
CS211
Advanced Computer Architecture

L06 Memory I

Chundong Wang

October 11th, 2025

CS211@ShanghaiTech 1



A perfect world

Instruction

Supply

Pipeline

(Instruction

execution)

Data

Supply

- Zero-cycle latency 

- Infinite capacity

- Zero cost

- Perfect control flow

- No pipeline stalls 

- Perfect data flow 

(reg/memory dependencies)

- Zero-cycle interconnect

(operand communication)

- Enough functional units

- Zero latency compute

- Zero-cycle latency

- Infinite capacity

- Infinite bandwidth 

- Zero cost

CS211@ShanghaiTech 3



Memory in a Modern System

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3

 C
A

C
H

E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY 

CONTROLLER

CS211@ShanghaiTech 4



Memory in a More Modern System

CS211@ShanghaiTech 5

AMD 3D V-Cache 
Technology

L3 as a victim 
cache to L2



Memory in a More Modern System

CS211@ShanghaiTech 6

Intel Xeon Gold 
5218, Q2 ’19

16 cores, 22MB LLC

Intel Xeon Gold 
6240, Q2 ’19

18 cores, 24.75MB LLC

Intel Xeon Gold 
5220R, Q1 ’20

24 cores, 35.75MB LLC

Intel Xeon Gold 
6348, Q2 ’21

28 cores, 42MB LLC

Intel Xeon E7-
8880 v3, Q2 ’15

18 cores, 45MB LLC

Intel Xeon Gold 
6130, Q3 ’17

16 cores, 22MB LLC



Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

CS211@ShanghaiTech 7



The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger → Takes longer to determine the location

• Faster is more expensive
• Memory technology: SRAM vs. DRAM

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster technology

CS211@ShanghaiTech 8



DRAM vs. SRAM

• DRAM
• Slower access (capacitor)

• Higher density (1 Transistor/1 Capacitor, 1T-1C cell)

• Lower cost

• Requires refresh (power, performance, circuitry)

• Manufacturing requires putting capacitor and logic together

• SRAM
• Faster access (no capacitor)

• Lower density (6-Transistor cell)

• Higher cost

• No need for refresh

• Manufacturing compatible with logic process (no capacitor)

CS211@ShanghaiTech 9



The Problem

• Bigger is slower
• SRAM, 512 Bytes, sub-nanosec

• SRAM,  KByte~MByte, ~nanosec

• DRAM, Gigabyte, ~50 nanosec

• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)
• SRAM, < 10$ per Megabyte

• DRAM, < 1$ per Megabyte

• Hard Disk < 1$ per Gigabyte

• These sample values scale with time

• Other technologies have their place as well 
• Flash memory, Intel Optane memory, STT-MRAM, ReRAM, etc.

CS211@ShanghaiTech 10



Why Memory Hierarchy?

• We want both fast and large

• But we cannot achieve both with a single level of memory

• Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) and 
ensure most of the data the processor needs is kept in the 
fast(er) level(s)

CS211@ShanghaiTech 11



The Memory Hierarchy

fast
small

big but slow

move what you use here

backup
everything
here

With good locality of 
reference, memory 
appears as fast as
and as large as  

fa
st

er
 p

er
 b

yt
e

ch
ea

p
er

 p
er

 b
yt

e

CS211@ShanghaiTech 12



Memory Hierarchy

• Fundamental tradeoff
• Fast memory: small

• Large memory: slow

• Idea: Memory hierarchy

• Latency, cost, size, 

bandwidth

CPU

Main

Memory

(DRAM)RF

Cache

Hard Disk

CS211@ShanghaiTech 13



Locality

• One’s recent past is a very good predictor of his/her near 
future.

• Temporal Locality:  If you just did something, it is very likely 
that you will do the same thing again soon
• since you are here today, there is a good chance you will be here 

again and again regularly (weekly)

• Spatial Locality:  If you did something, it is very likely you will 
do something similar/related (in space)
• every time I find you in this room, you are probably sitting close to 

the same people

CS211@ShanghaiTech 14



Memory Locality

• A “typical” program has a lot of locality in memory 
references
• typical programs are composed of “loops”

• Temporal: A program tends to reference the same memory 
location many times and all within a small window of time

• Spatial: A program tends to reference a cluster of memory 
locations at a time 
• most notable examples: 

• 1. instruction memory references 

• 2. array/data structure references

CS211@ShanghaiTech 15



Caching Basics: Exploit Temporal Locality

• Idea: Store recently accessed data in automatically managed 
fast memory (called cache)

• Anticipation: the data will be accessed again soon

• Temporal locality principle
• Recently accessed data will be again accessed in the near future

• This is what Maurice Wilkes had in mind:
• Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE Trans. On 

Electronic Computers, 1965.

