
CS211
Advanced Computer Architecture

L08 Memory III

Chundong Wang

October 17th, 2025

CS211@ShanghaiTech 1

Virtual Memory and Cache
Interaction

CS211@ShanghaiTech 3

Cache-VM Interaction

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

TLB

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache TLB

lower
hier.

virtual-physical cache

VA

PA

VA

PA

CS211@ShanghaiTech 4

Address Translation and Caching

• When do we do the address translation?
• Before or after accessing the L1 cache?

• In other words, is the cache virtually addressed or physically
addressed?
• Virtual versus physical cache

• What are the issues with a virtually addressed cache?

• Synonym problem:
• Two different virtual addresses can map to the same physical

address → same physical address can be present in multiple
locations in the cache → can lead to inconsistency in data

CS211@ShanghaiTech 5

Block offsetSet IndexTag

Address

Homonyms and Synonyms

• Homonym: Same VA can map to two different PAs
• Why?

• VA is in different processes

• Synonym: Different VAs can map to the same PA
• Why?

• Different pages can share the same physical frame within or across processes

• Reasons: shared libraries, shared data, copy-on-write pages within the same process, …

• Do homonyms and synonyms create problems when we have a
cache?
• Is the cache virtually or physically addressed?

CS211@ShanghaiTech 6

Virtually-Indexed Physically-Tagged

• If C≤(page_size  associativity), the cache index bits come only from
page offset (same in VA and PA)

• If both cache and TLB are on chip
• index both arrays concurrently using VA bits

• check cache tag (physical) against TLB output at the end

VPN Page Offset

TLB

PPN

Index offset

physical
cache

tag data=

cache hit?TLB hit?
CS211@ShanghaiTech 7

Virtually-Indexed Physically-Tagged
• If C>(page_size  associativity), the cache index bits include VPN 

Synonyms can cause problems
• Different VAs mapped to the same physical address

• The same physical address can exist in two locations

• Solutions?

VPN Page Offset

TLB

PPN

Index

physical
cache

tag data=

cache hit?TLB hit?

a?

CS211@ShanghaiTech 8

offset

Some Solutions to the Synonym Problem

• Limit cache size to (page size  associativity)
• get index from page offset

• On a write to a block, search all possible indices that can contain the
same physical block, and update/invalidate
• Used in Alpha 21264, MIPS R10K

• Restrict page placement in OS
• make sure index(VA) = index(PA)

• Called page coloring

• Used in many SPARC processors

CS211@ShanghaiTech 9

PIPT and VIVT

• Physically indexed, physically tagged (PIPT) caches use the physical
address for both the index and the tag.
• Simple to implement but slow, as the physical address must be looked up

(which could involve a TLB miss and access to main memory) before that
address can be looked up in the cache.

• Virtually indexed, virtually tagged (VIVT) caches use the virtual
address for both the index and the tag.
• Potentially much faster lookups.
• Problems when several different virtual addresses may refer to the same

physical address
• Addresses would be cached separately despite referring to the same memory, causing

coherency problems.

• Additionally, there is a problem that virtual-to-physical mappings can change,
which would require clearing cache blocks

• Can we have PIVT?

CS211@ShanghaiTech 10

Cache Optimizations

• Small and simple first-level caches
• Remember direct-mapped L1 cache of MIPS R4000?

• Victim cache

• Way prediction

• Non-blocking cache

CS211@ShanghaiTech 12

Victim Caches (HP 7200)

L1 Data
Cache

Unified L2
Cache

RF

CPU

Victim
FA Cache
4 blocks

Evicted data
from L1

Evicted data
from VC

to where?

Hit data from VC
(miss in L1)

Victim cache is a small associative backup cache, added to a direct-mapped
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 13

Way prediction to reduce hit time

• Combine fast hit time of direct-mapped and the lower
conflict misses of 2-way set-associative caches
• Check one way first (speed of direct-mapped cache)

• On a miss, check the other way, if hits, call it a pseudo-hit (or slow
hit)

• Way prediction is a bit to indicate which way to check first (changes
dynamically)

• May extend prediction to more than 2-way set-associative caches

• Potentially saving power
• Why?

