(% ﬂ%u \)
I L M Bk
%}%‘r“‘ﬁg‘: ShanghaiTech University

CS211
Advanced Computer Architecture

LO8 Memory Il

Chundong Wang
October 17th, 2025

(L b:.%u 5, X N
;"”‘fg‘* El#HBEAT
T e ShanghaiTech University

0 A,

3
WO

v
Jirec

Virtual Memory and Cache
Interaction

Cache-VM Interaction

CPU
VA
Sl 1 2 S M
PA
cache
lower
hier.

physical cache

CPU
cache
VA
----FHB----1----
PA
lower
hier.

virtual4dds-eaehe

R LT

42/ ShanghaiTech University

CPU

cache

-FLB- - - -

A\ 4

lower
hier.

VA

PA

virtual-physical cache

#

L2

23

\.,":::jé : g‘
CH

TANE

Address Translation and Caching

<

Address

>

Tag

Set Index

Block offset

* When do we do the address translation?
* Before or after accessing the L1 cache?

* In other words, is the cache virtually addressed or physically

addressed?
* Virtual versus physical cache

* What are the issues with a virtually addressed cache?

e Synonym problem:

* Two different virtual addresses can map to the same physical
address = same physical address can be present in multiple
locations in the cache = can lead to inconsistency in data

AR R AN
& ShanghaiTech University

Saresios

8 B R BKY

H
oro A&/ ShanghaiTech University
SAireen v

Homonyms and Synonyms

* Homonym: Same VA can map to two different PAs
 Why?

* VAisin different processes

* Synonym: Different VAs can map to the same PA
 Why?

 Different pages can share the same physical frame within or across processes
* Reasons: shared libraries, shared data, copy-on-write pages within the same process, ...

* Do homonyms and synonyms create problems when we have a
cache?
* |s the cache virtually or physically addressed?

CS211@ShanghaiTech 6

#

) LR ek
Virtually-Indexed Physically-Tagged
e If , the cache index bits come only from

page offset (same in VA and PA)
* If both cache and TLB are on chip

* index both arrays concurrently using VA bits
» check cache tag (physical) against TLB output at the end

VPN Page Offset

TLB physical
cache

PPN —*@(tag data

TLB hit? cache hit?

b L2 fi% N N

i 2 N e,
(AR R N
a ﬁéu’m,‘ S Y
I B e

u“’»arsmm

f ShanghaiTech University

Virtually-Indexed Physically-Tagged

o |f , the cache index bits include VPN =
Synonyms can cause problems

e Different VAs mapped to the same physical address
* The same physical address can exist in two locations

e Solutions?

VPN Page Offset
I L4
TLB ' physical
cache
|
\ 4 + +
PPN tag data
TLB hit? cache hit?

CS211@ShanghaiTech 8

{&“\ %

)
<, £
@A
EAQTE
2 i, g
3,5, “fs
L
'WpEcH“l"«

EwBHRZKRT

ShanghaiTech University

Some Solutions to the Synonym Problem

* Limit cache size to (page size x associativity)
* get index from page offset

* On a write to a block, search all possible indices that can contain the
same physical block, and update/invalidate
e Used in Alpha 21264, MIPS R10K

* Restrict page placement in OS
* make sure index(VA) = index(PA)
 Called page coloring
e Used in many SPARC processors

CS211@ShanghaiTech 9

G B R Ry

J,;%E ShanghaiTech University

PIPT and VIVT

* Physically indexed, physically tagged (PIPT) caches use the physical
address for both the index and the tag.

» Simple to implement but slow, as the physical address must be looked up
(which could involve a TLB miss and access to main memory) before that
address can be looked up in the cache.

* Virtually indexed, virtually tagged (VIVT) caches use the virtual
address for both the index and the tag.
e Potentially much faster lookups.

* Problems when several different virtual addresses may refer to the same
physical address

* Addresses would be cached separately despite referring to the same memory, causing
coherency problems.

* Additionally, there is a problem that virtual-to-physical mappings can change,
which would require clearing cache blocks

e Can we have PIVT?

