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Previously in CS211

• Iron law of performance:
• time/program = insts/program * cycles/inst * time/cycle

• Classic 5-stage RISC pipeline

• Structural, data, and control hazards

• Structural hazards handled with interlock or more hardware

• Data hazards include RAW, WAR, WAW
• Handle data hazards with interlock, bypass, or speculation

• Control hazards (branches, interrupts) most difficult as change which 
is next instruction
• Branch prediction commonly used

• Precise traps: stop cleanly on one instruction, all previous 
instructions completed, no following instructions have changed 
architectural state
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Recap: Exception Handling 5-Stage Pipeline
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Recap: Exception Handling 5-Stage Pipeline

•Hold exception flags in pipeline until commit point (M 
stage)

• Exceptions in earlier pipe stages override later 
exceptions for a given instruction

• Exceptions in earlier instructions override exceptions in 
later instructions

• Inject external interrupts at commit point (override 
others)

• If trap at commit: update Cause and EPC registers, kill 
all stages, inject handler PC into fetch stage
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Recap: Speculating on Exceptions

•Prediction mechanism
• Exceptions are rare, so simply predicting no exceptions is very 

accurate!

•Check prediction mechanism
• Exceptions detected at end of instruction execution pipeline, special 

hardware for various exception types

•Recovery mechanism
• Only write architectural state at commit point, so can throw away 

partially executed instructions after exception
• Launch exception handler after flushing pipeline

•Bypassing allows use of uncommitted instruction 
results by following instructions
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Deeper Pipelines: MIPS R4000

Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined instruction 
and data caches. The pipe stages are labeled and their detailed function is described in 
the textbook. The vertical dashed lines represent the stage boundaries as well as the 
location of pipeline latches. The instruction is actually available at the end of IS, but the 
tag check is done in RF, while the registers are fetched. Thus, we show the instruction 
memory as operating through RF. The TC stage is needed for data memory access, 
because we cannot write the data into the register until we know whether the cache 
access was a hit or not.

© 2018 Elsevier Inc. All rights reserved.

Commit Point

Direct-mapped I-cache allows use of 
instruction before tag check completes
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R4000 Load-Use Delay

Figure C.37 The structure of the R4000 integer pipeline leads to a x2 load delay. A x1 
delay is possible because the data value is available at the end of DS and can be 
bypassed. If the tag check in TC indicates a miss, the pipeline is backed up a cycle, when 
the correct data are available.

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped D-cache allows use 
of data before tag check completes
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R4000 Branches

Figure C.39 The basic branch delay is three cycles, because the condition 
evaluation is performed during EX.

© 2018 Elsevier Inc. All rights reserved.
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https://groups.csail.mit.edu/cag/raw/documents/R4400_Uman_book_Ed2.pdf (Manual)

The CPU pipeline has a branch delay of three cycles 
and a load delay of two cycles. (Chapter 3.3)

https://groups.csail.mit.edu/cag/raw/documents/R4400_Uman_book_Ed2.pdf


Simple vector-vector add code example

# for(i=0; i<N; i++)

# A[i] = B[i]+C[i];

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fadd.d f2, f0, f1

fsd f2, 0(x1) // x1 points to A

addi x1, x1, 8 // Bump pointer

addi x2, x2, 8 // Bump pointer

addi x3, x3, 8 // Bump pointer

bne x1, x4, loop // x4 holds end
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Simple Pipeline Scheduling

Can reschedule code to try to reduce pipeline hazards

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

addi x3, x3, 8 // Bump pointer

addi x2, x2, 8 // Bump pointer

fadd.d f2, f0, f1

addi x1, x1, 8 // Bump pointer

fsd f2, -8(x1) // x1 points to A

bne x1, x4, loop // x4 holds end

Long latency loads and floating-point operations limit parallelism within a 
single loop iteration
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One way to reduce hazards: Loop Unrolling