• Drawback: CPU pipeline is hard if hit takes sometimes 1 and
sometimes 2 cycles

CS211@ShanghaiTech 14

Way-Predicting Caches (MIPS R10000 L2 cache)

15

• Use processor address to index into way-prediction table

• Look in predicted way at given index, then:

HIT MISS

Return copy

of data from

cache

Look in other way

Read block of data from

next level of cache

MISS
SLOW HIT

(change entry in

prediction table)

17

Increasing Cache Bandwidth with
Non-Blocking Caches

• Non-blocking cache or lockup-free cache allow data cache to continue to
supply cache hits during a miss
• requires Full/Empty bits on registers or out-of-order execution

• “hit under miss” reduces the effective miss penalty by working during
miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may further lower the
effective miss penalty by overlapping multiple misses
• Significantly increases the complexity of the cache controller as there can be

multiple outstanding memory accesses, and can get miss to line with outstanding
miss (secondary miss)

• Requires pipelined or banked memory system (otherwise cannot support multiple
misses)

• Pentium Pro allows 4 outstanding memory misses
• Cray X1E vector supercomputer allows 2,048 outstanding memory misses

TLB

• Translation lookaside buffer

• Caching on address translations
• Tracks frequently used translations

• Avoids translations in the common cases

• Process references the same page repeatedly
• Translating each virtual address to physical address is wasteful

CS211@ShanghaiTech 18

Caching Applied to Address Translation

Virtual

addresses

Physical

addresses

Data reads or writes

TLB

Translation table

In TLB

CS211@ShanghaiTech 19

Example of the TLB Content

Virtual page number (VPN) Physical page number (PPN) Control bits

2 1 Valid, rw

- - Invalid

0 4 Valid, rw

CS211@ShanghaiTech 20

TLB Lookups

• One simple way
• Sequential search of the TLB table

• Direct mapping
• assigns each virtual page to a specific slot in the TLB
• e.g., use upper bits of virtual page number (VPN) to index TLB

• Set associativity:
• uses N TLB banks to perform lookups in parallel

• Fully associative cache: allows looking up all TLB entries in
parallel

CS211@ShanghaiTech 21

TLB Management

• Typically
• Small TLBs are fully associative
• Large TLBs and muti-level TLBs are common today

• Replacement of TLB Entries
• Direct mapping

• Entry replaced whenever a VPN mismatches

• Associative caches
• Random replacement
• LRU (least recently used)
• NMRU (not most recently used)
• Depending on reference patterns

• Who does replacement?
• Hardware-level

• TLB replacement is mostly random, simple and fast

• Software-level
• Memory page replacements are more sophisticated
• CPU cycles vs. cache hit rate

CS211@ShanghaiTech 22

Consistency between TLB and Page Tables

• Different processes have different page tables
• TLB entries need to be invalidated on context switches

• Alternatives:
• Tag TLB entries with process IDs

• Additional cost of hardware and comparisons per lookup

• TLB Shootdown
• Cause 1: the sharing of PTEs between cores

• e.g., given a shared page, one core changes the page’s permissions

• e.g., when R/W pages become Read-only due to fork()

• Cause 2: TLB coherence not maintained by hardware for x86

• OS allows a core to flush a PTE in another core’s TLB for coherence
• Through Inter-processor interrupt (IPI)

CS211@ShanghaiTech 23

Case studies

• Two-level TLBs of ARM Cortex A53

• Two-level TLBs of Intel i7 6700

Structure Size Associativity

Instruction MicroTLB 10 entries Fully associative

Data MicroTLB 10 entries Fully associative

L2 Unified TLB 512 entries 4-way set associative

Structure Size Associativity

Instruction TLB 128 entries 8-way set associative

Data TLB 64 entries 4-way set associative

L2 Unified TLB 1536 entries 12-way set associative

CS211@ShanghaiTech 24

Recall we saw their caches
in last lecture?