CS211@ShanghaiTech 10

#

e
=R A i}
CH

) B R BART
‘ & ShanghaiTech University

Saresios

TANE

Cache Optimizations

* Small and simple first-level caches
 Remember direct-mapped L1 cache of MIPS R4000?

* Victim cache
* Way prediction
* Non-blocking cache

Victim Caches (HP 7200)

iR

> I
<, £
EESERY
§exgzs
24 Fe Huu,Ik ’.
AN 3
N AE
O
recH U

EwBHRZKRT

ShanghaiTech University

CPU
11 Unified L2
: < Cache
RF L1 Data
Cache >
7'y Evicted data
from L1
\ 4
Victim C to where?)
- FA Cache Evicted data
Hit data from VC 4 blocks
from VC

(miss in L1)

Victim cache is a small associative backup cache, added to a direct-mapped
cache, which holds recently evicted lines

e First look up in direct-mapped cache
e |f miss, look in victim cache
e If hit in victim cache, swap hit line with line now evicted from L1
e |f miss in victim cache, L1 victim -> VC, VC victim->?

Fast hit time of direct mapped but with reduced conflict misses

13

#

. R
N
CH

TANE

\ B R B kY
¥ a@ ShanghaiTech University

Farresios

Way prediction to reduce hit time

* Combine fast hit time of direct-mapped and the lower
conflict misses of 2-way set-associative caches
* Check one way first (speed of direct-mapped cache)
* On a miss, check the other way, if hits, call it a pseudo-hit (or slow
hit)
* Way prediction is a bit to indicate which way to check first (changes
dynamically)

* May extend prediction to more than 2-way set-associative caches

* Potentially saving power
 Why?

* Drawback: CPU pipeline is hard if hit takes sometimes 1 and
sometimes 2 cycles

EwBHRZKRT

ShanghaiTech University

Way-Predicting Caches (MIPS R10000 L2 cgﬁche)

e Use processor address to index into way-prediction table
e Look in predicted way at given index, then:

AREL

S AL 4 N
<, £

EXSEr
REL AN
ER R T F
34, “f
% £
ONETIL;

< o

HIT MISS

Return copy
of data from

cache L

Look in other way

SLOW HIT WISS
(change entry in
prediction table) Read block of data from

next level of cache

15

EwBHRZKRT

ShanghaiTech University

o
I

%, #
wl g, fz
A% "“J
%

, &,

"
2
o

or
HirE g v

Increasing Cache Bandwidth with
Non-Blocking Caches

* Non-blocking cache or lockup-free cache allow data cache to continue to
supply cache hits during a miss

* requires Full/Empty bits on registers or out-of-order execution

* “hit under miss” reduces the effective miss penalty by working during
miss vs. ignoring CPU requests

e “hit under multiple miss” or “miss under miss” may further lower the
effective miss penalty by overlapping multiple misses

* Significantly increases the complexity of the cache controller as there can be
multiple outstanding memory accesses, and can get miss to line with outstanding
miss (secondary miss)

* Requires pipelined or banked memory system (otherwise cannot support multiple
misses)

* Pentium Pro allows 4 outstanding memory misses
* Cray X1E vector supercomputer allows 2,048 outstanding memory misses

17

N kAT

#¢/ ShanghaiTech University

TLB

* Translation lookaside buffer

* Caching on address translations
* Tracks frequently used translations
* Avoids translations in the common cases

* Process references the same page repeatedly
* Translating each virtual address to physical address is wasteful

CS211@ShanghaiTech 18

T E i R Ry

i s, jx) .)
Vi 4¢/ ShanghaiTech University
e ot

Caching Applied to Address Translation

Virtual
addresses

In TLB

TLB

\ 4

\ 4

Translation table

\ 4

A

Data reads or writes

Physical
addresses

Example of the TLB Content

iR

> I
<, £
EESERY
§exgzs
24 Fe Huu,Ik ’.
AN 3
N AE
O
recH U

EwBHRZKRT

ShanghaiTech University

Virtual page number (VPN) | Physical page number (PPN) | Control bits
2 1 Valid, rw
- - Invalid
0 4 Valid, rw
CS211@ShanghaiTech 20

