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Virtual Memory and Cache 
Interaction
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Cache-VM Interaction
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Address Translation and Caching

• When do we do the address translation?
• Before or after accessing the L1 cache?

• In other words, is the cache virtually addressed or physically 
addressed?
• Virtual versus physical cache

• What are the issues with a virtually addressed cache?

• Synonym problem:
• Two different virtual addresses can map to the same physical 

address → same physical address can be present in multiple 
locations in the cache → can lead to inconsistency in data
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Homonyms and Synonyms

• Homonym: Same VA can map to two different PAs
• Why? 

• VA is in different processes

• Synonym: Different VAs can map to the same PA
• Why? 

• Different pages can share the same physical frame within or across processes

• Reasons: shared libraries, shared data, copy-on-write pages within the same process, …

• Do homonyms and synonyms create problems when we have a 
cache?
• Is the cache virtually or physically addressed?

CS211@ShanghaiTech 6



Virtually-Indexed Physically-Tagged

• If C≤(page_size  associativity), the cache index bits come only from 
page offset (same in VA and PA)

• If both cache and TLB are on chip
• index both arrays concurrently using VA bits

• check cache tag (physical) against TLB output at the end
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Virtually-Indexed Physically-Tagged
• If C>(page_size  associativity), the cache index bits include VPN 

Synonyms can cause problems
• Different VAs mapped to the same physical address

• The same physical address can exist in two locations

• Solutions?
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Some Solutions to the Synonym Problem

• Limit cache size to (page size  associativity)
• get index from page offset 

• On a write to a block, search all possible indices that can contain the 
same physical block, and update/invalidate
• Used in Alpha 21264, MIPS R10K

• Restrict page placement in OS
• make sure index(VA) = index(PA)

• Called page coloring

• Used in many SPARC processors
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PIPT and VIVT

• Physically indexed, physically tagged (PIPT) caches use the physical 
address for both the index and the tag.
• Simple to implement but slow, as the physical address must be looked up 

(which could involve a TLB miss and access to main memory) before that 
address can be looked up in the cache.

• Virtually indexed, virtually tagged (VIVT) caches use the virtual 
address for both the index and the tag.
• Potentially much faster lookups.
• Problems when several different virtual addresses may refer to the same 

physical address
• Addresses would be cached separately despite referring to the same memory, causing 

coherency problems.

• Additionally, there is a problem that virtual-to-physical mappings can change, 
which would require clearing cache blocks

• Can we have PIVT?
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Cache Optimizations

• Small and simple first-level caches
• Remember direct-mapped L1 cache of MIPS R4000?

• Victim cache

• Way prediction

• Non-blocking cache
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Victim Caches (HP 7200)
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Victim cache is a small associative backup cache, added to a direct-mapped 
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
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Way prediction to reduce hit time

• Combine fast hit time of direct-mapped and the lower 
conflict misses of 2-way set-associative caches
• Check one way first (speed of direct-mapped cache)

• On a miss, check the other way, if hits, call it a pseudo-hit (or slow 
hit)

• Way prediction is a bit to indicate which way to check first (changes 
dynamically)

• May extend prediction to more than 2-way set-associative caches

• Potentially saving power
• Why?

• Drawback: CPU pipeline is hard if hit takes sometimes 1 and 
sometimes 2 cycles
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Way-Predicting Caches (MIPS R10000 L2 cache)
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Increasing Cache Bandwidth with
Non-Blocking Caches

• Non-blocking cache or  lockup-free cache allow data cache to continue to 
supply cache hits during a miss
• requires Full/Empty bits on registers or out-of-order execution

• “hit under miss”  reduces the effective miss penalty by working during 
miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss”  may further lower the 
effective miss penalty by overlapping multiple misses
• Significantly increases the complexity of the cache controller as there can be 

multiple outstanding memory accesses, and can get miss to line with outstanding 
miss (secondary miss)

• Requires pipelined or banked memory system (otherwise cannot support multiple 
misses)

• Pentium Pro allows 4 outstanding memory misses
• Cray X1E vector supercomputer allows 2,048 outstanding memory misses



