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Promising Resistive Memory Technologies |
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* PCM

* Inject current to change material phase
e Resistance determined by phase

* STT-MRAM
* Inject current to change magnet polarity
* Resistance determined by polarity

* Memristors/RRAM/ReRAM

* Inject current to change atomic structure
* Resistance determined by atom distance

CS211@ShanghaiTech



Opportunity: PCM Advantages

e Scales better than DRAM, Flash
* Requires current pulses, which scale linearly with feature size
* Expected to scale to 9nm (2022 [ITRS])
* Prototyped at 20nm (Raoux+, IBM JRD 2008)

e Can be denser than DRAM

e Can store multiple bits per cell due to large resistance range
* Prototypes with 2 bits/cell in ISSCC’ 08, 4 bits/cell by 2012

* Non-volatile
* Retain data for >10 years at 85°C

* No refresh needed, low idle power

CS211@ShanghaiTech
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Phase Change Memory Properties

* Dynamic Energy
* 40 uA Rd, 150 uA Wr

| 2-43x DRAM, 1x NAND Flash

* Endurance
* Writes induce phase change at 650C
* Contacts degrade from thermal expansion/contraction

* 108 writes per cell
] 108 DRAM, 103x NAND Flash
e Cell Size

* 9-12F2 using BJT, single-level cells
* | 1.5x DRAM, 2-3x NAND | (will scale with feature size, MLC)
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Phase Change Memory: Pros and Cons

* Pros over DRAM
» Better technology scaling (capacity and cost)
* Non volatile = Persistent
e Low idle power (no refresh)

* Cons
e Higher latencies: ~4-15x DRAM (especially write)
* Higher active energy: ~2-50x DRAM (especially write)
* Lower endurance (a cell dies after ~108 writes)
 Reliability issues (resistance drift)

* Challenges in enabling PCM as DRAM replacement/helper:

e Mitigate PCM shortcomings
* Find the right way to place PCM in the system

CS211@ShanghaiTech



PCM-based Main Memory (1)

 How should PCM-based (main) memory be organized?
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* Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’'09]:
* How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (lI) &

 How should PCM-based (main) memory be organized?

CPU CPU CPU

we)] | T (me) | T
- -G G- —GCE | G- -G
- -G DG | -G

* Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:
 How to redesign entire hierarchy (and cores) to overcome PCM shortcomings

CS211@ShanghaiTech
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Wear Leveling of PCM

* Wear leveling
e Limited write endurance

* A mechanism that tries to make the writes uniform by
remapping heavily written lines to less frequently written
lines

CS211@ShanghaiTech
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Start-gap algorithm
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Figure 5: Start-Gap wear leveling on a memory containing 16 lines.

A start line and a gap line

Gap line: a memory location without useful data

Start line: initially pointing to location 0

Every n writes, gap to move up by one (gap--);

Once start meets gap, start to move down by one (start++).



https://ieeexplore.ieee.org/document/5375309

STT-MRAM

* Cache, main memory, ...

* Free layer: Parallel or anti-parallel

logical state of device
* High vs. low resistance

orientation of free layer
Read: Sense current flow

A candidate as “Universal Memory”

Magnetic Tunnel Junction (MTJ) device
» Reference layer: Fixed magnetic orientation

Magnetic orientation of the free layer determines
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Reference Layer mmmp

Free Layer )

Logical 1
Reference Layer mmmp

Free Layer <=

Word Line

Write: Push large current through MTJ to change
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STT-MRAM: Pros and Cons

* Pros over DRAM
* Better technology scaling (capacity and cost)
* Non volatile = Persistent
* Low idle power (no refresh)

* Cons
e Higher write latency
* Higher write energy
e Poor density (currently)
e Reliability?

 Another level of freedom

» Can trade off non-volatility for lower write latency/energy (by reducing the size of the MT))
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STT-MRAM as cache

* Multi-Retention Level STT-RAM Cache Designs with a Dynamic Refresh
Scheme [Sun et al.,, MICRO "11]

* Data retention time
 How long data can be retained in a memory cell after being written
* Non-volatility of STT-MRAM is supposed to be 4-10 years

e Observations

* Non-volatility can be relaxed, say, from years to be micro-seconds, by reducing
switching current =2 Saving energy and improving write performance

* Any use cases for such relaxed non-volatility?
e L1, L2, L3 caches, with different data retention time
e Data not living for years in caches

» Different retention levels by using different currents
 Refresh scheme needed to avoid data loss

https: //www.comp.nus.edu.sg/~wongwf/papers/MICROA4. pdf

CS211@ShanghaiTech 14
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The Impact of Cache

How about he impact of branch

* Binary search vs. linear search
predictor and cache prefetch?