• “The use is discussed of a fast core memory of, say 32000 words as a slave to a 
slower core memory of, say, one million words in such a way that in practical cases 
the effective access time is nearer that of the fast memory than that of the slow 
memory.”

CS211@ShanghaiTech 16



Caching Basics: Exploit Spatial Locality

• Idea: Store addresses adjacent to the recently accessed one 
in automatically managed fast memory
• Logically divide memory into equal size blocks

• Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
• Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal

• This is what IBM 360/85 implemented
• 16 Kbyte cache with 64 byte blocks

• Liptay, “Structural aspects of the System/360 Model 85 II: the cache,” IBM Systems 
Journal, 1968.

CS211@ShanghaiTech 17



Caching in a Pipelined Design

• The cache needs to be tightly integrated into the pipeline 
• Ideally, access in 1-cycle so that dependent operations do not stall

• High frequency pipeline → Cannot make the cache large
• But, we want a large cache AND a pipelined design

• Idea: Cache hierarchy

CPU

Main

Memory

(DRAM)
RF

Level1

Cache

Level 2

Cache

CS211@ShanghaiTech 18



A Note on Manual vs. Automatic 
Management

• Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs

• Magnetic “core” vs “drum” memory in the 50’s

• still done in some embedded processors (on-chip scratch pad SRAM in lieu of 
a cache)

• Automatic: Hardware manages data movement across levels, 
transparently to the programmer

++ programmer’s life is easier, especially for today

• simple heuristic: keep most recently used items in cache

• the average programmer doesn’t need to know about it
• You don’t need to know how big the cache is and how it works to write a “correct” 

program! (What if you want a “fast” program?)

CS211@ShanghaiTech 19



A Modern Memory Hierarchy

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache, 
.....

Main memory (DRAM), 
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand 
paging

Automatic
HW cache
management

Memory
Abstraction

CS211@ShanghaiTech 20



Hierarchical Latency Analysis

• For a given memory hierarchy level i it has a technology-intrinsic 
access time of ti, The perceived access time Ti is longer than ti

• Except for the outer-most hierarchy, when looking for a given address 
there is 
• a chance (hit-rate hi) you “hit” and access time is ti

• a chance (miss-rate mi) you “miss” and access time ti +Ti+1 

• hi + mi = 100%

• Thus

Ti = hi·ti + mi·(ti + Ti+1)

Ti = ti + mi ·Ti+1 

keep in mind, hi and mi are defined to be the hit-rate

and miss-rate, respectively, of just the references that missed at Li-1  

CS211@ShanghaiTech 21



Hierarchy Design Considerations

• Recursive latency equation

Ti = ti + mi ·Ti+1   

• The goal: achieve desired T1 within allowed cost

• Ti  ti is desirable

• Keep mi low
• increasing capacity Ci lowers mi, but beware of increasing ti

• lower mi by smarter management
• Replacement  anticipate what you don’t need
• Prefetching  anticipate what you will need)

• Keep Ti+1 low
• faster lower hierarchies, but beware of increasing cost
• introduce intermediate hierarchies as a compromise 

CS211@ShanghaiTech 22



• 90nm P4, 3.6 GHz

• L1 D-cache
• C1 = 16K

• t1 = 4 cyc int / 9 cycle fp

• L2 D-cache
• C2 =1024 KB 

• t2 = 18 cyc int / 18 cyc fp

• Main memory
• t3 = ~ 50ns or 180 cyc

• Notice
• best case latency is not 1 

• worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example

CS211@ShanghaiTech 23



Cache

• Generically, any structure that “memoizes” frequently used results to 
avoid repeating the long-latency operations required to reproduce 
the results from scratch, e.g., a web cache

• Most commonly, an automatically-managed memory hierarchy based 
on SRAM
• memoize in SRAM the most frequently accessed DRAM memory locations to 

avoid repeatedly paying for the DRAM access latency

CS211@ShanghaiTech 24



Caching Basics

◼Block (line): Unit of storage in the cache
❑Memory is logically divided into cache blocks that map to locations in the 

cache

◼When data referenced
❑HIT: If in cache, use cached data instead of accessing memory
❑MISS: If not in cache, bring block into cache

◼Maybe have to kick something else out to do it

◼Some important cache design decisions
❑Placement: where and how to place/find a block in cache?
❑Replacement: what data to remove to make room in cache?
❑Granularity of management: large, small, uniform blocks?
❑Write policy: what do we do about writes?
❑Instructions/data: Do we treat them separately?

