
CS211
Advanced Computer Architecture

L07 Memory II

Chundong Wang

October 15th, 2025

CS211@ShanghaiTech 1

Case Study: ARM Cortex-A53 Cache Systems

• L1 I-Cache is 8KB to 64 KB, has 64B cache lines,
is 2-way set associative, and has a 128-bit read
interface to L2

• L1 D-Cache is 8KB to 64 KB, has 64B cache
lines, is 4-way set associative, has a 128-bit
read interface to L2, and a 256-bit write
interface to L2

• L2 Cache is 128KB to 2 MB, has 64B cache
lines, and is 16-way set associative

• Both the L1 D cache and L2 use a write-back
policy defaulting to allocate on write.

• LRU approximation in all the caches

Processor

L1 I-cache L1 D-cache

L2 cache

Main memory

CS211@ShanghaiTech 3

Case Study: Intel Core i7 6700

• L1 I-Cache is 32KB, has 64B cache lines, is 8-way set associative

• L1 D-Cache 32KB, has 64B cache lines, is 8-way set associative

• L1 I-Cache and D-Cache have Pseudo-LRU replacement

• L2 Cache is 256KB, has 64B cache lines, is 4-way set associative

• L2 Cache has Pseudo-LRU replacement

• L3 Cache is 8MB, 2MB per core, has 64B cache lines, is 16-way set
associative

• L3 Cache has Pseudo-LRU replacement but with an ordered
selection algorithm
• The block replaced is always the lowest numbered way whose access

bit is off

CS211@ShanghaiTech 4

Cache Inclusion Policy

CS211@ShanghaiTech 5

Inclusive

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due
to cache replacement

A

B

B

Evict B from L2 due
to cache replacement

A

B

B

A

Back
invalidation

CS211@ShanghaiTech 6

Exclusive

L2

L1

Initial state Read A miss; load A
into L1

A

Read B miss; load B
into L1

A B

Evict A from L1 due
to cache replacement
and place in L2

BA

A

CS211@ShanghaiTech 7

Non-inclusive

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due
to cache replacement

A

B

B

Evict B from L2 due
to cache replacement

A

B

B

A

CS211@ShanghaiTech 8

Cache Inclusion Policy

• Multi-level caches are designed depending upon if data in one cache level are
also in other cache levels

• Inclusive Policy
• Same data in all levels

• Exclusive Policy
• Data in only one cache

• Exclusive policy increases effective amount of caching, but:
• If data in L2 but not L1, then block is moved from L2 to L1

• If this causes an eviction from L1, then victim cache block moved to L2

• Non-inclusive policy is a blend of inclusive and exclusive policies

CS211@ShanghaiTech 9

Inclusive, or not?

• Inclusive cache eases coherence
• Updating a cache block in L1 entails an update in inclusive LLC.

• A non-inclusive LLC, say L2 cache, which needs to evict a block, must ask L1
cache if it has the block, because such information is not present in LLC.

• Non-inclusive cache yields higher performance though, why?
• No back invalidation

• More data can be cached

CS211@ShanghaiTech 10

‘Sneaky’ LRU for Inclusive Cache

Inclusive
LLC

L1

A

A B

B

CPU
Core

A is frequently used A is frequently hit in L1
cache. It is MRU in L1 cache.

In LLC, A is not
frequently hit

In LLC, A is LRU
A is evicted for
replacement, in
both L1 and L2

As a result, MRU block that should be retained might be evicted, which
causes performance penalty.

Link: https://doi.org/10.1109/MICRO.2010.52

What if LLC is non-inclusive?

CS211@ShanghaiTech 11

https://doi.org/10.1109/MICRO.2010.52

Main Memory

CS211@ShanghaiTech 12

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

13

Protection & Privacy
several users, each with their private address
space and one or more shared address spaces

Demand Paging
Provides the ability to run programs larger
than the primary memory

Hides differences in machine configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping

TLB

Recap: Hierarchical Page Table

14

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of Current
Page Table

p1

offset

p2

Virtual Address from CPU

(Processor
Register, satp in

RISC-V)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

P
h

ys
ic

al
 M

em
o

ry

RISC-V (RV32) Sv32 Virtual Memory Scheme

Supervisor Address Translation
and Protection Register

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

15

• Assumes page tables held in untranslated physical memory

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Page Fault?
Protection violation?

Page Fault?
Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

Physical address used
to access cache

The Main Memory System

• Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

Processor

and caches
Main Memory Storage (SSD/HDD)

CS211@ShanghaiTech 16

In-memory database Social networks In-memory analytics Data centers

The Main Memory System

• Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

• Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

Processor

and caches
Main Memory Storage (SSD/HDD)

CS211@ShanghaiTech 17

Main Memory

• Major Trends Affecting Main Memory

• The Memory Scaling Problem and Solution Directions
• New Memory Architectures

• Enabling Emerging Technologies

• How Can We Do Better?

