
CS211
Advanced Computer Architecture

L05 Pipeline II

Chundong Wang

October 10th, 2025

CS211@ShanghaiTech 1

Previously in CS211

• Iron law of performance:
• time/program = insts/program * cycles/inst * time/cycle

• Classic 5-stage RISC pipeline

• Structural, data, and control hazards

• Structural hazards handled with interlock or more hardware

• Data hazards include RAW, WAR, WAW
• Handle data hazards with interlock, bypass, or speculation

• Control hazards (branches, interrupts) most difficult as change which
is next instruction
• Branch prediction commonly used

• Precise traps: stop cleanly on one instruction, all previous
instructions completed, no following instructions have changed
architectural state

CS211@ShanghaiTech 4

Recap: Exception Handling 5-Stage Pipeline

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

CS211@ShanghaiTech 5

Recap: Exception Handling 5-Stage Pipeline

•Hold exception flags in pipeline until commit point (M
stage)

• Exceptions in earlier pipe stages override later
exceptions for a given instruction

• Exceptions in earlier instructions override exceptions in
later instructions

• Inject external interrupts at commit point (override
others)

• If trap at commit: update Cause and EPC registers, kill
all stages, inject handler PC into fetch stage

CS211@ShanghaiTech 6

Recap: Speculating on Exceptions

•Prediction mechanism
• Exceptions are rare, so simply predicting no exceptions is very

accurate!

•Check prediction mechanism
• Exceptions detected at end of instruction execution pipeline, special

hardware for various exception types

•Recovery mechanism
• Only write architectural state at commit point, so can throw away

partially executed instructions after exception
• Launch exception handler after flushing pipeline

•Bypassing allows use of uncommitted instruction
results by following instructions

CS211@ShanghaiTech 7

Deeper Pipelines: MIPS R4000

Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined instruction
and data caches. The pipe stages are labeled and their detailed function is described in
the textbook. The vertical dashed lines represent the stage boundaries as well as the
location of pipeline latches. The instruction is actually available at the end of IS, but the
tag check is done in RF, while the registers are fetched. Thus, we show the instruction
memory as operating through RF. The TC stage is needed for data memory access,
because we cannot write the data into the register until we know whether the cache
access was a hit or not.

© 2018 Elsevier Inc. All rights reserved.

Commit Point

Direct-mapped I-cache allows use of
instruction before tag check completes

8

1st half of
fetching inst.

2nd half of
fetching inst.

Inst decode and
reg fetch

Execution 1st half of access
to data cache

2nd half of access
to data cache

Tag check Writeback

What if tag check
fails, i.e., cache miss?

Interlock

R4000 Load-Use Delay

Figure C.37 The structure of the R4000 integer pipeline leads to a x2 load delay. A x1
delay is possible because the data value is available at the end of DS and can be
bypassed. If the tag check in TC indicates a miss, the pipeline is backed up a cycle, when
the correct data are available.

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped D-cache allows use
of data before tag check completes

9

R4000 Branches

Figure C.39 The basic branch delay is three cycles, because the condition
evaluation is performed during EX.

© 2018 Elsevier Inc. All rights reserved.
10

https://groups.csail.mit.edu/cag/raw/documents/R4400_Uman_book_Ed2.pdf (Manual)

The CPU pipeline has a branch delay of three cycles
and a load delay of two cycles. (Chapter 3.3)

https://groups.csail.mit.edu/cag/raw/documents/R4400_Uman_book_Ed2.pdf

Simple vector-vector add code example

for(i=0; i<N; i++)

A[i] = B[i]+C[i];