Can unroll to expose more parallelism, reduce dynamic instruction count
loop:  fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fld f10, 8(x2)

fld f11, 8(x3)

addi x3,x3,16 // Bump pointer

addi x2,x2,16 // Bump pointer

fadd.d f2, f0, f1

fadd.d f12, f10, f11

addi x1,x1,16 // Bump pointer

fsd f2, -16(x1) // x1 points to A

fsd f12, -8(x1)

bne x1, x4, loop // x4 holds end

• Unrolling limited by number of architectural registers
• Unrolling increases instruction cache footprint
• More complex code generation for compiler, has to understand pointers
• Can also software pipeline, but has similar concerns
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Alternative Approach: Decoupling (lookahead, 

runahead) in microarchitecture

Can separate control and memory address operations from data 
computations:

loop: fld f0, 0(x2) // x2 points to B
fld f1, 0(x3) // x3 points to C
fadd.d f2, f0, f1
fsd f2, 0(x1) // x1 points to A
addi x1,x1,8 // Bump pointer
addi x2,x2,8 // Bump pointer
addi x3,x3,8 // Bump pointer
bne x1, x4, loop // x4 holds end

The control and address operations do not depend on the data 
computations, so can be computed early relative to the data 
computations, which can be delayed until later.
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Decoupled Access/Execute

• Tomasulo’s algorithm
• Register renaming for WAR and 

WAW
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• Motivation: Tomasulo’s algorithm 
too complex to implement 
• 1980s before HPS, Pentium Pro

• Idea: Decouple operand 

access and execution via 

two separate instruction 

streams that communicate 

via ISA-visible queues. 

• Smith, “Decoupled Access/Execute 

Computer Architectures,” ISCA 1982, 

ACM TOCS 1984.

Anti-dependence
r3 ←  r1 op r2 Write-after-Read 
r1 ←  r4 op r5 (WAR) hazard

Anti-dependence is not data dependence. We can use an idle register, 
say r8, to replace r1. 

No dependence
r3 ←  r1 op r2

r8 ←  r4 op r5

Suppose there are extra registers 
(reservation stations) that even 
ISA does not know, but can be 
used for such renaming.



Decoupled Access/Execute
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• J. Smith, “Decoupled Access/Execute 

Computer Architectures,” ISCA 1982, 
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Decoupled Access/Execute (II)
• Compiler generates two instruction streams (A and E)

• Synchronizes the two upon control flow instructions (using branch queues)
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Decoupled Access/Execute (III)

• Advantages:
+ Execute stream can run ahead of the access stream and vice versa

+ If A takes a cache miss, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

• Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one, 
though)
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Astronautics ZS-1
• Single stream steered 

into A and X pipelines

• Each pipeline in-order

• Smith et al., “The ZS-1 
central processor,”
ASPLOS 1987.

• Smith, “Dynamic 
Instruction Scheduling 
and the Astronautics 
ZS-1,” IEEE Computer 
1989.
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Astronautics ZS-1 Instruction Scheduling

• Dynamic scheduling (hardware, runtime)
• A and X streams are issued/executed independently

• Loads can bypass stores in the memory unit (if no conflict)

• Branches executed early in the pipeline
• To reduce synchronization penalty of A/X streams

• Works only if the register that a branch sources is available

• Static scheduling (compiler)
• Move compare instructions as early as possible before a branch

• So that branch source register is available when branch is decoded

• Reorder code to expose parallelism in each stream

• Loop unrolling:
• Reduces branch count + exposes code reordering opportunities

CS211@ShanghaiTech 20



A Modern DAE Example: Pentium 4

21Glenn Hinton et al. “The Microarchitecture of the Pentium 4 Processor”, Intel Technology Journal Q1, 2001 

Store-to-load 
forwarding



Intel Pentium 4 Simplified

22

Onur Mutlu et al. “Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors”, in Proceedings of HPCA 2003.



• Original goal was to use new 
transistor technology to give 100x
performance of tube-based IBM 
704.

