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Case Study: ARM Cortex-A53 Cache Systems

* L1 I-Cache is 8KB to 64 KB, has 64B cache lines,
is 2-way set associative, and has a 128-bit read ( ]
interface to L2 Processor

* L1 D-Cache is 8KB to 64 KB, has 64B cache !
lines, is 4-way set associative, has a 128-bit
read interface to L2, and a 256-bit write
interface to L2

e L2 Cache is 128KB to 2 MB, has 64B cache
lines, and is 16-way set associative

e Both the L1 D cache and L2 use a write-back
policy defaulting to allocate on write.

\ 4

L1 I-cache L1 D-cache

Main memory

* LRU approximation in all the caches

CS211@ShanghaiTech 3
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Case Study: Intel Core i7 6700

* L1 I-Cache is 32KB, has 64B cache lines, is 8-way set associative
* L1 D-Cache 32KB, has 64B cache lines, is 8-way set associative
* L1 I-Cache and D-Cache have Pseudo-LRU replacement

e L2 Cache is 256KB, has 64B cache lines, is 4-way set associative
* L2 Cache has Pseudo-LRU replacement

* L3 Cache is 8MB, 2MB per core, has 64B cache lines, is 16-way set
associative

* L3 Cache has Pseudo-LRU replacement but with an ordered
selection algorithm

* The block replaced is always the lowest numbered way whose access
bit is off
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Cache Inclusion Policy
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Inclusive

.

m
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Initial state Read A miss;load A Read B miss; load B Evict A from L1 due Evict B from L2 due
into L1 and L2 into L1 and L2 to cache replacement to cache replacement
Back
invalidation

CS211@ShanghaiTech 6
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Exclusive

.
- U
Initial state Read A miss; load A Read B miss; load B Evict A from L1 due

into L1 into L1 to cache replacement
and placein L2

CS211@ShanghaiTech 7
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Non-inclusive

Initial state Read A miss;load A Read B miss; load B Evict A from L1 due Evict B from L2 due
into L1 and L2 into L1 and L2 to cache replacement to cache replacement

CS211@ShanghaiTech 8
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Cache Inclusion Policy

Multi-level caches are designed depending upon if data in one cache level are
also in other cache levels

Inclusive Policy
* Same datain all levels

Exclusive Policy
* Datain only one cache

Exclusive policy increases effective amount of caching, but:
* |f datain L2 but not L1, then block is moved from L2 to L1
* If this causes an eviction from L1, then victim cache block moved to L2

Non-inclusive policy is a blend of inclusive and exclusive policies
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Inclusive, or not?

* Inclusive cache eases coherence
* Updating a cache block in L1 entails an update in inclusive LLC.
* A non-inclusive LLC, say L2 cache, which needs to evict a block, must ask L1
cache if it has the block, because such information is not presentin LLC.
* Non-inclusive cache yields higher performance though, why?
* No back invalidation
* More data can be cached
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‘Sneaky’ LRU for Inclusive Cache

CPU
Core

- :: > Ais frequently hitin L1
K A A is frequently used
q Y cache. It is MRU in L1 cache.

Inclusive A is evicted for
LLC replacement, in <

both L1 and L2

In LLC, A is LRU In LLC, A'is not
frequently hit

As a result, MRU block that should be retained might be evicted, which

causes performance penalty.

What if LLC is non-inclusive?

Link: https://doi.org/10.1109/MICR0O.2010.52

CS211@ShanghaiTech 11
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Main Memory
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Modern Virtual Memory Systems

lllusion of a large, private, uniform store

Protection & Privacy
several users, each with their private address
space and one or more shared address spaces

Demand Paging
Provides the ability to run programs larger
than the primary memory

Hides differences in machine configurations

The price is address translation on
each memory reference

OS

user,

Secondary

~Storage ™
N

Primary
Memon:/

-/

:><

N—

mapping
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Recap: Hierarchical Page Table
Data Pages

Virtual Address from CPU

31 2221 12 11 0
pl p2 offset

v A )]
10-bit 1X—bit
L1 index L2 index

\

Z
Iz
72

— -
Root of Current 5 ‘ £
Page Table V% P } §
1 ! —
— g
(Processor | Level 1 I _E
Register, satp in Page Table 7
RISC-V) Supervisor Address Translation
and Protection Register Level 2
page in primary memory Page Tables

page in secondary memory

7/ PTE of a nonexistent page

RISC-V (RV32) Sv32 Virtual Memory Scheme
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Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