The data access path of Cortex A53 A page with
64KB for

illustration

A more complicated access path for
Intel i7 6700 is shown in Figure 2.25 of

CS211 textbook

CS211@ShanghaiTech 25

Flash Memory

• NAND flash and NOR flash
• NAND flash is more prevalent today

• Widely used today
• SSD

• SD and Micro-SD cards

• USB thumb drives

• SLC, MLC
• Single-level Cell vs. Multi-level Cell

VoltageGround

1 0

VoltageGround

1
1

1
0

0
0

0
1

SLCSLC

MLC

Source: https://dl.acm.org/doi/10.1145/3129257
CS211@ShanghaiTech 26

Trade-off emerges here again

https://dl.acm.org/doi/10.1145/3129257

Program/Erase

• Three operations
• Program (write), Read, Erase

• The unit of program and read is a flash page, from 2KB to 8KB.

• The unit of erase is a flash block, composed of multiple pages, much larger

• Out-of-place update
• A flash page cannot be reprogrammed unless the block where it is erased.

• Address translation
• Flash translation layer between logical address to flash address

• Write endurance and bad block management
• A cell undergoes a limited number of P/E flips

• Garbage collection
• Invalid pages across flash blocks

CS211@ShanghaiTech 27

Flash Translation Layer

• Mapping logical address from file system to flash address

• Two basic ones
• Block-level mapping

• One logical block mapped to one flash block

• A small mapping table, coarse-grained

• Page-level mapping
• One logical page mapped to one flash page

• A large mapping table, fine-grained

• Hybrid mapping
• Inspired by CPU caching

• Demand-based mapping
• Inspired by TLB

CS211@ShanghaiTech 28

Hybrid mapping

• Block mapping + Page mapping
• A majority of blocks as data blocks  block mapping

• A small part of blocks a log blocks  page mapping

• Mapping steps on writing data to a page
• First, do a block mapping, if page free, write down

• Else, find a free log page in a log block, write down

• No free log pages, pick a log block to merge it with corresponding data
block(s)

• Associativity between log block and data block(s)
• BAST: block associative sector translation

• One log block exclusively dedicated to one data block

• FAST: fully associative section translation
• One log block shared by all data blocks

• Set-associative translation?

Direct-mapped

Fully associative

CS211@ShanghaiTech 29

https://ieeexplore.ieee.org/document/1010143
https://dl.acm.org/doi/10.1145/1275986.1275990

https://ieeexplore.ieee.org/document/1010143
https://dl.acm.org/doi/10.1145/1275986.1275990

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. An-I A. Wang (FSU)

• Prof. Onur Mutlu (ETH Zurich)

• Prof. Krste Asanovic (UC Berkeley)

• Prof. Rami Melhem (Pitt)

CS211@ShanghaiTech 30

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L08 Memory III

	Introduction
	Slide 3: Virtual Memory and Cache Interaction
	Slide 4: Cache-VM Interaction
	Slide 5: Address Translation and Caching
	Slide 6: Homonyms and Synonyms
	Slide 7: Virtually-Indexed Physically-Tagged
	Slide 8: Virtually-Indexed Physically-Tagged
	Slide 9: Some Solutions to the Synonym Problem
	Slide 10: PIPT and VIVT
	Slide 12: Cache Optimizations
	Slide 13: Victim Caches (HP 7200)
	Slide 14: Way prediction to reduce hit time
	Slide 15: Way-Predicting Caches (MIPS R10000 L2 cache)
	Slide 17: Increasing Cache Bandwidth with Non-Blocking Caches
	Slide 18: TLB
	Slide 19: Caching Applied to Address Translation
	Slide 20: Example of the TLB Content
	Slide 21: TLB Lookups
	Slide 22: TLB Management
	Slide 23: Consistency between TLB and Page Tables
	Slide 24: Case studies
	Slide 25: The data access path of Cortex A53
	Slide 26: Flash Memory
	Slide 27: Program/Erase
	Slide 28: Flash Translation Layer
	Slide 29: Hybrid mapping
	Slide 30: Acknowledgements