TLB

• Translation lookaside buffer

• Caching on address translations
• Tracks frequently used translations

• Avoids translations in the common cases

• Process references the same page repeatedly
• Translating each virtual address to physical address is wasteful
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Caching Applied to Address Translation
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Example of the TLB Content

Virtual page number (VPN) Physical page number (PPN) Control bits

2 1 Valid, rw

- - Invalid

0 4 Valid, rw
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TLB Lookups

• One simple way
• Sequential search of the TLB table

• Direct mapping
• assigns each virtual page to a specific slot in the TLB
• e.g., use upper bits of virtual page number (VPN) to index TLB

• Set associativity:
• uses N TLB banks to perform lookups in parallel

• Fully associative cache: allows looking up all TLB entries in 
parallel
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TLB Management

• Typically
• Small TLBs are fully associative
• Large TLBs and muti-level TLBs are common today

• Replacement of TLB Entries
• Direct mapping

• Entry replaced whenever a VPN mismatches

• Associative caches
• Random replacement
• LRU (least recently used)
• NMRU (not most recently used)
• Depending on reference patterns

• Who does replacement?
• Hardware-level

• TLB replacement is mostly random, simple and fast

• Software-level
• Memory page replacements are more sophisticated
• CPU cycles vs. cache hit rate
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Consistency between TLB and Page Tables

• Different processes have different page tables
• TLB entries need to be invalidated on context switches

• Alternatives:
• Tag TLB entries with process IDs

• Additional cost of hardware and comparisons per lookup

• TLB Shootdown
• Cause 1: the sharing of PTEs between cores

• e.g., given a shared page, one core changes the page’s permissions

• e.g., when R/W pages become Read-only due to fork()

• Cause 2: TLB coherence not maintained by hardware for x86

• OS allows a core to flush a PTE in another core’s TLB for coherence
• Through Inter-processor interrupt (IPI)
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Case studies

• Two-level TLBs of ARM Cortex A53

• Two-level TLBs of Intel i7 6700

Structure Size Associativity

Instruction MicroTLB 10 entries Fully associative

Data MicroTLB 10 entries Fully associative

L2 Unified TLB 512 entries 4-way set associative

Structure Size Associativity

Instruction TLB 128 entries 8-way set associative

Data TLB 64 entries 4-way set associative

L2 Unified TLB 1536 entries 12-way set associative
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The data access path of Cortex A53 A page with 
64KB for 

illustration

A more complicated access path for 
Intel i7 6700 is shown in Figure 2.25 of 

CS211 textbook
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Flash Memory

• NAND flash and NOR flash
• NAND flash is more prevalent today

• Widely used today
• SSD

• SD and Micro-SD cards

• USB thumb drives

• SLC, MLC
• Single-level Cell vs. Multi-level Cell
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Source: https://dl.acm.org/doi/10.1145/3129257
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Program/Erase

• Three operations
• Program (write), Read, Erase

• The unit of program and read is a flash page, from 2KB to 8KB.

• The unit of erase is a flash block, composed of multiple pages, much larger

• Out-of-place update
• A flash page cannot be reprogrammed unless the block where it is erased.

• Address translation
• Flash translation layer between logical address to flash address

• Write endurance and bad block management
• A cell undergoes a limited number of P/E flips

• Garbage collection
• Invalid pages across flash blocks
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Flash Translation Layer

• Mapping logical address from file system to flash address

• Two basic ones
• Block-level mapping

• One logical block mapped to one flash block

• A small mapping table, coarse-grained

• Page-level mapping
• One logical page mapped to one flash page

• A large mapping table, fine-grained

• Hybrid mapping
• Inspired by CPU caching

• Demand-based mapping
• Inspired by TLB
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Hybrid mapping

• Block mapping + Page mapping
• A majority of blocks as data blocks  block mapping

• A small part of blocks a log blocks  page mapping

• Mapping steps on writing data to a page
• First, do a block mapping, if page free, write down

• Else, find a free log page in a log block, write down

• No free log pages, pick a log block to merge it with corresponding data 
block(s)

• Associativity between log block and data block(s)
• BAST: block associative sector translation

• One log block exclusively dedicated to one data block

• FAST: fully associative section translation
• One log block shared by all data blocks

• Set-associative translation?

Direct-mapped

Fully associative
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