
Microcoded machine

3 instructions, 22 cycles, CPI=7.33

Unpipelined machine

3 instructions, 3 cycles, CPI=1

Inst 1 Inst 2 Inst 3

Pipelined machine

3 instructions, 3 cycles, CPI=1
Inst 1

Inst 2

Inst 3 5-stage pipeline CPI≠5!!!

Pipeline Design

• Balancing work in pipeline stages
• How many stages and what is done in each stage?

• Keeping the pipeline correct, moving, and full in the presence of
events that disrupt pipeline flow

• Hazards

• Do not forget long-latency (multi-cycle) operations
• mul/div vs. add/sub vs. shl/xor

• Handling exceptions, interrupts

• Improving pipeline throughput
• Minimizing stalls

CS211@ShanghaiTech 18

Instructions interact with each other in pipeline

• An instruction in the pipeline may need a resource
being used by another instruction in the pipeline →
structural hazard

• An instruction may depend on something produced by
an earlier instruction

• Dependence may be for a data value

→ data hazard
• Dependence may be for the next instruction’s address
→ control hazard (branches, exceptions)

• Handling hazards generally introduces bubbles into pipeline and reduces
ideal CPI > 1

19

Pipeline CPI Examples

20

Time

3 instructions finish in 3 cycles
CPI = 3/3 =1

Inst 1

Inst 2
Inst 3

3 instructions finish in 4 cycles
CPI = 4/3 = 1.33

Inst 1
Inst 2

Inst 3

Bubble

Measure from when first instruction finishes
to when last instruction in sequence finishes.

3 instructions finish in 5cycles
CPI = 5/3 = 1.67

Inst 1

Inst 2

Inst 3

Bubble 1

Bubble 2
Inst 3

Resolving Structural Hazards

• Structural hazard occurs when two instructions
need same hardware resource at same time

• Can resolve in hardware by stalling newer instruction till older
instruction finished with resource

• A structural hazard can always be avoided by adding
more hardware to design

• E.g., if two instructions both need a port to memory at same time,
could avoid hazard by adding second port to memory

• Classic RISC 5-stage integer pipeline has no
structural hazards by design

• Many RISC implementations have structural hazards on multi-cycle
units such as multipliers, dividers, floating-point units, etc., and can
have on register writeback ports

21

Types of Data Hazards

22

Consider executing a sequence of register-register
instructions of type:

rk ← ri op rj

Data-dependence
r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW) hazard

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

Three Strategies for Data Hazards

•Interlock
• Wait for hazard to clear by holding dependent instruction

in issue stage

•Bypass
• Resolve hazard earlier by bypassing value as soon as

available

•Speculate
• Guess on value, correct if wrong

23

Interlocking Versus Bypassing

24

add x1, x3, x5

sub x2, x1, x4

F add x1, x3, x5D

F

X

D

F

sub x2, x1, x4

W

M

X bubble

F

D

W

X M W

M W

W

M

D

X bubble

M

X bubble

D

F

Instruction interlocked
in decode stage

F D X M W add x1, x3, x5

F D X M W sub x2, x1, x4

Bypass around ALU
with no bubbles

MemoryEXecuteDecodeFetch

Example Bypass Path

25

R
eg

is
te

rs

A
LU

B
A

Data
Cache

P
C

Instruction
Cache

St
o

re

Im
m

In
st

. R
eg

is
te

r

Writeback

MemoryEXecuteDecodeFetch

Fully Bypassed Data Path

26

R
eg

is
te

rs

A
LU

B
A

Data
Cache

P
C

Instruction
Cache

St
o

re

Im
m

In
st

. R
eg

is
te

r

Writeback

F D X M W

F D X M W

F D X M W

F D X M W
[Assumes data written to registers
in a W cycle is readable in parallel
D cycle (dotted line). Extra write
data register and bypass paths
required if this is not possible.]

Value Speculation for RAW Data Hazards

• Rather than wait for value, can guess value!

• So far, only effective in certain limited cases:
• Branch prediction

• Stack pointer updates

• Memory address disambiguation

27

The impact of
misprediction might be
horrible, e.g., Spectre

Control Hazards

What do we need to calculate next PC?