• Design based around 4 stages of 
“lookahead” pipelining

• More than just pipelining, a 
simple form of decoupled 
execution with indexing and 
branch operations performed 
speculatively ahead of data 
operations

• Also had a simple store buffer

IBM 7030 “Stretch” (1954-1961)

• Very complex design for the time, difficult to explain to users 
performance of pipelined machine

• When finally delivered in 1961, was benchmarked at only 30x 704 and 
embarrassed IBM, causing price to drop from $13.5M to $7.8M, and 
withdrawal after initial deliveries

• But technologies lived on in later IBM computers, 360 and POWER

© IBM
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Supercomputers

Definitions of a supercomputer:

• Fastest machine in world at given task

• A device to turn a compute-bound problem into an I/O bound 
problem 

• Any machine costing $30M+

• Any machine designed by Seymour Cray

• CDC6600 (Cray, 1964) regarded as first supercomputer
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CDC 6600 Seymour Cray, 1964

• A fast pipelined machine with 60-bit words

• 128 Kword main memory capacity, 32 banks

• Ten functional units (parallel, unpipelined)

• Floating Point: adder, 2 multipliers, divider

• Integer: adder, 2 incrementers, ...

• Hardwired control (no microcoding)

• Scoreboard for dynamic scheduling of instructions 

• Ten Peripheral Processors for Input/Output

• a fast multi-threaded 12-bit integer ALU

• Very fast clock, 10 MHz (FP add in 4 clocks)

• >400,000 transistors,  750 sq. ft., 5 tons, 150 kW, novel 
freon-based technology for cooling

• Fastest machine in world for 5 years (until 7600)

• over 100 sold ($7-10M each)
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Scoreboarding is a technique 
for allowing instructions to 
execute out of order when
there are sufficient resources 
and no data dependences



CDC 6600: 
A Load/Store Architecture

• Separate instructions to manipulate three types of reg.
• 8x60-bit data registers (X)
• 8x18-bit address registers (A)
• 8x18-bit index registers (B)

• All arithmetic and logic instructions are register-to-register 

•Only Load and Store instructions refer to memory!

Touching address registers 1 to 5 initiates a load  
6 to 7 initiates a store 

- very useful for vector operations

opcode   i j      k  Ri  Rj op Rk

opcode   i j                disp Ri  M[Rj + disp]

6 3 3 3

6 3 3 18
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CDC 6600: Datapath

Address Regs         Index Regs
8 x 18-bit                8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory
128K words,
32 banks,
1µs cycle

result
addr

result

operand

operand
addr
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CDC 6600: Vector Addition

B0  ←  - n
loop: JZE   B0, exit

A0 ←  B0 + a0 load X0
A1 ←  B0 + b0 load X1
X6 ←  X0 + X1
A6 ←  B0 + c0 store X6
B0 ←  B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register
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CDC 6600 ISA designed to simplify high-
performance implementation

• Use of three-address, register-register ALU instructions simplifies 
pipelined implementation
• Only 3-bit register-specifier fields checked for dependencies
• No implicit dependencies between inputs and outputs

• Decoupling setting of address register (Ar) from retrieving value 
from data register (Xr) simplifies providing multiple outstanding 
memory accesses
• Address update instruction also issues implicit memory operation
• Software can schedule load of address register before use of value
• Can interleave independent instructions in between

• CDC6600 has multiple parallel unpipelined functional units
• E.g., 2 separate multipliers

• Follow-on machine CDC7600 used pipelined functional units
• Foreshadows later RISC designs
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CDC 6600 ISA designed to simplify high-
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• E.g., 2 separate multipliers

• Follow-on machine CDC7600 used pipelined functional units
• Foreshadows later RISC designs
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6 3 3 3



[© IBM]
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IBM Memo on CDC 6600