Page Fault? Physical address used Page Fault?
Protection violation? to access cache Protection violation?
Virtual el o Virtual
Address Pd\és'ca o Address Physical
\ Aadress X Address
Inst. j Inst. Decode Data _1_ Data
TLB Cache o+ TLB Cache
Miss? | MISS?" 1/
Table Walker
Physical : Physical

Memory Controller <
Address Address

Physical Address

\

Main Memory (DRAM)

* Assumes page tables held in untranslated physical memory

15



The Main Memory System

Processor Main Memory Storage (SSD/HDD)

and caches \ /

* Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

— @ Spcﬁ(\‘mz

Bl
Bl
EE

In-memory database Social networks  In-memory analytics Data centers

CS211@ShanghaiTech 16



The Main Memory System

Processor Main Memory Storage (SSD/HDD)

and caches \ /

* Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

* Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

CS211@ShanghaiTech 17
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Main Memory

* Major Trends Affecting Main Memory

* The Memory Scaling Problem and Solution Directions
 New Memory Architectures
* Enabling Emerging Technologies

* How Can We Do Better?

CS211@ShanghaiTech 18
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Major Trends Affecting Main Memory (1)

* Need for main memory capacity, bandwidth, QoS increasing
* Multi-core: increasing number of cores
 Data-intensive applications: increasing demand/hunger for data
* Consolidation: cloud computing, GPUs, mobile, heterogeneity

* Main memory energy/power is a key system design concern

* DRAM technology scaling is ending

CS211@ShanghaiTech 19
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Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

1000

—— #Core

= DRAM
100 —

Relative capacity

&

3] ]
o O
o O
E &

] ] o) [ ] e ] o]
o o o O o o o o
o — [N (o8} B wn o~ ~J

£00¢
900¢
£00¢
800¢
600¢

* Memory capacity per core expected to drop by 30% every two years
* Trends worse for memory bandwidth per core!

CS211@ShanghaiTech 20
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Major Trends Affecting Main Memory (ll1)

* Need for main memory capacity, bandwidth, QoS increasing

* Main memory energy/power is a key system design concern

* ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE
Computer 2003]

« DRAM consumes power even when not used (periodic refresh)

* DRAM technology scaling is ending

CS211@ShanghaiTech 21
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Major Trends Affecting Main Memory (V)

* Need for main memory capacity, bandwidth, QoS increasing
* Main memory energy/power is a key system design concern

* DRAM technology scaling is ending
* ITRS projects DRAM will not scale easily below X nm

* Scaling has provided many benefits:
* higher capacity (density), lower cost, lower energy

CS211@ShanghaiTech 22
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Main Memory

* Major Trends Affecting Main Memory

* The Memory Scaling Problem and Solution Directions

* New Memory Architectures
* Enabling Emerging Technologies

e How Can We Do Better?

CS211@ShanghaiTech 23
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The DRAM Scaling Problem

* DRAM stores charge in a capacitor (charge-based memory)
» Capacitor must be large enough for reliable sensing

* Access transistor should be large enough for low leakage and high
retention time

* Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

BL

WL
L
1

.

T ‘

N SENSE

Y4

* DRAM capacity, cost, and energy/power hard to scale

CAP

CS211@ShanghaiTech 24



R LE TN

¢/ ShanghaiTech University

Solution 1: Fix DRAM

* Overcome DRAM shortcomings with
* System-DRAM co-design
* Novel DRAM architectures, interface, functions
* Better waste management (efficient utilization)

* Key issues to tackle
* Enable reliability at low cost
* Reduce energy
* Improve latency and bandwidth
* Reduce waste (capacity, bandwidth, latency)
* Enable computation close to data

CS211@ShanghaiTech 25
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Solution 1: Fix DRAM

* Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

* Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

* Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

* Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

* Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

* Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

* Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

* Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
* Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

*  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

* Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

* Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

* Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
*  Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

* Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.

* Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

* Ahn+ “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

* Avoid DRAM:
e Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
* Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
e Seshadri+, “The Dirty-Block Index,” ISCA 2014.
* Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

* Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA
2015.