CS211@ShanghaiTech 25



Cache Abstraction and Metrics

• Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

• Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

• Aside: Can reducing AMAT reduce performance?

Address
Tag Store

(is the address

in the cache?

+ bookkeeping)

Data Store

Hit/miss? Data

CS211@ShanghaiTech 26



Where to place a block in a cache

CS211@ShanghaiTech 27

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Direct mapped

9527

(Block address) % (# of blocks in cache)

9527 % 8 = 7

Fully associative
A block can be placed anywhere in the cache

Set associative
Cache partitioned into multiple sets
A block can be placed in anywhere in a set

Set 0

Set 1

Set 2

Set 3

9527 % 4 = 3

Four sets, two ways

A direct mapped cache can be viewed as a set associative cache with N sets and one way.
A fully associative cache can be viewed as set associative cache with one set and N ways.



Replacement

• How do we choose victim?
• Verbs: Victimize, evict, replace, cast out

• Many policies are possible
• FIFO (first-in-first-out)

• LRU (least recently used), pseudo-LRU

• LFU (least frequently used)

• NMRU (not most recently used)

• NRU

• Pseudo-random

• Optimal

• …

CS211@ShanghaiTech 28



Optimal Replacement Policy?

• Evict block with longest reuse distance
• i.e., next reference to block is farthest in future

• Requires knowledge of the future

• Can’t build it, but can model it with trace
• Process trace in reverse

• Useful, since it reveals opportunity
• (X,A,B,C,D,X): LRU 4-way set-associative cache, 2nd X will miss

CS211@ShanghaiTech 29

Rabin A. Sugumar, Santosh G. Abraham. Efficient Simulation of Caches under Optimal Replacement with Applications to Miss 
Characterization . In Proceedings of the ACM SIGMETRICS Conference on Measurement & Modeling Computer Systems, 1993.



Implementing LRU

• Idea: Evict the least recently accessed block

• Problem: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:
• What do you need to implement LRU?

• Question: 4-way set associative cache: 
• How many different orderings possible for the 4 blocks in the set? 

• How many bits needed to encode the LRU order of a block?

• What is the logic needed to determine the LRU victim?

CS211@ShanghaiTech 30



Approximations of LRU

• Most modern processors do not implement “true LRU” in 
highly-associative caches

• Why?
• True LRU is complex

• LRU is an approximation to predict locality anyway (i.e., not the best 
possible replacement policy)

• Thrashing: temporal reuse exists but LRU fails
• Reuse distance > the number of ways in a set

• Examples:
• Not MRU (not most recently used)

• When the number of ways per set is 2, LRU is equivalent to NMRU

• Hierarchical LRU: divide the 4-way set into 2-way “groups”, track the 
MRU group and the MRU way in each group

• NRU (Not Recently Used)
CS211@ShanghaiTech 31



Hierarchical LRU (not MRU)

• Divide a set into multiple groups

• Keep track of the MRU group

• Keep track of the MRU block in each group

• On replacement, select victim as:
• A not-MRU block in one of the not-MRU groups

CS211@ShanghaiTech 32

0 0

4-way cache set, 2 bits

Is the MRU group? Is the MRU block in the group? 



Not Recently Used (NRU)

• Keep NRU state in 1 bit/block
• Bit is set to 0 when installed (assume reuse)

• Bit is set to 0 when referenced (reuse observed)

• Evictions favor NRU=1 blocks

• If all blocks are NRU=0
• Eviction forces all blocks in set to NRU=1
• Picks one as victim (can be pseudo-random, or rotating, or fixed left-to-right)

• Simple, similar to virtual memory clock algorithm

• Provides some scan and thrash resistance
• Relies on “randomizing” evictions rather than strict LRU order

• Used by Intel Itanium, SPARC T2

• Variants of NRU
• NRR: Not Recently Reused: Exploiting reuse locality!
• RRIP: Re-reference Interval Prediction

• [Jaleelet al. ISCA 2010]

CS211@ShanghaiTech 33



Replacement Policy

• LRU vs. Random
• Set thrashing: When the “program working set” in a set is larger than set 

associativity

• 4-way: Cyclic references to A, B, C, D, E 
• 0% hit rate with LRU policy

• Random replacement policy is better when thrashing occurs

• In practice:
• Depends on workload

• Average hit rate of LRU and Random are similar

• Hybrid of LRU and Random
• How to choose between the two? Set sampling

• See Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

CS211@ShanghaiTech 34



Aside: Cache versus Page Replacement

• Physical memory (DRAM) is a cache for disk
• Usually managed by system software via the virtual memory subsystem

• Page replacement is similar to cache replacement

• Page table is the “tag store” for physical memory data store

• What is the difference?
• Hardware versus software

• Number of blocks in a cache versus physical memory

• “Tolerable” amount of time to find a replacement candidate

CS211@ShanghaiTech 35



What’s In a Tag Store Entry?