CS211@ShanghaiTech 18

Major Trends Affecting Main Memory (II)

• Need for main memory capacity, bandwidth, QoS increasing
• Multi-core: increasing number of cores
• Data-intensive applications: increasing demand/hunger for data
• Consolidation: cloud computing, GPUs, mobile, heterogeneity

• Main memory energy/power is a key system design concern

• DRAM technology scaling is ending

CS211@ShanghaiTech 19

Example: The Memory Capacity Gap

• Memory capacity per core expected to drop by 30% every two years

• Trends worse for memory bandwidth per core!

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

CS211@ShanghaiTech 20

Major Trends Affecting Main Memory (III)

• Need for main memory capacity, bandwidth, QoS increasing

• Main memory energy/power is a key system design concern
• ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE

Computer 2003]

• DRAM consumes power even when not used (periodic refresh)

• DRAM technology scaling is ending

CS211@ShanghaiTech 21

Major Trends Affecting Main Memory (IV)

• Need for main memory capacity, bandwidth, QoS increasing

• Main memory energy/power is a key system design concern

• DRAM technology scaling is ending
• ITRS projects DRAM will not scale easily below X nm
• Scaling has provided many benefits:

• higher capacity (density), lower cost, lower energy

CS211@ShanghaiTech 22

Main Memory

• Major Trends Affecting Main Memory

• The Memory Scaling Problem and Solution Directions
• New Memory Architectures

• Enabling Emerging Technologies

• How Can We Do Better?

CS211@ShanghaiTech 23

The DRAM Scaling Problem

• DRAM stores charge in a capacitor (charge-based memory)
• Capacitor must be large enough for reliable sensing
• Access transistor should be large enough for low leakage and high

retention time
• Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

• DRAM capacity, cost, and energy/power hard to scale

CS211@ShanghaiTech 24

Solution 1: Fix DRAM

• Overcome DRAM shortcomings with
• System-DRAM co-design

• Novel DRAM architectures, interface, functions

• Better waste management (efficient utilization)

• Key issues to tackle
• Enable reliability at low cost

• Reduce energy

• Improve latency and bandwidth

• Reduce waste (capacity, bandwidth, latency)

• Enable computation close to data

CS211@ShanghaiTech 25

Solution 1: Fix DRAM
• Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

• Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

• Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

• Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices ,” ISCA 2013.

• Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

• Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework ,” MICRO 2013.

• Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

• Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.

• Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost ,” DSN 2014.

• Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

• Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

• Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

• Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field ,” DSN 2015.

• Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

• Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.

• Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

• Ahn+ “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

• Avoid DRAM:

• Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing ,” PACT 2012.

• Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

• Seshadri+, “The Dirty-Block Index,” ISCA 2014.

• Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

• Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA
2015.

CS211@ShanghaiTech 26

Solution 2: Emerging Memory Technologies
• Some emerging resistive memory technologies seem more scalable than DRAM

(and they are non-volatile)

• Example 1: Phase Change Memory
• Expected to scale to 9nm (2022 [ITRS])

• Expected to be denser than DRAM: can store multiple bits/cell

• Example 2: Intel Optane DC Memory
• Commercially available, in terabytes

• Ceased recently

• But, emerging technologies have shortcomings as well
• Can they be enabled to replace/augment/surpass DRAM?

◼ Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.

◼ Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

◼ Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories ,” ICCD 2012.

◼ Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

◼ Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

◼ Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

◼ Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

◼ Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” ACM TACO 2014.

◼ … …
CS211@ShanghaiTech 27

Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012
Best Paper Award.

… …

CPU
DRA
MCtrl

Fast, small,
leaky, volatile,

high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

NVM
CtrlDRAM Technology X (e.g., PCM, Intel Optane)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

CS211@ShanghaiTech 28

Some Promising Directions

• New memory architectures

• Rethinking DRAM

• A lot of hope in fixing DRAM

• Enabling emerging NVM technologies

• Hybrid memory systems

• Single-level memory and storage

• A lot of hope in hybrid memory systems and single-level stores

CS211@ShanghaiTech 29

Virtual Memory and Cache
Interaction

CS211@ShanghaiTech 30

Cache-VM Interaction

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

TLB

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache TLB

lower
hier.

virtual-physical cache

VA

PA

VA

PA

CS211@ShanghaiTech 31

Address Translation and Caching

• When do we do the address translation?
• Before or after accessing the L1 cache?

• In other words, is the cache virtually addressed or physically
addressed?
• Virtual versus physical cache

• What are the issues with a virtually addressed cache?