CS211@ShanghaiTech 26
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more scalable than DRAM
(and they are non-volatile)

Example 1: Phase Change Memory
* Expected to scale to 9nm (2022 [ITRS])
* Expected to be denser than DRAM: can store multiple bits/cell

Example 2: Intel Optane DC Memory
+ Commercially-available, in terabytes

* Ceased recently

But, emerging technologies have shortcomings as well

* Can they be enabled to replace/augment/surpass DRAM?
Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techmc& gﬁ)arnlgﬁlg#'gc Level Cell Phase-Change Memories,” ACM TACO 2014
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Solution 3: Hybrid Memory Systems

-

\_

DRAM

DRA
MCtrl

NVM

Ctrl

Fast, small, J

leaky, volatile,
high-cost

J

\_

~

Technology X (e.g., PCM, Intel Optane)

Large, non-volatile, low-cost
Slow, wears out, high active energy

/

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012

Best Paper

Award.

CS211@ShanghaiTech 28
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Some Promising Directions

* New memory architectures
*|Rethinking DRAM

* A lot of hope in fixing DRAM

* Enabling emerging NVM technologies
*lHybrid memory systems

*1Single-level memory and storage

* A lot of hope in hybrid memory systems and single-level stores

CS211@ShanghaiTech 29
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Virtual Memory and Cache
Interaction



Cache-VM Interaction

CPU
VA
Sl 1 2 S M
PA
cache
lower
hier.

physical cache

CPU
cache
VA
----FHB----1----
PA
lower
hier.

virtual4dds-eaehe
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CPU

cache

-FLB- - - -

A\ 4

lower
hier.

VA

PA

virtual-physical cache
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Address Translation and Caching

<

Address

>

Tag

Set Index

Block offset

* When do we do the address translation?
* Before or after accessing the L1 cache?

* In other words, is the cache virtually addressed or physically

addressed?
* Virtual versus physical cache

* What are the issues with a virtually addressed cache?

e Synonym problem:

* Two different virtual addresses can map to the same physical
address = same physical address can be present in multiple
locations in the cache = can lead to inconsistency in data

AR R AN
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Homonyms and Synonyms

* Homonym: Same VA can map to two different PAs
 Why?

* VAisin different processes

* Synonym: Different VAs can map to the same PA
 Why?

 Different pages can share the same physical frame within or across processes
* Reasons: shared libraries, shared data, copy-on-write pages within the same process, ...

* Do homonyms and synonyms create problems when we have a
cache?
* |s the cache virtually or physically addressed?

CS211@ShanghaiTech 33
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Virtually-Indexed Physically-Tagged
e If , the cache index bits come only from

page offset (same in VA and PA)
* If both cache and TLB are on chip

* index both arrays concurrently using VA bits
» check cache tag (physical) against TLB output at the end

VPN Page Offset

TLB physical
cache

PPN —*@( tag data

TLB hit? cache hit?
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Virtually-Indexed Physically-Tagged

o |f , the cache index bits include VPN =
Synonyms can cause problems

e Different VAs mapped to the same physical address
* The same physical address can exist in two locations

e Solutions?

VPN Page Offset
I L4
TLB ' physical
cache
|
\ 4 + +
PPN tag data
TLB hit? cache hit?

CS211@ShanghaiTech 35
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Some Solutions to the Synonym Problem

* Limit cache size to (page size x associativity)
* get index from page offset

* On a write to a block, search all possible indices that can contain the
same physical block, and update/invalidate
e Used in Alpha 21264, MIPS R10K

* Restrict page placement in OS
* make sure index(VA) = index(PA)
 Called page coloring
e Used in many SPARC processors

CS211@ShanghaiTech 36
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PIPT and VIVT

* Physically indexed, physically tagged (PIPT) caches use the physical
address for both the index and the tag.

» Simple to implement but slow, as the physical address must be looked up
(which could involve a TLB miss and access to main memory) before that
address can be looked up in the cache.

* Virtually indexed, virtually tagged (VIVT) caches use the virtual
address for both the index and the tag.
e Potentially much faster lookups.

* Problems when several different virtual addresses may refer to the same
physical address

* Addresses would be cached separately despite referring to the same memory, causing
coherency problems.

* Additionally, there is a problem that virtual-to-physical mappings can change,
which would require clearing cache blocks

e Can we have PIVT?

CS211@ShanghaiTech 37
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Conclusion

 Case studies for cache

e Cache inclusion

* Main memory

* Interaction between cache and memory

CS211@ShanghaiTech 38
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