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fadd.d f2, f0, f1

fsd f2, 0(x1) // x1 points to A

addi x1, x1, 8 // Bump pointer

addi x2, x2, 8 // Bump pointer

addi x3, x3, 8 // Bump pointer

bne x1, x4, loop // x4 holds end

CS211@ShanghaiTech 11

Simple Pipeline Scheduling

Can reschedule code to try to reduce pipeline hazards

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

addi x3, x3, 8 // Bump pointer

addi x2, x2, 8 // Bump pointer

fadd.d f2, f0, f1

addi x1, x1, 8 // Bump pointer

fsd f2, -8(x1) // x1 points to A

bne x1, x4, loop // x4 holds end

Long latency loads and floating-point operations limit parallelism within a
single loop iteration

CS211@ShanghaiTech 12

One way to reduce hazards: Loop Unrolling

Can unroll to expose more parallelism, reduce dynamic instruction count
loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fld f10, 8(x2)

fld f11, 8(x3)

addi x3,x3,16 // Bump pointer

addi x2,x2,16 // Bump pointer

fadd.d f2, f0, f1

fadd.d f12, f10, f11

addi x1,x1,16 // Bump pointer

fsd f2, -16(x1) // x1 points to A

fsd f12, -8(x1)

bne x1, x4, loop // x4 holds end

• Unrolling limited by number of architectural registers
• Unrolling increases instruction cache footprint
• More complex code generation for compiler, has to understand pointers
• Can also software pipeline, but has similar concerns

CS211@ShanghaiTech 13

Alternative Approach: Decoupling (lookahead,

runahead) in microarchitecture

Can separate control and memory address operations from data
computations:

loop: fld f0, 0(x2) // x2 points to B
fld f1, 0(x3) // x3 points to C
fadd.d f2, f0, f1
fsd f2, 0(x1) // x1 points to A
addi x1,x1,8 // Bump pointer
addi x2,x2,8 // Bump pointer
addi x3,x3,8 // Bump pointer
bne x1, x4, loop // x4 holds end

The control and address operations do not depend on the data
computations, so can be computed early relative to the data
computations, which can be delayed until later.

CS211@ShanghaiTech 14

Decoupled Access/Execute

• Tomasulo’s algorithm
• Register renaming for WAR and

WAW

CS211@ShanghaiTech 15

• Motivation: Tomasulo’s algorithm
too complex to implement
• 1980s before HPS, Pentium Pro

• Idea: Decouple operand

access and execution via

two separate instruction

streams that communicate

via ISA-visible queues.

• Smith, “Decoupled Access/Execute

Computer Architectures,” ISCA 1982,

ACM TOCS 1984.

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Anti-dependence is not data dependence. We can use an idle register,
say r8, to replace r1.

No dependence
r3 ← r1 op r2

r8 ← r4 op r5

Suppose there are extra registers
(reservation stations) that even
ISA does not know, but can be
used for such renaming.

Decoupled Access/Execute

CS211@ShanghaiTech 16

• Motivation: Tomasulo’s algorithm
too complex to implement
• 1980s before HPS, Pentium Pro

• Idea: Decouple operand

access and execution via

two separate instruction

streams that communicate

via ISA-visible queues.

• J. Smith, “Decoupled Access/Execute

Computer Architectures,” ISCA 1982,

ACM TOCS 1984.

Decoupled Access/Execute (II)
• Compiler generates two instruction streams (A and E)

• Synchronizes the two upon control flow instructions (using branch queues)

CS211@ShanghaiTech 17

Decoupled Access/Execute (III)

• Advantages:
+ Execute stream can run ahead of the access stream and vice versa

+ If A takes a cache miss, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

• Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

CS211@ShanghaiTech 18

Astronautics ZS-1
• Single stream steered

into A and X pipelines

• Each pipeline in-order

• Smith et al., “The ZS-1
central processor,”
ASPLOS 1987.

• Smith, “Dynamic
Instruction Scheduling
and the Astronautics
ZS-1,” IEEE Computer
1989.