1 Binary search key 32 = O(logn)

15 20 32 57 75 96 110 135
&a &e & &h : :
J Two cache misses, three comparisons

0 6 7
0+3ﬁ1+3 ﬁ0+7

One cache line
Two cache misses, three comparisons

| Linear search key 32 | 0m)

=

15 20 32 o7 75 96 110 135
C. Ye and C. Wang, "Boosting the Search Performance of B+-tree with Sentinels for Non-volatile
&a | &f I &b I &c | &d | &e 7 &g | &h Memory," 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), 2022,
5 6 7 pp. 244-249, doi: 10.1109/ASP-DAC52403.2022 9712580
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Linear search

* Read amplification
* Many comparisons before the target key is found
* Worst case: all keys compared

Cacheline i

_C netinei +1| M Is linear search
CPU cache acheline i emory :
optimalf:

Cachelinei + 2

I

I

I

1 Linear search key 32

C. Ye and C. Wang, "Boosting the Search Performance of B+-tree with Sentinels for Non-volatile
&a &f &b &c &d &e &g &h Memory," 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), 2022,
4 5 6 7 pp. 244-249, doi: 10.1109/ASP-DAC52403.2022.9712580.
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The less, the better

* To further reduce cache misses

* A sorted array spans contiguous cache lines _—
Normal linear search, three cache misses f
With sentinels, two cache misses —
JFind key 75 A
20 57 96 135 ¥
A small sentinel array with fewer cache lines —

Keys monotonically increasing in cache lines

One cache line Less read amplification for higher performance

C. Ye and C. Wang, "Boosting the Search Performance of B+-tree with Sentinels for Non-volatile
&a &f &b &c | &d | &e | &g | &h Memory," 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), 2022,
4 5 6 7 pp. 244-249, doi: 10.1109/ASP-DAC52403.2022 9712580
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INn-NVM B+-tree

* From root to leaves, nodes well structured

Root

Internal - :L
- . Nodes (INs) ' L

A standard B+-tree
node is a sorted array

A 4

Leaf Nodes
(LNs)

KV Pair

——

Keys 5 sibling LN
Values | &a &b &c &d &e >

Pointer to right

0 1 2 3 4 5 6 7 No. of KV Pairs

C. Ye and C. Wang, "Boosting the Search Performance of B+-tree with Sentinels for Non-volatile
Memory," 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), 2022,
19 pp. 244-249, doi: 10.1109/ASP-DAC52403.2022.9712580.
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Smaller LLC, higher perf:
| | | Half to 83.8% LLC

EMW lines not useful
* What is the problem? T B, -

(a) Changes in the fraction of live lines

* A considerable portion of the shared SLLC IS dead
* Why?

* LLC accesses are ones missed in L1 and L2  €=Quantity & frequency
* Locality in LLC not realistic € Access pattern
* LLC uniformly handles accesses € Cache management

* How to resolve the problem?
* Leveraging reuse locality to selectively allocate LLC space

Jorge Albericio, Pablo Ibafez, Victor Vifials, and José M. Llaberia. 2013. The reuse cache: downsizing the shared last-level cache. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-46). Association for Computing Machinery, New York, NY, USA, 310-321.
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Reuse locality for allocat = -

£ o 1. All 200 sets, only 10 sets hit; "’
g 30% 2. Most hits to a small fraction of sets.

B 25%
[ ©
2 20%
©
o £
7] 15%
o
g_ 10% I
5% I
o I B R EEER
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Groups with equal number of lines

Average number of hits per line

o N S (o)) ©

(b) Distribution of hits among all lines loaded (or reloaded) into the LRU SLLC

[ ] [ ]
® S e I ect I Ve a I I O C a t I O n during their stay. Each group represents 0.5% of the loaded lines

 Tag and cache line decoupled
» Classic cache, one tag to one cache line
» Now: mores tag as place holders

* Only reused cache line kept

=4 B 189wy
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Selective allocation

physical address
| tag |set# |byte] | tag | state | |fwd. pointer | | rev. pointer |valid | repl. bit

