
CS211
Advanced Computer Architecture

L10 Out of Order Execution

Chundong Wang

October 24th, 2025

CS211@ShanghaiTech 1

Cache coloring for high performance

• Page coloring (cache coloring)
• Different colors to physical pages

• Same color → same cache set

• How to use page coloring to put data into different sets

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May
2020), 1540–1554. DOI:https://doi.org/10.14778/3397230.3397247

2

Tag Set Index Line OffsetCache’s perspective

Memory’s perspective Physical page no. Page Offset

Color
4KB , so 0-11 bits

0-5 bits
Intel® Xeon® Processor E5-2667 v3, 2048 sets 6-16 bits

Cache coloring for high performance

• Virtual page no → physical page no
• In the charge of OS

• In-page offset

• Huge Page
• 2MB, 1GB, …

3

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May
2020), 1540–1554. DOI:https://doi.org/10.14778/3397230.3397247

Tag Set Index Line OffsetCache’s perspective

Memory’s perspective Physical page no. Page Offset

17 bits

12 bits

Page Offset

Color

21 bits

With huge page, programmers customize in-page layout
➔data in a page not contending one set, less conflict

Cache is changing

• ADR
• A super-capacitor installed to flush all cache lines to memory (if pesistent) in

case of power fail

4

Volatile cache

Non-volatile memory

Cache w/ eADR

Non-volatile memory

→ eADR

Transient persistence

Taiyu Zhou, Yajuan Du, Fan Yang, Xiaojian Liao, and Youyou Lu. 2023. Efficient Atomic Durability on eADR-Enabled Persistent Memory. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques (PACT '22). Association for Computing Machinery, New York, NY, USA, 124–134.
https://doi.org/10.1145/3559009.3569676

Chongnan Ye, Meng Chen, Qisheng Jiang, and Chundong Wang. 2023. Hercules: Enabling Atomic Durability for Persistent Memory with Transient Persistence
Domain. ACM Trans. Embed. Comput. Syst. Just Accepted (July 2023). https://doi.org/10.1145/3607473

Types of Data Hazards

5

Consider executing a sequence of
rk ← ri op rj

type of instructions
Data-dependence

r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW) hazard

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

Register vs. Memory Dependence

Data hazards due to register operands can be
determined at the decode stage, but data hazards
due to memory operands can be determined only
after computing the effective address

Store: M[r1 + disp1] ← r2

Load: r3 ← M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

6

Data Hazards: An Example

7

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMUL.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

Complex Pipelining: Motivation

Pipelining becomes complex when we want
high performance in the presence of:

• Long latency or partially pipelined floating-point
units

• Memory systems with variable access time

• Multiple arithmetic and memory units

8

Issues in Complex Pipeline Control

9

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different
functional units
• Out-of-order write hazards due to variable latencies of different functional
units
• How to handle exceptions?

Recap: Complex In-Order Pipeline

10

• Delay writeback so all operations
have same latency to W stage
• Write ports never oversubscribed

(one inst. in & one inst. out every
cycle)

• Stall pipeline on long latency
operations, e.g., divides, cache
misses

• Handle exceptions in-order at
commit point

Commit
Point

PC
Inst.
Mem

D Decode X1 X2
Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single-cycle integer
operations?

Complex Pipeline

11

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

Instruction Scheduling

12

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMULT.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

Out-of-order Completion
In-order Issue

13

Latency
I1 FDIV.D f6, f6, f4 4

I2 FLD f2, 45(x3) 1

I3 FMULT.D f0, f2, f4 3

I4 FDIV.D f8, f6, f2 4

I5 FSUB.D f10, f0, f6 1

I6 FADD.D f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

When is it Safe to Issue an Instruction?

Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the
Issue stage can dispatch an instruction

• Is the required function unit available?

• Is the input data available? (RAW?)

• Is it safe to write the destination? (WAR? WAW?)

• Is there a structural conflict at the WB stage?

14

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

15

The instruction i at the Issue stage consults this table

FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

Simplifying the Data Structure
Assuming In-order Issue

17

Suppose the instruction is not dispatched by the Issue stage if a
RAW hazard exists or the required functional unit (FU) is busy,
and that operands are latched by FU on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?

NO: Operands read at issue

YES: Out-of-order completion

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

Simplifying the Data Structure ...

•No WAR hazard
➔ no need to keep src1 and src2

•The Issue stage does not dispatch an instruction in
case of a WAW hazard
➔ a register name can occur at most once in the dest column

•WP[reg#] : a bit-vector to record the registers for
which writes are pending
• These bits are set by the Issue stage and cleared by the WB stage

➔ Each pipeline stage in the FU's must carry the register destination
field and a flag to indicate if it is valid

18

Scoreboard for In-order Issues

19

Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which writes
are pending.

These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?

WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

Scoreboard Dynamics

20

I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3)
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

t0 I1 f6 f6

t1 I2 f2 f6 f6, f2

t2 f6 f2 f6, f2 I2

t3 I3 f0 f6 f6, f0

t4 f0 f6 f6, f0 I1

t5 I4 f0 f8 f0, f8

t6 f8 f0 f0, f8 I3

t7 I5 f10 f8 f8, f10

t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

In-Order Issue Limitations: an example

21

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

In-order issue restriction prevents
instruction 4 from being dispatched

Out-of-Order Issue

• Issue stage buffer holds multiple instructions waiting to issue.