Thomas Watson Jr., IBM CEO, August 1963:
“Last week, CDC … announced the 6600 system. I understand that in the 
laboratory developing the system there are only 34 people including the 
janitor. Of these, 14 are engineers and 4 are programmers... Contrasting 
this modest effort with our vast development activities, I fail to understand 
why we have lost our industry leadership position by letting someone else 
offer the world's most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has answered 
his own question.”
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The interaction between pipelining and instruction set design was understood, and 
the instruction set was kept simple to promote pipelining.
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf

https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf
https://www.elsevier.com/__data/assets/pdf_file/0010/297496/Section-4-16_Hist-Persp.pdf


Computer Architecture Terminology

Latency (in seconds or cycles):  Time taken for a single operation from 
start to finish (initiation to usable result)

Bandwidth (in operations/second or operations/cycle): Rate of which 
operations can be performed 

Occupancy (in seconds or cycles): Time during which the unit is 
blocked on an operation (structural hazard)
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Issues in Complex Pipeline Control

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not 
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different 
functional units
• Out-of-order write hazards due to variable latencies of different functional 
units
• How to handle exceptions?
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CDC6600 Scoreboard

• Scoreboard keeps track of
• Instruction status

• Functional unit status

• Register result status

• Instructions dispatched in-order to functional units provided no 
structural hazard or WAW
• Stall on structural hazard, no functional units available

• Only one pending write to any register

• Instructions wait for input operands (RAW hazards) before execution
• Can execute out-of-order

• Instructions wait for output register to be read by preceding 
instructions (WAR)
• Result held in functional unit register free
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More details at http://bnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture10.pdf

If a functional unit for the instruction is free and no other 
active instruction has the same destination register 
(WAW), the scoreboard issues the instruction to the 
functional unit and updates its internal data structure. If 
a structural or WAW hazard exists, then the instruction 
issue stalls, and no further instructions will issue until 
these hazards are cleared.

When the source operands are available, the scoreboard tells the 
functional unit to proceed to read the operands from the registers and 
begin execution. The scoreboard resolves RAW hazards dynamically in this 
step, and instructions may be sent into execution out of order.

Once the scoreboard is aware that the functional unit has completed execution, the scoreboard 
checks for WAR hazards. If none, it writes results. If WAR, then it stalls the instruction

http://bnrg.eecs.berkeley.edu/~randy/Courses/CS252.S96/Lecture10.pdf


More Complex In-Order Pipeline

• Delay writeback so all operations 
have same latency to W stage
• Write ports never oversubscribed 

(one inst. in & one inst. out every 
cycle)

• Stall pipeline on long latency 
operations, e.g., divides, cache 
misses

• Handle exceptions in-order at 
commit point

Commit 
Point

PC
Inst. 
Mem D Decode X1 X2

Data 
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined 
divider

How to prevent increased writeback latency 
from slowing down single cycle integer 
operations?
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In-Order Superscalar Pipeline

• Fetch two instructions per cycle; issue both 
simultaneously if one is integer/memory and 
other is floating point

• Inexpensive way of increasing throughput, 
examples include Alpha 21064 (1992) & 
MIPS R5000 series (1996)

• Same idea can be extended to wider issue by 
duplicating functional units (e.g. 4-issue 
UltraSPARC & Alpha 21164) but regfile ports 
and bypassing costs grow quickly

Commit 
Point

2
PC

Inst. 
Mem D

Dual
Decode X1 X2

Data 
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined 
divider
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In-Order Pipeline with two ALU stages

[ © Motorola 1994 ]

Address calculate 
before memory 
access

Integer ALU after 
memory access
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MC68060 Dynamic ALU Scheduling

EA MEM ALU

EA MEM ALU

EA MEM ALU

EA MEM ALU

add x1,x1,24(x2)

lw x4, 16(x5)

x2+24 x1+M[x2+24]

Using RISC-V style assembly code for MC68060

EA MEM ALU

add x3,x1,x6

x1+x6

addi x5,x2,12

x2+12

x5+16

lw x8, 16(x3)

x3+16

Common trick used in modern in-order RISC pipeline designs, even 
without reg-mem operations
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Conclusion

• Advanced topics in Pipelining

• With several classic examples
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