Way-0 \ Way-n .- Way-0. Way-n.” ,’J
Yes ag array R RN /
hit? LB OBH OB Ese
Return LLC e e ~ 1]/
cache 1l
Put in tag, no LLC line 1 _Data || |
allocated T || L] ||
ag ||
Bl === BN === N
A hit? | l
\ i
</hit? L |
TAG ARRAY . ,_DATAARRAY

Allocate LLC line and load data

On replacement, tag would be retained for the
cache line. Once re-hit (reuse) =»reload data.
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Replicate data for high performance

* What is the problem?
* Multi-cores sharing LLC, different distances to LLC location

Private [1-2] Private [3-9] H Private [210]

“ P ut d ata C I OS e r to my CO re ” Instruction [1-2] Instruction [3-9] M |nstruction [210]

Shared Read- On Shared Read-Only [3-9] ™ Shared Read-Only [>10]
Shared Read- erte [1-2] ™ Shared Read-Write [3- 9] M Shared Read-Write [>10]

* Why? el T
* Non-uniform Access Cache (NUCA)

EEg R
60% I II ‘
o | |
* How to resolve the problem? |
* Replicate cache lines for the core

Run-length is defined as the number of accesses to a cache line
(at the LLC) from a particular core before a conflicting access by
another core or before it is evicted.

G. Kurian, S. Devadas and O. Khan, "Locality-aware data replication in the Last-Level Cache," 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), 2014, pp. 1-12, doi: 10.1109/HPCA.2014.6835921
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How to maintain duplicate cache lines?

* Based on reuse

Home Reuse >= RT XReuse >=RT

No : "
‘ Re!olica Replica

XReuse < RT (threshold)

Initial

Home Reuse < RT .

@

Init: no replica

In real CPU’s LLC, is it possible to put data closer to a core?

Compute Core

Pipeline
L2 Cache
(LLC Slice) 8 \

1 1l
| Router |

Private
L1 Caches

0332110

/
?_

ome

\ y A

Figure 2. O - @ are mockup requests showing the
locality-aware LLC replication protocol. The black data
block has high reuse and a local LLC replica is allowed that
services requests from (I) and @). The low-reuse red data
block is not allowed to be replicated at the LLC, and the
request from () that misses in the L1, must access the LLC
slice at its home core. The home core for each data block
can also service local private cache misses (e.g., @).
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Real LLC slices, time truly differs

Intel® Xeon® Processor E5-2667 v3

T« N (- e - =

CoreO Core 1l Core 2 Core 3

L1 Inst. L1 Data L1 Inst. L1 Data L1 Inst. L1 Data L1 Inst. L1 Data
32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB
\ L2 256KB / K L2 256KB / L2 256KB L2 256KB
A

60 12
g 50 Q 3 10}
S0 mE | g
530 B E - S 6|
[0 [}
g2 £ 4
2 10! 3 ol Alireza Farshin, Amir Roozbeh, Gerald Q.
1 Maguire, and Dejan Kosti¢. 2019. Make the
0 R 5 3 4 5 6 7 0 0 1 5 3 4 5 6 7 Most out of Last Level .Cache in Intel
Slice Number Slice Number Processors. In Proceedings of the Fourteenth
EuroSys Conference 2019 (EuroSys '19).
(a) Read, (b) erte_ Association for Computing Machinery, New

York, NY, USA, Article 8, 1-17.

T g 25 = 4 A 1aE w3
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To put data in slices closer to a core

e Method

* Firstly, revers-engineering the algorithm of cache management
* Secondly, place data according to the management algorithm

* Effect
* With key-value store, GET performance 12.2% T

Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostié¢. 2019. Make the Most out of Last Level Cache in Intel Processors. In Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys '19). Association for Computing Machinery, New York, NY, USA, Article 8, 1-17.
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Predicting dead blocks

* What is the problem?

* How to efficiently predict what blocks are dead
* Why?

* Many cache lines are dead line (never/hardly used)
* How?

e Sampling

Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010. Sampling Dead Block Prediction for Last-Level Caches. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO '43). IEEE Computer Society, USA, 175-186. DOI:https://doi.org/10.1109/MICR0.2010.24
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Sampling = predicting dead blocks

¢ Sa m p I I ng [.2 Cache . Dataaccess

* Set_assoc" Every 1.2 elected L2 misses, Last-Level Cache [N
miss, for or training only, e e Bk
e 2048 set g}'ﬁyICthH < 1.6% of LLC accesses 2048 sets, tags + data
Sampler
* No need t tag array
32 sets
|
* Lower 1! —
accesses
° Partia| P and evictions
., |Predictor ——
1C11
Table

SHiP: Signature-based Hit Predictor

Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010. Sampling Dead Block Prediction for Last-Level Caches. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO '43). IEEE Computer Society, USA, 175-186. DOI:https://doi.org/10.1109/MICR0.2010.24

Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C. Steely, and Joel Emer. 2011. SHiP: signature-based hit predictor for high performance caching. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44). Association for Computing Machinery, New York, NY, USA, 430-441.