• Synonym problem:
• Two different virtual addresses can map to the same physical

address → same physical address can be present in multiple
locations in the cache → can lead to inconsistency in data

CS211@ShanghaiTech 32

Block offsetSet IndexTag

Address

Homonyms and Synonyms

• Homonym: Same VA can map to two different PAs
• Why?

• VA is in different processes

• Synonym: Different VAs can map to the same PA
• Why?

• Different pages can share the same physical frame within or across processes

• Reasons: shared libraries, shared data, copy-on-write pages within the same process, …

• Do homonyms and synonyms create problems when we have a
cache?
• Is the cache virtually or physically addressed?

CS211@ShanghaiTech 33

Virtually-Indexed Physically-Tagged

• If C≤(page_size  associativity), the cache index bits come only from
page offset (same in VA and PA)

• If both cache and TLB are on chip
• index both arrays concurrently using VA bits

• check cache tag (physical) against TLB output at the end

VPN Page Offset

TLB

PPN

Index offset

physical
cache

tag data=

cache hit?TLB hit?
CS211@ShanghaiTech 34

Virtually-Indexed Physically-Tagged
• If C>(page_size  associativity), the cache index bits include VPN 

Synonyms can cause problems
• Different VAs mapped to the same physical address

• The same physical address can exist in two locations

• Solutions?

VPN Page Offset

TLB

PPN

Index

physical
cache

tag data=

cache hit?TLB hit?

a?

CS211@ShanghaiTech 35

offset

Some Solutions to the Synonym Problem

• Limit cache size to (page size  associativity)
• get index from page offset

• On a write to a block, search all possible indices that can contain the
same physical block, and update/invalidate
• Used in Alpha 21264, MIPS R10K

• Restrict page placement in OS
• make sure index(VA) = index(PA)

• Called page coloring

• Used in many SPARC processors

CS211@ShanghaiTech 36

PIPT and VIVT

• Physically indexed, physically tagged (PIPT) caches use the physical
address for both the index and the tag.
• Simple to implement but slow, as the physical address must be looked up

(which could involve a TLB miss and access to main memory) before that
address can be looked up in the cache.

• Virtually indexed, virtually tagged (VIVT) caches use the virtual
address for both the index and the tag.
• Potentially much faster lookups.
• Problems when several different virtual addresses may refer to the same

physical address
• Addresses would be cached separately despite referring to the same memory, causing

coherency problems.

• Additionally, there is a problem that virtual-to-physical mappings can change,
which would require clearing cache blocks

• Can we have PIVT?

CS211@ShanghaiTech 37

Conclusion

• Case studies for cache

• Cache inclusion

• Main memory

• Interaction between cache and memory

CS211@ShanghaiTech 38

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Onur Mutlu (ETH Zurich)

• Prof. Zhi Wang (FSU)

• Prof. Jason Tang (UMBC)

• Prof. Krste Asanović (UC Berkeley)

CS211@ShanghaiTech 39

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L07 Memory II

	Introduction
	Slide 3: Case Study: ARM Cortex-A53 Cache Systems
	Slide 4: Case Study: Intel Core i7 6700
	Slide 5: Cache Inclusion Policy
	Slide 6: Inclusive
	Slide 7: Exclusive
	Slide 8: Non-inclusive
	Slide 9: Cache Inclusion Policy
	Slide 10: Inclusive, or not?
	Slide 11: ‘Sneaky’ LRU for Inclusive Cache
	Slide 12: Main Memory
	Slide 13: Modern Virtual Memory Systems Illusion of a large, private, uniform store
	Slide 14: Recap: Hierarchical Page Table
	Slide 15: Page-Based Virtual-Memory Machine (Hardware Page-Table Walk)
	Slide 16: The Main Memory System
	Slide 17: The Main Memory System
	Slide 18: Main Memory
	Slide 19: Major Trends Affecting Main Memory (II)
	Slide 20: Example: The Memory Capacity Gap
	Slide 21: Major Trends Affecting Main Memory (III)
	Slide 22: Major Trends Affecting Main Memory (IV)
	Slide 23: Main Memory
	Slide 24: The DRAM Scaling Problem
	Slide 25: Solution 1: Fix DRAM
	Slide 26: Solution 1: Fix DRAM
	Slide 27: Solution 2: Emerging Memory Technologies
	Slide 28: Solution 3: Hybrid Memory Systems
	Slide 29: Some Promising Directions
	Slide 30: Virtual Memory and Cache Interaction
	Slide 31: Cache-VM Interaction
	Slide 32: Address Translation and Caching
	Slide 33: Homonyms and Synonyms
	Slide 34: Virtually-Indexed Physically-Tagged
	Slide 35: Virtually-Indexed Physically-Tagged
	Slide 36: Some Solutions to the Synonym Problem
	Slide 37: PIPT and VIVT
	Slide 38: Conclusion

	Acknowledgement
	Slide 39: Acknowledgements

