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Promising Resistive Memory Technologies

• PCM
• Inject current to change material phase

• Resistance determined by phase

• STT-MRAM
• Inject current to change magnet polarity

• Resistance determined by polarity

• Memristors/RRAM/ReRAM
• Inject current to change atomic structure

• Resistance determined by atom distance
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Opportunity: PCM Advantages

• Scales better than DRAM, Flash
• Requires current pulses, which scale linearly with feature size

• Expected to scale to 9nm (2022 [ITRS])

• Prototyped at 20nm (Raoux+, IBM JRD 2008)

• Can be denser than DRAM
• Can store multiple bits per cell due to large resistance range

• Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

• Non-volatile
• Retain data for >10 years at 85℃

• No refresh needed, low idle power
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Phase Change Memory Properties

• Dynamic Energy
• 40 uA Rd, 150 uA Wr
• 2-43x DRAM, 1x NAND Flash

• Endurance
• Writes induce phase change at 650C
• Contacts degrade from thermal expansion/contraction
• 108 writes per cell
• 10-8x DRAM, 103x NAND Flash

• Cell Size
• 9-12F2 using BJT, single-level cells
• 1.5x DRAM, 2-3x NAND     (will scale with feature size, MLC)
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Phase Change Memory: Pros and Cons

• Pros over DRAM
• Better technology scaling (capacity and cost)

• Non volatile → Persistent

• Low idle power (no refresh)

• Cons
• Higher latencies: ~4-15x DRAM (especially write)

• Higher active energy: ~2-50x DRAM (especially write)

• Lower endurance (a cell dies after ~108 writes)

• Reliability issues (resistance drift)

• Challenges in enabling PCM as DRAM replacement/helper:
• Mitigate PCM shortcomings

• Find the right way to place PCM in the system
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PCM-based Main Memory (I)

• How should PCM-based (main) memory be organized?

• Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 
• How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (II)

• How should PCM-based (main) memory be organized?

• Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 
• How to redesign entire hierarchy (and cores) to overcome PCM shortcomings
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Wear Leveling of PCM

• Wear leveling
• Limited write endurance
• A mechanism that tries to make the writes uniform by 

remapping heavily written lines to less frequently written 
lines
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Start-gap algorithm

https://ieeexplore.ieee.org/document/5375309

◼ A start line and a gap line
◼ Gap line: a memory location without useful data
◼ Start line: initially pointing to location 0
◼ Every n writes, gap to move up by one (gap--);
◼ Once start meets gap, start to move down by one (start++).
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STT-MRAM

• A candidate as “Universal Memory”
• Cache, main memory, … 

• Magnetic Tunnel Junction (MTJ) device
• Reference layer: Fixed magnetic orientation
• Free layer: Parallel or anti-parallel

• Magnetic orientation of the free layer determines 
logical state of device

• High vs. low resistance

• Write: Push large current through MTJ to change 
orientation of free layer

• Read: Sense current flow
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STT-MRAM: Pros and Cons

• Pros over DRAM
• Better technology scaling (capacity and cost)
• Non volatile → Persistent
• Low idle power (no refresh)

• Cons
• Higher write latency
• Higher write energy
• Poor density (currently)
• Reliability?

• Another level of freedom
• Can trade off non-volatility for lower write latency/energy (by reducing the size of the MTJ)
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STT-MRAM as cache

• Multi-Retention Level STT-RAM Cache Designs with a Dynamic Refresh 
Scheme [Sun et al., MICRO ’11] 

• Data retention time
• How long data can be retained in a memory cell after being written
• Non-volatility of STT-MRAM is supposed to be 4-10 years

• Observations
• Non-volatility can be relaxed, say, from years to be micro-seconds, by reducing 

switching current ➔ Saving energy and improving write performance
• Any use cases for such relaxed non-volatility?