CS211@ShanghaiTech 19

Astronautics ZS-1 Instruction Scheduling

• Dynamic scheduling (hardware, runtime)
• A and X streams are issued/executed independently

• Loads can bypass stores in the memory unit (if no conflict)

• Branches executed early in the pipeline
• To reduce synchronization penalty of A/X streams

• Works only if the register that a branch sources is available

• Static scheduling (compiler)
• Move compare instructions as early as possible before a branch

• So that branch source register is available when branch is decoded

• Reorder code to expose parallelism in each stream

• Loop unrolling:
• Reduces branch count + exposes code reordering opportunities

CS211@ShanghaiTech 20

A Modern DAE Example: Pentium 4

21Glenn Hinton et al. “The Microarchitecture of the Pentium 4 Processor”, Intel Technology Journal Q1, 2001

Store-to-load
forwarding

Intel Pentium 4 Simplified

22

Onur Mutlu et al. “Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors”, in Proceedings of HPCA 2003.

• Original goal was to use new
transistor technology to give 100x
performance of tube-based IBM
704.

• Design based around 4 stages of
“lookahead” pipelining

• More than just pipelining, a
simple form of decoupled
execution with indexing and
branch operations performed
speculatively ahead of data
operations

• Also had a simple store buffer

IBM 7030 “Stretch” (1954-1961)

• Very complex design for the time, difficult to explain to users
performance of pipelined machine

• When finally delivered in 1961, was benchmarked at only 30x 704 and
embarrassed IBM, causing price to drop from $13.5M to $7.8M, and
withdrawal after initial deliveries

• But technologies lived on in later IBM computers, 360 and POWER

© IBM

CS211@ShanghaiTech 23

Supercomputers

Definitions of a supercomputer:

• Fastest machine in world at given task

• A device to turn a compute-bound problem into an I/O bound
problem

• Any machine costing $30M+

• Any machine designed by Seymour Cray

• CDC6600 (Cray, 1964) regarded as first supercomputer

CS211@ShanghaiTech 24

CDC 6600 Seymour Cray, 1964

• A fast pipelined machine with 60-bit words

• 128 Kword main memory capacity, 32 banks

• Ten functional units (parallel, unpipelined)

• Floating Point: adder, 2 multipliers, divider

• Integer: adder, 2 incrementers, ...

• Hardwired control (no microcoding)

• Scoreboard for dynamic scheduling of instructions

• Ten Peripheral Processors for Input/Output

• a fast multi-threaded 12-bit integer ALU

• Very fast clock, 10 MHz (FP add in 4 clocks)

• >400,000 transistors, 750 sq. ft., 5 tons, 150 kW, novel
freon-based technology for cooling

• Fastest machine in world for 5 years (until 7600)

• over 100 sold ($7-10M each)

CS211@ShanghaiTech 25

Scoreboarding is a technique
for allowing instructions to
execute out of order when
there are sufficient resources
and no data dependences

CDC 6600:
A Load/Store Architecture

• Separate instructions to manipulate three types of reg.
• 8x60-bit data registers (X)
• 8x18-bit address registers (A)
• 8x18-bit index registers (B)

• All arithmetic and logic instructions are register-to-register

•Only Load and Store instructions refer to memory!

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store

- very useful for vector operations

opcode i j k Ri  Rj op Rk

opcode i j disp Ri  M[Rj + disp]

6 3 3 3

6 3 3 18

CS211@ShanghaiTech 26

CDC 6600: Datapath

Address Regs Index Regs
8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory
128K words,
32 banks,
1µs cycle

result
addr

result

operand

operand
addr

CS211@ShanghaiTech 27

CDC 6600: Vector Addition

B0 ← - n
loop: JZE B0, exit

A0 ← B0 + a0 load X0
A1 ← B0 + b0 load X1
X6 ← X0 + X1
A6 ← B0 + c0 store X6
B0 ← B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

CS211@ShanghaiTech 28

CDC 6600 ISA designed to simplify high-
performance implementation

• Use of three-address, register-register ALU instructions simplifies
pipelined implementation
• Only 3-bit register-specifier fields checked for dependencies
• No implicit dependencies between inputs and outputs