•For Unconditional Jumps
• Opcode, PC, and offset

•For Jump Register
• Opcode, Register value, and offset

•For Conditional Branches
• Opcode, Register (for condition), PC and offset

•For all other instructions
• Opcode and PC (and have to know it’s not one of above)

28

MemoryEXecuteDecodeFetch

Control flow information in pipeline

29

R
eg

is
te

rs

B
A

Data
Cache

P
C

Instruction
Cache

St
o

re

Im
m

In
st

. R
eg

is
te

r

Writeback

PC known
Opcode,
offset known

Branch condition,
Jump register
value known

A
LU

EXecuteDecodeFetch

RISC-V Unconditional PC-Relative Jumps

30

R
eg

is
te

rs

B
A

Instruction
Cache

Im
m

In
st

. R
eg

is
te

r

A
LU

P
C

_d
e

co
d

e

A
d

d

Jump?PCJumpSel
P

C
_f

et
ch

K
ill

FKill

+4

[Kill bit turns
instruction
into a bubble]

Pipelining for Unconditional PC-Relative
Jumps

31

M W

X M W

D X M W

j targetF D

F

target: add x1, x2, x3

X

D

F

bubble

Branch Delay Slots

• Early RISCs adopted idea from pipelined microcode engines,
and changed ISA semantics so instruction after branch/jump
is always executed before control flow change occurs:
0x100 j target

0x104 add x1, x2, x3 // Executed before target

…

0x205 target: xori x1, x1, 7

• Software has to fill delay slot with useful work, or fill with
explicit NOP instruction

32

M W

X M W

D X M W

j targetF D

F

target: xori x1, x1, 7

X

D

F

add x1, x2, x3

There was only one delay slot for most RISC
architectures that incorporated them, e.g., MIPS.

Post-1990 RISC ISAs don’t have delay slots

• Encodes microarchitectural detail into ISA
• c.f. IBM 650 drum layout

• Performance issues
• Increased I-cache misses from NOPs in unused delay slots

• I-cache miss on delay slot causes machine to wait, even if delay slot is
a NOP

• Complicates more advanced microarchitectures
• Consider 30-stage pipeline with four-instruction-per-cycle issue

• Better branch prediction reduced need
• Branch prediction in later lecture

33

EXecuteDecodeFetch

RISC-V Conditional Branches

34

R
eg

is
te

rs

B
A

Instruction
Cache

In
st

.

In
st

. R
eg

is
te

r

A
LU

P
C

_d
e

co
d

e

A
d

d

Branch?PCSel
P

C
_f

et
ch

K
ill

FKill

+4

Cond?

P
C

_e
xe

cu
te

A
d

d

K
ill

DKill

Pipelining for Conditional Branches

35

M W

X M W

D X M W

beq x1, x2, targetF D

F

target: add x1, x2, x3

X

D

F

bubble

bubble

F D X M W

Why instruction may not be dispatched
every cycle in classic 5-stage pipeline (CPI>1)

• Full bypassing may be too expensive to implement
• typically all frequently used paths are provided
• some infrequently used bypass paths may increase cycle time and

counteract the benefit of reducing CPI

• Loads have two-cycle latency
• Instruction after load cannot use load result
• MIPS-I ISA defined load delay slots, a software-visible pipeline

hazard (compiler schedules independent instruction or inserts NOP
to avoid hazard). Removed in MIPS-II (pipeline interlocks added in
hardware)
• MIPS:“Microprocessor without Interlocked Pipeline Stages”

• Jumps/Conditional branches may cause bubbles
• kill following instruction(s) if no delay slots

36

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler.
NOPs reduce CPI, but increase instructions/program!

Traps and Interrupts

In class, we’ll use following terminology

•Exception: An unusual internal event caused by
program during execution

• E.g., page fault, arithmetic underflow

• Interrupt: An external event outside of running
program

•Trap: Forced transfer of control to supervisor
caused by exception or interrupt

• Not all exceptions cause traps (c.f. IEEE 754 floating-point standard)

38

History of Exception Handling

• Analytical Engine had overflow exceptions
• First system with traps was Univac-I, 1951

• Arithmetic overflow would either
• 1. trigger the execution a two-instruction fix-up routine at address

0, or
• 2. at the programmer's option, cause the computer to stop

• Later Univac 1103, 1955, modified to add external interrupts
• Used to gather real-time wind tunnel data

• First system with I/O interrupts was DYSEAC, 1954
• Had two program counters, and I/O signal caused switch between

two PCs
• Also, first system with DMA (Direct Memory Access by I/O device)
• And, first mobile computer!

39

DYSEAC, first mobile computer!

40

• Carried in two tractor trailers, 12 tons + 8 tons

• Built for US Army Signal Corps
[Courtesy Mark Smotherman]

Asynchronous Interrupts

• An I/O device requests attention by asserting one of
the prioritized interrupt request lines

• When the processor decides to process the
interrupt

• It stops the current program at instruction Ii , completing
all the instructions up to Ii-1 (precise interrupt)

• It saves the PC of instruction Ii in a special register (EPC)

• It disables interrupts and transfers control to a designated
interrupt handler running in supervisor mode

41

Trap:

altering the normal flow of control

42

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed by another (system)
program. The event is usually unexpected or rare from program’s point of view.