• L1, L2, L3 caches, with different data retention time
• Data not living for years in caches

• Different retention levels by using different currents
• Refresh scheme needed to avoid data loss

https://www.comp.nus.edu.sg/~wongwf/papers/MICRO44.pdf
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The Impact of Cache

• Binary search vs. linear search
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Linear search

• Read amplification
• Many comparisons before the target key is found
• Worst case: all keys compared
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The less, the better

• To further reduce cache misses
• A sorted array spans contiguous cache lines 
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In-NVM B+-tree

• From root to leaves, nodes well structured
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Smaller LLC, higher performance

• What is the problem？
• A considerable portion of the shared SLLC is dead

• Why？
• LLC accesses are ones missed in L1 and L2

• Locality in LLC not realistic

• LLC uniformly handles accesses

• How to resolve the problem?
• Leveraging reuse locality to selectively allocate LLC space

Jorge Albericio, Pablo Ibáñez, Víctor Viñals, and José M. Llabería. 2013. The reuse cache: downsizing the shared last-level cache. In Proceedings of the 46th Annual 
IEEE/ACM International Symposium on Microarchitecture (MICRO-46). Association for Computing Machinery, New York, NY, USA, 310–321.

Quantity & frequency
Access pattern

Cache management

20

Half to 83.8% LLC 
lines not useful



Reuse locality for allocation

• Reuse locality

• Selective allocation
• Tag and cache line decoupled

• Classic cache, one tag to one cache line
• Now: mores tag as place holders

• Only reused cache line kept
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1. All 200 sets, only 10 sets hit;
2. Most hits to a small fraction of sets.



Selective allocation
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Replicate data for high performance

• What is the problem？
• Multi-cores sharing LLC, different distances to LLC location 
• “Put data closer to my core”

• Why？
• Non-uniform Access Cache (NUCA)

• How to resolve the problem？
• Replicate cache lines for the core

G. Kurian, S. Devadas and O. Khan, "Locality-aware data replication in the Last-Level Cache," 2014 IEEE 20th International Symposium on High Performance 
Computer Architecture (HPCA), 2014, pp. 1-12, doi: 10.1109/HPCA.2014.6835921 
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Run-length is defined as the number of accesses to a cache line 
(at the LLC) from a particular core before a conflicting access by 
another core or before it is evicted.



How to maintain duplicate cache lines？

• Based on reuse
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Init: no replica

In real CPU’s LLC, is it possible to put data closer to a core?

(threshold)



Real LLC slices, time truly differs
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To put data in slices closer to a core

• Method 
• Firstly, revers-engineering the algorithm of cache management
• Secondly, place data according to the management algorithm

• Effect 
• With key-value store, GET performance 12.2%↑
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(EuroSys '19). Association for Computing Machinery, New York, NY, USA, Article 8, 1–17.



Predicting dead blocks

• What is the problem？
• How to efficiently predict what blocks are dead

• Why?
• Many cache lines are dead line (never/hardly used)

• How?
• Sampling

Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010. Sampling Dead Block Prediction for Last-Level Caches. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO '43). IEEE Computer Society, USA, 175–186. DOI:https://doi.org/10.1109/MICRO.2010.24
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Sampling → predicting dead blocks

• Sampling
• Set-associative cache, consistent access pattern

• 2048 sets, pick one from every 64 sets → 32 sets

• No need to record an entire tag, just a part
• Lower 15 bits of a tag

• Partial PC
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Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010. Sampling Dead Block Prediction for Last-Level Caches. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO '43). IEEE Computer Society, USA, 175–186. DOI:https://doi.org/10.1109/MICRO.2010.24

Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C. Steely, and Joel Emer. 2011. SHiP: signature-based hit predictor for high performance caching. In 
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44). Association for Computing Machinery, New York, NY, USA, 430–441. 

SHiP: Signature-based Hit Predictor



Dead blocks, from dead pages

• By studying TLB, many pages are dead-on-arrival (DOA)
• 82% LLTLB entries not used for many apps

• 86% of them DOA

• Dead blocks and dead pages
• > 70% DOA blocks from DOA pages

• Predict dead page (TLB entries)
• Using PC
• Using dead pages to locate dead blocks
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C. Mazumdar, P. Mitra and A. Basu, "Dead Page and Dead Block Predictors: Cleaning TLBs and Caches Together," 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), 
2021, pp. 507-519, doi: 10.1109/HPCA51647.2021.00050.