28
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Dead blocks, from dead pages

* By studying TLB, many pages are dead-on-arrival (DOA)
* 82% LLTLB entries not used for many apps € Dead pages

* 86% of them DOA
TABLE III: Percentage of LLC DOA blocks that map on to a

* Dead blocks and dead pages DOA page in LIT

Workload LLC blocks (%) Workload | LLC blocks (%)

* > 70% DOA blocks from DOA pages <" % 1w 55

cg.B 92.14 graph500 81.40

* Predict dead page (TLB entries) [ oo &

° USlng PC KCore 68.18 mcf 66.18
» Using dead pages to locate dead blocks

C. Mazumdar, P. Mitra and A. Basu, "Dead Page and Dead Block Predictors: Cleaning TLBs and Caches Together," 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA),

=4 B 189wy
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Reduce hit rate of non-volatile LLC

*NVM

* Phase-change memory, STT-MRAM, Intel Optane memory
* NVM being used to reshape CPU cache
* e.g., STT-MRAM

 STT-MRAM vs. SRAM
* Higher density =» Capacity
* Lower power consumption

* Write/read asymmetry
* Write costs longer time than read

Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth Manipatruni, Sreenivas Subramoney, Tanay Karnik, Steven Swanson, lan Young, and Hong Wang. 2018. Density tradeoffs of
non-volatile memory as a replacement for SRAM based last level cache. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA '18). IEEE Press, 315-327.
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Lower NV LLC hits = less congestion

115 443

T 110
2o

* Increased capacity

s
@ & 0.90

* Slower store

£ g
& 0.70

* Writes congested at LLC

O0SRAM 4MB ESTTRAM 8MB WR +0ns

‘ 1.05

OSTTRAM 8MB WR +5ns ®STTRAM 8MB WR +10ns

* Bypassing LLC but writing to memory o
bzip2.combined (IPC) —e—gcc.g23 (IPC)

® L LC h it rate \l/ bzip2.combined (LLC hit rate) = ®= gcc.g23 (LLC hit rate)
* Performance T :

* What to be bypassed?
* Dead blocks or ones hardly reused

0% 10% 20% 30% 40% 50% 60% 70% 80%
Increas ing write bypass agressiveness

Figure 5: Impact of write bypass on STTRAM LLC
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» Increased capacity _, - | [ T

* Slower store

* Writes congested ¢ ” | -
e Bypassing LLC but wWHting to memory s

* LLC hit rate {, RS

* Performance T -------------------------------------------------------
* What to be bypassed?

* Dead blocks or ones hardly reused :.. y

0% 10% 20% 30% 40% 50% 60% 70% 80%
Increasing write bypass agressiveness

Figure 5: Impact of write bypass on STTRAM LLC
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Adjusting Cache for DRAM+NVM main memi%;‘ory

Processor chip Processor chip

* Intel Optane ---{c)Core
* Read slower than write

[EwWPQ |iley

oo >@Core
| NN MCH
[ L1

w 300 - 30> [ DRAM
i:: I Optane
§ 200 - 169
g 100 - 1 1 8690 5762
2 DRAM NVM
Read Read Write Write . .
Sequential Random (ntstore) (clwb) a) Wn‘te Opera‘“on b) Read Opera’[ion.
Figure 2: Best-case latency An experiment showing random (write mirroring).

and sequential read latency, as well as write latency using
cached write with clwb and ntstore instructions. Error bars
show one standard deviation.

Fig. 4. Read/Write operations in Stealth-Persist.

Stealth-Persist@HPCA 21

Yang, Jian, et al. “An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.” 18th USENIX Conference on Fileand Storage Technologies (FAST 20), 2019, pp. 169-182.