Trap Handler

• Saves EPC before enabling interrupts to allow
nested interrupts 

• need an instruction to move EPC into GPRs

• need a way to mask further interrupts at least until EPC can be saved

• Needs to read a status register that indicates the
cause of the trap

• Uses a special indirect jump instruction ERET
(return-from-environment) which

• enables interrupts

• restores the processor to the user mode

• restores hardware status and control state

43

Synchronous Trap

• A synchronous trap is caused by an exception on a particular
instruction

• In general, the instruction cannot be completed and needs
to be restarted after the exception has been handled

• requires undoing the effect of one or more partially executed
instructions

• In the case of a system call trap, the instruction is considered
to have been completed

• a special jump instruction involving a change to a privileged mode
• Check https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-
2020/resources/trap.pdf for system calls, interrupt, etc.

44

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-2020/resources/trap.pdf
https://toast-lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-2020/resources/trap.pdf
https://toast-lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-2020/resources/trap.pdf
https://toast-lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-2020/resources/trap.pdf
https://toast-lab.sist.shanghaitech.edu.cn/courses/CS211@ShanghaiTech/Fall-2020/resources/trap.pdf

Exception Handling 5-Stage Pipeline

45

• How to handle multiple simultaneous exceptions in different
pipeline stages?

• How and where to handle external asynchronous
interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Asynchronous Interrupts

Exception Handling 5-Stage Pipeline

46

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

Exception Handling 5-Stage Pipeline

• Hold exception flags in pipeline until commit point
(M stage)

• Exceptions in earlier pipe stages override later
exceptions for a given instruction

• Inject external interrupts at commit point (override
others)

• If trap at commit: update Cause and EPC registers,
kill all stages, inject handler PC into fetch stage

47

Speculating on Exceptions

• Prediction mechanism
• Exceptions are rare, so simply predicting no exceptions is very

accurate!

• Check prediction mechanism
• Exceptions detected at end of instruction execution pipeline, special

hardware for various exception types

• Recovery mechanism
• Only write architectural state at commit point, so can throw away

partially executed instructions after exception
• Launch exception handler after flushing pipeline

• Bypassing allows use of uncommitted instruction
results by following instructions

48

Conclusion

• Pipeline design

• Hazards

• Exception handling

CS211@ShanghaiTech 49

50

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Nima Honarmand (SUNY)

• Prof. Krste Asanovic (UC Berkeley)

• Prof. Onur Mutlu (ETHZ)

• Prof. Shuai Wang (NJU)

• Prof. Xuehai Zhou (USTC)

• Prof. Hakim Weatherspoon (Cornell)

• Prof. Junfeng Yang (Columbia)

• Prof. Qiang Zeng (University of South Carolina)

CS211@ShanghaiTech

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L04 Pipeline I
	Slide 2

	Pipeline
	Slide 3: Previously in CS211
	Slide 4: Previously in CS211
	Slide 9: “Iron Law” of Processor Performance
	Slide 10: CPI for Microcoded Machine
	Slide 11: IC Technology Changes Tradeoffs
	Slide 12: Reconsidering Microcode Machine (Nanocoded 68000 example)
	Slide 13: From CISC to RISC
	Slide 14: Berkeley RISC Chips
	Slide 15: “Iron Law” of Processor Performance
	Slide 16: Classic 5-Stage RISC Pipeline
	Slide 17: CPI Examples
	Slide 18: Pipeline Design
	Slide 19: Instructions interact with each other in pipeline
	Slide 20: Pipeline CPI Examples
	Slide 21: Resolving Structural Hazards
	Slide 22: Types of Data Hazards
	Slide 23: Three Strategies for Data Hazards
	Slide 24: Interlocking Versus Bypassing
	Slide 25: Example Bypass Path
	Slide 26: Fully Bypassed Data Path
	Slide 27: Value Speculation for RAW Data Hazards
	Slide 28: Control Hazards
	Slide 29: Control flow information in pipeline
	Slide 30: RISC-V Unconditional PC-Relative Jumps
	Slide 31: Pipelining for Unconditional PC-Relative Jumps
	Slide 32: Branch Delay Slots
	Slide 33: Post-1990 RISC ISAs don’t have delay slots
	Slide 34: RISC-V Conditional Branches
	Slide 35: Pipelining for Conditional Branches
	Slide 36: Why instruction may not be dispatched every cycle in classic 5-stage pipeline (CPI>1)
	Slide 38: Traps and Interrupts
	Slide 39: History of Exception Handling
	Slide 40: DYSEAC, first mobile computer!
	Slide 41: Asynchronous Interrupts
	Slide 42: Trap: altering the normal flow of control
	Slide 43: Trap Handler
	Slide 44: Synchronous Trap
	Slide 45: Exception Handling 5-Stage Pipeline
	Slide 46: Exception Handling 5-Stage Pipeline
	Slide 47: Exception Handling 5-Stage Pipeline
	Slide 48: Speculating on Exceptions
	Slide 49: Conclusion

	Acknowledgement
	Slide 50: Acknowledgements