EwBHRZKRT

ShanghaiTech University

A fE
CRES
%, B

e
zagza
2 L0 E
2 i, § >
A% 73
i A
Jirecuos

TLB Lookups

* One simple way
* Sequential search of the TLB table
* Direct mapping
e assigns each virtual page to a specific slot in the TLB
* e.g., use upper bits of virtual page number (VPN) to index TLB

* Set associativity:
e uses N TLB banks to perform lookups in parallel

* Fully associative cache: allows looking up all TLB entries in
parallel

CS211@ShanghaiTech 21

TLB Management

* Typically
e Small TLBs are fully associative
 Large TLBs and muti-level TLBs are common today

* Replacement of TLB Entries
* Direct mapping
* Entry replaced whenever a VPN mismatches
* Associative caches

* Random replacement

LRU (least recently used)

NMRU (not most recently used)
* Depending on reference patterns

 Who does replacement?
* Hardware-level
* TLB replacement is mostly random, simple and fast
» Software-level

* Memory page replacements are more sophisticated
* CPU cycles vs. cache hit rate

40 bR R

£/ ShanghaiTech University

AL . .
;mﬁiﬁﬂ&k#

ol 2 ¢/ ShanghaiTech University

Consistency between TLB and Page Tables

* Different processes have different page tables

* TLB entries need to be invalidated on context switches

* Alternatives:
* Tag TLB entries with process IDs
* Additional cost of hardware and comparisons per lookup

* TLB Shootdown

e Cause 1: the sharing of PTEs between cores
* e.g., given a shared page, one core changes the page’s permissions
* e.g., when R/W pages become Read-only due to fork()

* Cause 2: TLB coherence not maintained by hardware for x86

e OS allows a core to flush a PTE in another core’s TLB for coherence
* Through Inter-processor interrupt (IPI)

N bk

ShanghaiTech University

Case StUdies Recall we saw their caches

in last lecture?

@
O

e Two-level TLBs of ARM Cortex A53-

Instruction MicroTLB 10 entries Fully associative
Data MicroTLB 10 entries Fully associative
L2 Unified TLB 512 entries 4-way set associative

 Two-level TLBs of Intel i7 6700

Instruction TLB 128 entries 8-way set associative
Data TLB 64 entries 4-way set associative
L2 Unified TLB 1536 entries 12-way set associative

CS211@ShanghaiTech 24

EwBHRZKRT

ShanghaiTech University

The data access path of Cortex A53 ggyeem

64KB for
| | illustration
Virtual address <32> .
| Virtual page number <16> l Page offset <16> ¢ |
T I
|L1 cache index <10>| Block offset <6> |
— TLB tag <16> Real page number <16>
To CPU
Data TLB
7 ’“ L1 cache tag <19> | L1 data <64 bytes>
) L.
To CPU
—>@__ Data cache
Z/ TLB tag <9> Real page number <16> L2 TLB
9
=7
(=)
Y

| Physical address <32> |

l 1 1

| L2 tag compare address <16> | L2 cache index <10> | Block offset <6> |

To CPU

A more complicated access path for
Inteli7 6700 is shown in Figure 2.25 of
CS211 textbook

L2 data <64 bytes>

|| | L2 cache tag <16>

To L1 cache or CPU

25

ey B R B

wii.48/ ShanghaiTech University
4, o

Flash Memory \

SLC

* NAND flash and NOR flash
* NAND flash is more prevalent today

* Widely used today Ground Voltage
e SSD
* SD and Micro-SD cards MLC
e USB thumb drives

* SLC, MLC 1
 Single-level Cell vs. Multi-level Cell 1

Ground Voltage

Trade-off emerges here again

Source: https://dl.acm.org/d0i/10.1145/3129257

26

CS211@ShanghaiTech

https://dl.acm.org/doi/10.1145/3129257

EwBHRZKRT

ShanghaiTech University

o
I

%, #
wl g, fz
A% "“J
%

, &,

"
£
o

or
HirE g v

Program/Erase

* Three operations
* Program (write), Read, Erase
* The unit of program and read is a flash page, from 2KB to 8KB.
* The unit of erase is a flash block, composed of multiple pages, much larger

e Out-of-place update
* A flash page cannot be reprogrammed unless the block where it is erased.