 Dead pages



Reduce hit rate of non-volatile LLC

• NVM
• Phase-change memory, STT-MRAM, Intel Optane memory
• NVM being used to reshape CPU cache

• e.g., STT-MRAM

• STT-MRAM vs. SRAM
• Higher density ➔ Capacity
• Lower power consumption
• Write/read asymmetry 

• Write costs longer time than read

Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth Manipatruni, Sreenivas Subramoney, Tanay Karnik, Steven Swanson, Ian Young, and Hong Wang. 2018. Density tradeoffs of
non-volatile memory as a replacement for SRAM based last level cache. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA '18). IEEE Press, 315–327.
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Lower NV LLC hits ➔ less congestion

• Increased capacity
• Slower store
• Writes congested at LLC

• Bypassing LLC but writing to memory
• LLC hit rate ↓
• Performance ↑

• What to be bypassed?
• Dead blocks or ones hardly reused
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Lower NV LLC hits ➔ less congestion
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Adjusting Cache for DRAM+NVM main memory

M. Alwadi, V. R. Kommareddy, C. Hughes, S. D. Hammond and A. Awad, "Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems," 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021, pp. 139-152, doi: 10.1109/HPCA51647.2021.00022.
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Stealth-Persist@HPCA 21

• Intel Optane
• Read slower than write

Yang, Jian, et al. “An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.” 18th USENIX Conference on Fileand Storage Technologies (FAST 20), 2019, pp. 169–182.



Adjusting Cache for DRAM+NVM main memory

M. Alwadi, V. R. Kommareddy, C. Hughes, S. D. Hammond and A. Awad, "Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems," 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021, pp. 139-152, doi: 10.1109/HPCA51647.2021.00022.

36

Stealth-Persist@HPCA 21

• Intel Optane
• Read slower than write

Yang, Jian, et al. “An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.” 18th USENIX Conference on Fileand Storage Technologies (FAST 20), 2019, pp. 169–182.

ADR+in-
pmem buffer



Adjusting Cache for DRAM+NVM main memory

M. Alwadi, V. R. Kommareddy, C. Hughes, S. D. Hammond and A. Awad, "Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems," 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), 2021, pp. 139-152, doi: 10.1109/HPCA51647.2021.00022.
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Stealth-Persist@HPCA 21

• Intel Optane
• Read slower than write

• Read operation
• Blocking operation

• Blocking write?
• clflush
• fsync

Ren, Yujie, et al. “CrossFS: A Cross-Layered Direct-Access File System.” 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), 2020, pp. 137–154.

Write: both DRAM/NVM; read: load from DRAM



Cache coloring for high performance

• Page coloring (cache coloring)
• Different colors to physical pages

• Same color → same cache set

• How to use page coloring to put data into different sets

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May 2020),
1540–1554. DOI:https://doi.org/10.14778/3397230.3397247
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Cache coloring for high performance

• Virtual page no → physical page no
• In the charge of OS

• In-page offset

• Huge Page
• 2MB, 1GB, …
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Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May 2020),
1540–1554. DOI:https://doi.org/10.14778/3397230.3397247
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With huge page, programmers customize in-page layout 
➔data in a page not contending one set, less conflict



Cache is changing

• ADR 
• A super-capacitor installed to flush all cache lines to 

memory (if pesistent) in case of power fail
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Volatile cache

Non-volatile memory

Cache w/ eADR

Non-volatile memory

→ eADR

Transient persistence

Taiyu Zhou, Yajuan Du, Fan Yang, Xiaojian Liao, and Youyou Lu. 2023. Efficient Atomic Durability on eADR-Enabled Persistent 
Memory. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT '22). 
Association for Computing Machinery, New York, NY, USA, 124–134. https://doi.org/10.1145/3559009.3569676

Chongnan Ye, Meng Chen, Qisheng Jiang, and Chundong Wang. 2023. Hercules: Enabling Atomic Durability for Persistent 
Memory with Transient Persistence Domain. ACM Trans. Embed. Comput. Syst. Just Accepted (July 2023). 
https://doi.org/10.1145/3607473



Summary

• Memory hierarchy is important and interesting

• Developing/optimizing cache management for high 
performance

• Utilizing cache management for high performance
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