M. Alwadi, V. R. Kommareddy, C. Hughes, S. D. Hommond and A. Awad, "Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems," 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021, pp. 139-152, doi: 10.1109/HPCA51647.2021.00022.
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Adjusting Cache for DRAM+NVM main memory

Processor chip Processor chip

ADR+in-

*Intel Optane = pmem buffer ---{c)Core

e Read slower than write
iMC

[EwWPQ |iley

From CPU

N\
ADR Domain |

oo >@Core
| NN MCH
[ L1

Idle Latency (ns)
~

DDR-T

| |

| Cacheline: 64B _ DRAM NVM

: Controller Optane DIMM | _ _ .

o ... R W a) Write operation b) Read operation.
Figy, \TT Cache :19m (write mirroring).
igf}: XPLine: 256B e . . . . _
o 2D-¥Point Media | Fig. 4: Read/Write operations in Stealth-Persist.

\ - ___""""""""_ ) Stealth-Persist@HPCA 21

(b) Optane DIMM Overview

Yang, Jian, et al. “An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.” 18th USENIX Conference on Fileand Storage Technologies (FAST 20), 2019, pp. 169-182.

M. Alwadi, V. R. Kommareddy, C. Hughes, S. D. Hommond and A. Awad, "Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems," 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021, pp. 139-152, doi: 10.1109/HPCA51647.2021.00022.

36




't.‘ o A
Q%

Adjusting Cache for DRAM+NVM main memory

Processor chip Processor chip

* Intel Optane ---{c)Core --->(c)Core
* Read slower than write ] ]

* Read operation : -

--------

* Blocking operation 15l - i | | [@

* Blocking write? oAl oAl

a) Write operation b) Read operation.
* clflush (write mirroring).

° fSVnC Fig. 4: Read/Write operations in Stealth-Persist.

Write: both DRAM/NVM:; read: load from DRAM

A
&
A A Ren, Yujie, et al. “CrossFS: A Cross-Layered Direct-Access File System.” 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), 2020, pp. 137-154.
AAA M. Alwadi, V. R. Kommareddy, C. Hughes, S. D. Hommond and A. Awad, "Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems," 2021 IEEE International Symposium
A on High-Performance Computer Architecture (HPCA), 2021, pp. 139-152, doi: 10.1109/HPCA51647.2021.00022.
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Cache coloring for high performance

* Page coloring (cache coloring)

* Different colors to physical pages
* Same color 2 same cache set

: 0-5 bits
Intel® Xeon® Processor E5-2667 v3, 2048 sets | 6-16 bits
| I \\/
Cache’s perspective Tag Set Index Line Offset
| |
| - I
. I I
Memory’s perspective | Physical page no. 1 % Page Offset

I Color
' 4KB, so 0-11 bits

* How to use page coloring to put data into different sets

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May 2020),

1540—1554 DOl:https: //dOI Org/10 14778/3397230 3397247
= = X ——— 38 _— /4 %\d’ ‘a ;ﬁ X f
2 5~ & (3 p” ¢
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Cache coloring for high performance
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*Virtual page no = physical page no
* In the charge of OS

* In-page offset

[ 17 bits a
Cache’s perspective Tag Set Index Line Offset
[ 21 bits o
Memory’s perspective | Physical page no. % Page Offset
Color I« 12 bits >
° H Uge Pa ge With huge page, programmers customize in-page layout
o 2 M B, 1G B, =>»data in a page not contending one set, less conflict

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May 2020),
1540-1554. DOI:https://doi.org/10.14778/3397230.3397247 -
o——— j= WY ‘\“H 1 I, s g 39 ~—
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Cache is changing

* ADR - eADR

* A super-capacitor installed to flush all cache lines to
memory (if pesistent) in case of power fail

Tra nsient persistence

VoIatlle cache Cache w/ eADR
Non-volatile memory Non-volatile memory

Taiyu Zhou, Yajuan Du, Fan Yang, Xiaojian Liao, and Youyou Lu. 2023. Efficient Atomic Durability on eADR-Enabled Persistent
Memory. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT '22).
Association for Computing Machinery, New York, NY, USA, 124—134. https://doi.org/10.1145/3559009.3569676

Chongnan Ye, Meng Chen, Qisheng Jiang, and Chundong Wang. 2023. Hercules: Enabling Atomic Durability for Persistent
Memory with Transient Persistence Domain. ACM Trans. Embed. Comput. Syst. Just Accepted (July 2023).
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Summary

* Memory hierarchy is important and interesting

* Developing/optimizing cache management for high
performance

* Utilizing cache management for high performance
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