• Decoupling setting of address register (Ar) from retrieving value
from data register (Xr) simplifies providing multiple outstanding
memory accesses
• Address update instruction also issues implicit memory operation
• Software can schedule load of address register before use of value
• Can interleave independent instructions in between

• CDC6600 has multiple parallel unpipelined functional units
• E.g., 2 separate multipliers

• Follow-on machine CDC7600 used pipelined functional units
• Foreshadows later RISC designs

CS211@ShanghaiTech 29

CDC 6600 ISA designed to simplify high-
performance implementation

• Use of three-address, register-register ALU instructions simplifies
pipelined implementation
• Only 3-bit register-specifier fields checked for dependencies
• No implicit dependencies between inputs and outputs

• Decoupling setting of address register (Ar) from retrieving value
from data register (Xr) simplifies providing multiple outstanding
memory accesses
• Address update instruction also issues implicit memory operation
• Software can schedule load of address register before use of value
• Can interleave independent instructions in between

• CDC6600 has multiple parallel unpipelined functional units
• E.g., 2 separate multipliers

• Follow-on machine CDC7600 used pipelined functional units
• Foreshadows later RISC designs

CS211@ShanghaiTech 30

opcode i j k Ri  Rj op Rk

6 3 3 3

[© IBM]
31

IBM Memo on CDC 6600

Thomas Watson Jr., IBM CEO, August 1963:
“Last week, CDC … announced the 6600 system. I understand that in the
laboratory developing the system there are only 34 people including the
janitor. Of these, 14 are engineers and 4 are programmers... Contrasting
this modest effort with our vast development activities, I fail to understand
why we have lost our industry leadership position by letting someone else
offer the world's most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has answered
his own question.”

CS211@ShanghaiTech 32

The interaction between pipelining and instruction set design was understood, and
the instruction set was kept simple to promote pipelining.
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf

https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf

Computer Architecture Terminology

Latency (in seconds or cycles): Time taken for a single operation from
start to finish (initiation to usable result)

Bandwidth (in operations/second or operations/cycle): Rate of which
operations can be performed

Occupancy (in seconds or cycles): Time during which the unit is
blocked on an operation (structural hazard)

CS211@ShanghaiTech 33

Issues in Complex Pipeline Control

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different
functional units
• Out-of-order write hazards due to variable latencies of different functional
units
• How to handle exceptions?

CS211@ShanghaiTech 34

CDC6600 Scoreboard

• Scoreboard keeps track of
• Instruction status

• Functional unit status

• Register result status

• Instructions dispatched in-order to functional units provided no
structural hazard or WAW
• Stall on structural hazard, no functional units available

• Only one pending write to any register

• Instructions wait for input operands (RAW hazards) before execution
• Can execute out-of-order

• Instructions wait for output register to be read by preceding
instructions (WAR)
• Result held in functional unit register free

CS211@ShanghaiTech 35

More details at http://bnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture10.pdf

If a functional unit for the instruction is free and no other
active instruction has the same destination register
(WAW), the scoreboard issues the instruction to the
functional unit and updates its internal data structure. If
a structural or WAW hazard exists, then the instruction
issue stalls, and no further instructions will issue until
these hazards are cleared.

When the source operands are available, the scoreboard tells the
functional unit to proceed to read the operands from the registers and
begin execution. The scoreboard resolves RAW hazards dynamically in this
step, and instructions may be sent into execution out of order.

Once the scoreboard is aware that the functional unit has completed execution, the scoreboard
checks for WAR hazards. If none, it writes results. If WAR, then it stalls the instruction

http://bnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture10.pdf

More Complex In-Order Pipeline

• Delay writeback so all operations
have same latency to W stage
• Write ports never oversubscribed

(one inst. in & one inst. out every
cycle)

• Stall pipeline on long latency
operations, e.g., divides, cache
misses

• Handle exceptions in-order at
commit point

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single cycle integer
operations?