* Address translation
* Flash translation layer between logical address to flash address

* Write endurance and bad block management
* A cell undergoes a limited number of P/E flips

* Garbage collection
* Invalid pages across flash blocks

CS211@ShanghaiTech 27

Y B R B K

ShanghaiTech University

Flash Translation Layer

* Mapping logical address from file system to flash address

* Two basic ones
 Block-level mapping
* One logical block mapped to one flash block
* A small mapping table, coarse-grained
* Page-level mapping
* One logical page mapped to one flash page

* Alarge mapping table, fine-grained Logical Address Logical Address
H H Logical Block no. Page No. | Page Offset Logical Block No. Page No. | Page Offset
* Hybrid mapping l — i — ‘]
* Inspired by CPU caching
Page Mapping Table Block Mapping Table
* Demand-based mapping % I
. i 1
* I n Sp I rEd by T LB Physical Block No. | Page No. | Page Offset Physical Block no. | Page No. | Page Offset
Physical Address Physical Address
(a) Page Mapping (b) Block Mapping

CS211@ShanghaiTech 28

1) B A Bk

s ShanghaiTech University

Hybrid mapping

* Block mapping + Page mapping
* A majority of blocks as data blocks € block mapping
» A small part of blocks a /og blocks € page mapping

* Mapping steps on writing data to a page
* First, do a block mapping, if page free, write down
* Else, find a free log page in a log block, write down

* No free log pages, pick a log block to merge it with corresponding data
block(s)

 Associativity between log block and data block(s)
» BAST: block associative sector translation
* One log block exclusively dedicated to one data block

» FAST: fully associative section translation
* One log block shared by all data blocks

e Set-associative translation?

Direct-mapped

Fully associative

https://ieeexplore.ieee.org/document/1010143
https://dl.acm.org/d0i/10.1145/1275986.1275990

CS211@ShanghaiTech 29

https://ieeexplore.ieee.org/document/1010143
https://dl.acm.org/doi/10.1145/1275986.1275990

#

L2

A3

\.,":::jé : g‘
CH

AR R AN
f ShanghaiTech University

el

TANE

Acknowledgements

* These slides contain materials developed and copyright by:
* Prof. An-I A. Wang (FSU)
* Prof. Onur Mutlu (ETH Zurich)
* Prof. Krste Asanovic (UC Berkeley)
* Prof. Rami Melhem (Pitt)

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L08 Memory III

	Introduction
	Slide 3: Virtual Memory and Cache Interaction
	Slide 4: Cache-VM Interaction
	Slide 5: Address Translation and Caching
	Slide 6: Homonyms and Synonyms
	Slide 7: Virtually-Indexed Physically-Tagged
	Slide 8: Virtually-Indexed Physically-Tagged
	Slide 9: Some Solutions to the Synonym Problem
	Slide 10: PIPT and VIVT
	Slide 12: Cache Optimizations
	Slide 13: Victim Caches (HP 7200)
	Slide 14: Way prediction to reduce hit time
	Slide 15: Way-Predicting Caches (MIPS R10000 L2 cache)
	Slide 17: Increasing Cache Bandwidth with Non-Blocking Caches
	Slide 18: TLB
	Slide 19: Caching Applied to Address Translation
	Slide 20: Example of the TLB Content
	Slide 21: TLB Lookups
	Slide 22: TLB Management
	Slide 23: Consistency between TLB and Page Tables
	Slide 24: Case studies
	Slide 25: The data access path of Cortex A53
	Slide 26: Flash Memory
	Slide 27: Program/Erase
	Slide 28: Flash Translation Layer
	Slide 29: Hybrid mapping
	Slide 30: Acknowledgements