• Valid bit

• Tag

• Replacement policy bits

• Dirty bit?
• Write back vs. write through caches

CS211@ShanghaiTech 36



Handling Writes (Stores)

◼ When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens

• Write back: When the block is evicted

• Write-back
+ Can consolidate multiple writes to the same block before eviction

• Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

• Write-through
+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence because no need to 
check lower-level caches

-- More bandwidth intensive; no coalescing of writes

CS211@ShanghaiTech 37



Handling Writes (Stores)

• Do we allocate a cache block on a write miss?
• Allocate on write miss: Yes

• No-allocate on write miss: No

• Allocate on write miss
+ Can consolidate writes instead of writing each of them individually to 

next level

+ Simpler because write misses can be treated the same way as read 
misses

-- Requires (?) transfer of the whole cache block

• No-allocate
+ Conserves cache space if locality of writes is low (potentially better 

cache hit rate)

CS211@ShanghaiTech 38



Instruction vs. Data Caches

• Unified:
+ Dynamic sharing of cache space: no overprovisioning that might 

happen with static partitioning (i.e., split I and D caches)

-- Instructions and data can thrash each other (i.e., no guaranteed 
space for either)

-- I and D are accessed in different places in the pipeline. Where do we 
place the unified cache for fast access?

• First level caches are almost always split 
• Mainly for the last reason above

• Second and higher levels are almost always unified

CS211@ShanghaiTech 40



Multi-level Caching in a Pipelined Design

• First-level caches (instruction and data)
• Decisions very much affected by cycle time

• Small, lower associativity

• Tag store and data store accessed in parallel

• Second-level caches
• Decisions need to balance hit rate and access latency

• Usually large and highly associative; latency not as important

• Tag store and data store accessed serially

• Serial vs. Parallel access of levels
• Serial: Second level cache accessed only if first-level misses

• Second level does not see the same accesses as the first
• First level acts as a filter

CS211@ShanghaiTech 41



Conclusion

• Memory hierarchy

• Cache
• Basics

• Replacement 

CS211@ShanghaiTech 42



Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Onur Mutlu (ETHZ)

• Prof. Mikko Lipasti (UW–Madison)

• Prof. Krste Asanović (UC Berkeley)

• Dr. Jorge Albericio (Cerebras Systems)

CS211@ShanghaiTech 43


	Default Section
	Slide 1: CS211 Advanced Computer Architecture   L06 Memory I
	Slide 3: A perfect world

	Memory
	Slide 4: Memory in a Modern System
	Slide 5: Memory in a More Modern System
	Slide 6: Memory in a More Modern System
	Slide 7: Ideal Memory
	Slide 8: The Problem
	Slide 9: DRAM vs. SRAM
	Slide 10: The Problem
	Slide 11: Why Memory Hierarchy?
	Slide 12: The Memory Hierarchy
	Slide 13: Memory Hierarchy
	Slide 14: Locality
	Slide 15: Memory Locality
	Slide 16: Caching Basics: Exploit Temporal Locality
	Slide 17: Caching Basics: Exploit Spatial Locality
	Slide 18: Caching in a Pipelined Design
	Slide 19: A Note on Manual vs. Automatic Management
	Slide 20: A Modern Memory Hierarchy
	Slide 21: Hierarchical Latency Analysis
	Slide 22: Hierarchy Design Considerations
	Slide 23
	Slide 24: Cache
	Slide 25: Caching Basics
	Slide 26: Cache Abstraction and Metrics
	Slide 27: Where to place a block in a cache
	Slide 28: Replacement
	Slide 29: Optimal Replacement Policy?
	Slide 30: Implementing LRU
	Slide 31: Approximations of LRU
	Slide 32: Hierarchical LRU (not MRU)
	Slide 33: Not Recently Used (NRU)
	Slide 34: Replacement Policy
	Slide 35: Aside: Cache versus Page Replacement
	Slide 36: What’s In a Tag Store Entry?
	Slide 37: Handling Writes (Stores)
	Slide 38: Handling Writes (Stores)
	Slide 40: Instruction vs. Data Caches
	Slide 41: Multi-level Caching in a Pipelined Design

	Main Memory
	Slide 42:  Conclusion

	Acknowledgement
	Slide 43: Acknowledgements


