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Case Study: ARM Cortex-A53 Cache Systems

• L1 I-Cache is 8KB to 64 KB, has 64B cache lines, 
is 2-way set associative, and has a 128-bit read 
interface to L2

• L1 D-Cache is 8KB to 64 KB, has 64B cache 
lines, is 4-way set associative, has a 128-bit 
read interface to L2, and a 256-bit write 
interface to L2

• L2 Cache is 128KB to 2 MB, has 64B cache 
lines, and is 16-way set associative

• Both the L1 D cache and L2 use a write-back 
policy defaulting to allocate on write.

• LRU approximation in all the caches

Processor

L1 I-cache L1 D-cache

L2 cache

Main memory
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Case Study: Intel Core i7 6700

• L1 I-Cache is 32KB, has 64B cache lines, is 8-way set associative

• L1 D-Cache 32KB, has 64B cache lines, is 8-way set associative

• L1 I-Cache and D-Cache have Pseudo-LRU replacement

• L2 Cache is 256KB, has 64B cache lines, is 4-way set associative

• L2 Cache has Pseudo-LRU replacement

• L3 Cache is 8MB, 2MB per core, has 64B cache lines, is 16-way set 
associative

• L3 Cache has Pseudo-LRU replacement but with an ordered 
selection algorithm
• The block replaced is always the lowest numbered way whose access 

bit is off
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Cache Inclusion Policy
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Inclusive

L2

L1

Initial state Read A miss; load A 
into L1 and L2

A

A

Read B miss; load B 
into L1 and L2

A

A B

B

Evict A from L1 due 
to cache replacement

A

B

B

Evict B from L2 due 
to cache replacement

A

B

B

A

Back 
invalidation 
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Exclusive

L2

L1

Initial state Read A miss; load A 
into L1

A

Read B miss; load B 
into L1  

A B

Evict A from L1 due 
to cache replacement 
and place in L2

BA

A
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Non-inclusive

L2

L1

Initial state Read A miss; load A 
into L1 and L2

A

A

Read B miss; load B 
into L1 and L2

A

A B

B

Evict A from L1 due 
to cache replacement

A

B

B

Evict B from L2 due 
to cache replacement

A

B

B

A
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Cache Inclusion Policy

• Multi-level caches are designed depending upon if data in one cache level are 
also in other cache levels

• Inclusive Policy
• Same data in all levels

• Exclusive Policy
• Data in only one cache

• Exclusive policy increases effective amount of caching, but:
• If data in L2 but not L1, then block is moved from L2 to L1

• If this causes an eviction from L1, then victim cache block moved to L2

• Non-inclusive policy is a blend of inclusive and exclusive policies
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Inclusive, or not?

• Inclusive cache eases coherence
• Updating a cache block in L1 entails an update in inclusive LLC.

• A non-inclusive LLC, say L2 cache, which needs to evict a block, must ask L1 
cache if it has the block, because such information is not present in LLC.

• Non-inclusive cache yields higher performance though, why?
• No back invalidation

• More data can be cached
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‘Sneaky’ LRU for Inclusive Cache

Inclusive 
LLC

L1

A

A B

B

CPU 
Core

A is frequently used A is frequently hit in L1 
cache. It is MRU in L1 cache.

In LLC, A is not 
frequently hit

In LLC, A is LRU
A is evicted for 
replacement, in 
both L1 and L2

As a result, MRU block that should be retained might be evicted, which 
causes performance penalty.  

Link: https://doi.org/10.1109/MICRO.2010.52

What if LLC is non-inclusive?
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Main Memory
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Modern Virtual Memory Systems
Illusion of a large, private, uniform store

13

Protection & Privacy
several users, each with their private address 
space and one or more shared address spaces

Demand Paging
Provides the ability to run programs larger 
than the primary memory

Hides differences in machine configurations

The price is address translation on 
each memory reference

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping

TLB



Recap: Hierarchical Page Table
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Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)
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• Assumes page tables held in untranslated physical memory

PC
Inst. 
TLB

Inst. 
Cache D Decode E M

Data 
Cache W+

Page Fault?
Protection violation?

Page Fault?
Protection violation?

Data 
TLB

Main Memory (DRAM)

Memory Controller
Physical 
Address

Physical 
Address

Physical Address

Physical 
Address

Page-Table Base 
Register

Virtual 
Address Physical 

Address

Virtual 
Address

Hardware Page 
Table Walker

Miss? Miss?

Physical address used 
to access cache



The Main Memory System

• Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

Processor

and caches
Main Memory Storage (SSD/HDD)
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The Main Memory System

• Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

• Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

Processor

and caches
Main Memory Storage (SSD/HDD)
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Main Memory

• Major Trends Affecting Main Memory

• The Memory Scaling Problem and Solution Directions
• New Memory Architectures

• Enabling Emerging Technologies

• How Can We Do Better?
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Major Trends Affecting Main Memory (II)

• Need for main memory capacity, bandwidth, QoS increasing 
• Multi-core: increasing number of cores
• Data-intensive applications: increasing demand/hunger for data
• Consolidation: cloud computing, GPUs, mobile, heterogeneity

• Main memory energy/power is a key system design concern

• DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

• Memory capacity per core expected to drop by 30% every two years

• Trends worse for memory bandwidth per core!

Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years
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Major Trends Affecting Main Memory (III)

• Need for main memory capacity, bandwidth, QoS increasing 

• Main memory energy/power is a key system design concern
• ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE 

Computer 2003] 

• DRAM consumes power even when not used (periodic refresh)

• DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)

• Need for main memory capacity, bandwidth, QoS increasing 

• Main memory energy/power is a key system design concern

• DRAM technology scaling is ending 
• ITRS projects DRAM will not scale easily below X nm 
• Scaling has provided many benefits: 

• higher capacity (density), lower cost, lower energy
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Main Memory

• Major Trends Affecting Main Memory

• The Memory Scaling Problem and Solution Directions
• New Memory Architectures

• Enabling Emerging Technologies

• How Can We Do Better?
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The DRAM Scaling Problem

• DRAM stores charge in a capacitor (charge-based memory)
• Capacitor must be large enough for reliable sensing
• Access transistor should be large enough for low leakage and high 

retention time
• Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

• DRAM capacity, cost, and energy/power hard to scale
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Solution 1: Fix DRAM

• Overcome DRAM shortcomings with
• System-DRAM co-design

• Novel DRAM architectures, interface, functions

• Better waste management (efficient utilization)

• Key issues to tackle
• Enable reliability at low cost

• Reduce energy

• Improve latency and bandwidth

• Reduce waste (capacity, bandwidth, latency)

• Enable computation close to data
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Solution 1: Fix DRAM
• Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

• Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

• Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

• Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices ,” ISCA 2013.

• Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

• Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework ,” MICRO 2013.

• Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

• Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.

• Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost ,” DSN 2014.

• Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

• Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

• Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

• Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field ,” DSN 2015.

• Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

• Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.

• Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

• Ahn+ “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

• Avoid DRAM:

• Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing ,” PACT 2012.

• Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

• Seshadri+, “The Dirty-Block Index,” ISCA 2014.

• Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

• Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 
2015.
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Solution 2: Emerging Memory Technologies
• Some emerging resistive memory technologies seem more scalable than DRAM 

(and they are non-volatile)

• Example 1: Phase Change Memory
• Expected to scale to 9nm (2022 [ITRS])

• Expected to be denser than DRAM: can store multiple bits/cell

• Example 2: Intel Optane DC Memory
• Commercially available, in terabytes

• Ceased recently

• But, emerging technologies have shortcomings as well
• Can they be enabled to replace/augment/surpass DRAM?

◼ Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.

◼ Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

◼ Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories ,” ICCD 2012.

◼ Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 

◼ Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

◼ Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

◼ Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

◼ Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” ACM TACO 2014.

◼ … …
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Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 
Best Paper Award.

… …

CPU
DRA
MCtrl

Fast, small, 
leaky, volatile, 

high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

NVM 
CtrlDRAM Technology X (e.g., PCM, Intel Optane)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies
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Some Promising Directions

• New memory architectures

• Rethinking DRAM

• A lot of hope in fixing DRAM

• Enabling emerging NVM technologies 

• Hybrid memory systems 

• Single-level memory and storage

• A lot of hope in hybrid memory systems and single-level stores
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Virtual Memory and Cache 
Interaction
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Cache-VM Interaction

CPU

TLB

cache

lower
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physical cache

CPU

cache

TLB

lower
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virtual (L1) cache

VA

PA

CPU

cache TLB

lower
hier.

virtual-physical cache

VA

PA

VA

PA
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Address Translation and Caching

• When do we do the address translation?
• Before or after accessing the L1 cache?

• In other words, is the cache virtually addressed or physically 
addressed?
• Virtual versus physical cache

• What are the issues with a virtually addressed cache?

• Synonym problem:
• Two different virtual addresses can map to the same physical 

address → same physical address can be present in multiple 
locations in the cache → can lead to inconsistency in data
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Homonyms and Synonyms

• Homonym: Same VA can map to two different PAs
• Why? 

• VA is in different processes

• Synonym: Different VAs can map to the same PA
• Why? 

• Different pages can share the same physical frame within or across processes

• Reasons: shared libraries, shared data, copy-on-write pages within the same process, …

• Do homonyms and synonyms create problems when we have a 
cache?
• Is the cache virtually or physically addressed?

CS211@ShanghaiTech 33



Virtually-Indexed Physically-Tagged

• If C≤(page_size  associativity), the cache index bits come only from 
page offset (same in VA and PA)

• If both cache and TLB are on chip
• index both arrays concurrently using VA bits

• check cache tag (physical) against TLB output at the end

VPN Page Offset

TLB

PPN

Index offset

physical
cache

tag data=

cache hit?TLB hit?
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Virtually-Indexed Physically-Tagged
• If C>(page_size  associativity), the cache index bits include VPN 

Synonyms can cause problems
• Different VAs mapped to the same physical address

• The same physical address can exist in two locations

• Solutions?

VPN Page Offset

TLB

PPN

Index

physical
cache

tag data=

cache hit?TLB hit?

a?
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Some Solutions to the Synonym Problem

• Limit cache size to (page size  associativity)
• get index from page offset 

• On a write to a block, search all possible indices that can contain the 
same physical block, and update/invalidate
• Used in Alpha 21264, MIPS R10K

• Restrict page placement in OS
• make sure index(VA) = index(PA)

• Called page coloring

• Used in many SPARC processors
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PIPT and VIVT

• Physically indexed, physically tagged (PIPT) caches use the physical 
address for both the index and the tag.
• Simple to implement but slow, as the physical address must be looked up 

(which could involve a TLB miss and access to main memory) before that 
address can be looked up in the cache.

• Virtually indexed, virtually tagged (VIVT) caches use the virtual 
address for both the index and the tag.
• Potentially much faster lookups.
• Problems when several different virtual addresses may refer to the same 

physical address
• Addresses would be cached separately despite referring to the same memory, causing 

coherency problems.

• Additionally, there is a problem that virtual-to-physical mappings can change, 
which would require clearing cache blocks

• Can we have PIVT?
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Conclusion

• Case studies for cache

• Cache inclusion

• Main memory

• Interaction between cache and memory
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