CS211@ShanghaiTech 36

In-Order Superscalar Pipeline

• Fetch two instructions per cycle; issue both
simultaneously if one is integer/memory and
other is floating point

• Inexpensive way of increasing throughput,
examples include Alpha 21064 (1992) &
MIPS R5000 series (1996)

• Same idea can be extended to wider issue by
duplicating functional units (e.g. 4-issue
UltraSPARC & Alpha 21164) but regfile ports
and bypassing costs grow quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

CS211@ShanghaiTech 37

In-Order Pipeline with two ALU stages

[© Motorola 1994]

Address calculate
before memory
access

Integer ALU after
memory access

CS211@ShanghaiTech 38

MC68060 Dynamic ALU Scheduling

EA MEM ALU

EA MEM ALU

EA MEM ALU

EA MEM ALU

add x1,x1,24(x2)

lw x4, 16(x5)

x2+24 x1+M[x2+24]

Using RISC-V style assembly code for MC68060

EA MEM ALU

add x3,x1,x6

x1+x6

addi x5,x2,12

x2+12

x5+16

lw x8, 16(x3)

x3+16

Common trick used in modern in-order RISC pipeline designs, even
without reg-mem operations

N
ot

 a
 r

ea
l R

IS
C

-V
 in

st
ru

ct
io

n!

CS211@ShanghaiTech 40

Conclusion

• Advanced topics in Pipelining

• With several classic examples

CS211@ShanghaiTech 41

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Krste Asanovic (UC Berkeley)

• Prof. Onur Mutlu (ETH Zurich)

• Prof. Daniel J. Sorin (Duke)

• Prof. Andreas Moshovos (U. of Toronto)

CS211@ShanghaiTech 42

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L05 Pipeline II

	Pipeline
	Slide 4: Previously in CS211
	Slide 5: Recap: Exception Handling 5-Stage Pipeline
	Slide 6: Recap: Exception Handling 5-Stage Pipeline
	Slide 7: Recap: Speculating on Exceptions
	Slide 8: Deeper Pipelines: MIPS R4000
	Slide 9: R4000 Load-Use Delay
	Slide 10: R4000 Branches
	Slide 11: Simple vector-vector add code example
	Slide 12: Simple Pipeline Scheduling
	Slide 13: One way to reduce hazards: Loop Unrolling
	Slide 14: Alternative Approach: Decoupling (lookahead, runahead) in microarchitecture
	Slide 15: Decoupled Access/Execute
	Slide 16: Decoupled Access/Execute
	Slide 17: Decoupled Access/Execute (II)
	Slide 18: Decoupled Access/Execute (III)
	Slide 19: Astronautics ZS-1
	Slide 20: Astronautics ZS-1 Instruction Scheduling
	Slide 21: A Modern DAE Example: Pentium 4
	Slide 22: Intel Pentium 4 Simplified
	Slide 23: IBM 7030 “Stretch” (1954-1961)
	Slide 24: Supercomputers
	Slide 25: CDC 6600 Seymour Cray, 1964
	Slide 26: CDC 6600: A Load/Store Architecture
	Slide 27: CDC 6600: Datapath
	Slide 28: CDC 6600: Vector Addition
	Slide 29: CDC 6600 ISA designed to simplify high-performance implementation
	Slide 30: CDC 6600 ISA designed to simplify high-performance implementation
	Slide 31
	Slide 32: IBM Memo on CDC 6600
	Slide 33: Computer Architecture Terminology
	Slide 34: Issues in Complex Pipeline Control
	Slide 35: CDC6600 Scoreboard
	Slide 36: More Complex In-Order Pipeline
	Slide 37: In-Order Superscalar Pipeline
	Slide 38: In-Order Pipeline with two ALU stages
	Slide 40: MC68060 Dynamic ALU Scheduling
	Slide 41: Conclusion

	Acknowledgement
	Slide 42: Acknowledgements