• Decode adds next instruction to buffer if there is space and the
instruction does not cause a WAR or WAW hazard.
• Note: WAR possible again because issue is out-of-order (WAR not possible with

in-order issue and latching of input operands at functional unit)

• Any instruction in buffer whose RAW hazards are satisfied can be issued
(for now, at most one dispatch per cycle). On a write back (WB), new
instructions may get enabled.

22

IF ID WB

ALU Mem

Fadd

Fmul

Issue

Issue Limitations: In-Order & Out-of-Order

23

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

How many instructions can be in the pipeline?

24

Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide any
significant performance improvement!

Number of Registers

Overcoming the Lack of Register Names

25

Floating Point pipelines often cannot be kept filled with
small number of registers.

IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution
in 1967 using on-the-fly register renaming

Issue Limitations: In-Order & Out-of-Order

26

latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4’, f2, f8 4

6 FADD.D f10, f6, f4’ 1

1 2

34

5

6

Any antidependence can be eliminated by renaming.
(renaming ➔ additional storage)
Can it be done in hardware? yes!

X

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

Register Renaming

27

• Decode does register renaming and adds instructions to the issue-stage
instruction reorder buffer (ROB)

➔ renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been satisfied can be
dispatched

➔ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

Renaming Structures

28

Renaming
table &
regfile

Reorder
buffer

Load
Unit

FU FU Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1

t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the Decode
stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

Reorder Buffer Management

29

Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1

t2

.

.

.

tn

ptr2

next to
deallocate

ptr1

next
available

Ins# use exec op p1 src1 p2 src2

Destination registers
are renamed to the
instruction’s slot tag

Is it obvious where an architectural register value is?
No

Renaming & Out-of-order Issue
An example

30

• When are tags in sources
replaced by data?

• When can a name be reused?

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes

Renaming & Out-of-order Issue
An example

31

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p data
f1
f2
f3
f4
f5
f6
f7
f8

t1

1 1 0 LD

t2

2 1 0 LD

5 1 0 DIV 1 v1 0 t4
4 1 0 SUB 1 v1 1 v1

t4

3 1 0 MUL 0 t2 1 v1

t3

t5

v1

1 1 1 LD 0

4 1 1 SUB 1 v1 1 v14 0

v4

5 1 0 DIV 1 v1 1 v4

2 1 1 LD 2 0

3 1 0 MUL 1 v2 1 v1

⚫ Insert instruction in ROB
⚫ Issue instruction from ROB
⚫ Complete instruction
⚫ Empty ROB entry

Reorder Buffer Management

32

t1

t2

.

.

.

tn

ptr2

next to
deallocate

ptr1

next
available

Ins# use exec op p1 src1 p2 src2

Destination registers
are renamed to the
instruction’s slot tag

ROB managed circularly
•“exec” bit is set when instruction begins execution
•When an instruction completes, its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

IBM 360/91 Floating-Point Unit
R. M. Tomasulo, 1967

33

Mult

1

1
2
3
4
5
6

load
buffers
(from
memory)

1
2
3
4

Adder

1
2
3

Floating-Point
Regfile

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute
instruction
templates
by
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data

Out-of-Order Fades into Background

Renaming and Out-of-order execution was first implemented in
1969 in IBM 360/91 but was effective only on a very small class
of problems and thus did not show up in the subsequent
models until mid-nineties.
• Did not address the memory latency problem which turned

out be a much bigger issue than FU latency
• Precise traps

• Imprecise traps complicate debugging and OS code
• Note, precise interrupts are relatively easy to provide

• Branch prediction
• Amount of exploitable instruction-level parallelism (ILP) limited by control hazards

Also, simpler machine designs in new technology beat
complicated machines in old technology

• Big advantage to fit processor & caches on one chip
• Microprocessors had era of 1%/week performance scaling

34

In-Order Commit for Precise Traps

• Instructions fetched and decoded into instruction reorder
buffer in-order

• Execution is out-of-order (➔ out-of-order completion)

• Commit (write-back to architectural state, i.e., regfile &
memory) is in-order

• Temporary storage needed to hold results before commit
(shadow registers and store buffers)

35

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Trap?
Kill

Kill Kill

Inject handler PC

Separating Completion from Commit

•Re-order buffer holds register results from
completion until commit
• Entries allocated in program order during decode
• Buffers completed values and exception state until in-order commit

point
• Completed values can be used by dependents before committed

(bypassing)
• Each entry holds program counter, instruction type, destination

register specifier and value if any, and exception status (info often
compressed to save hardware)

•Memory reordering needs special data structures
• Speculative store address and data buffers
• Speculative load address and data buffers

36

Phases of Instruction Execution

37

Fetch: Instruction bits retrieved from
instruction cache.

I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to
functional units. When execution completes,
all results and exception flags are available.

Decode: Instructions dispatched to
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

PC

Commit

Decode/Rename

In-Order versus Out-of-Order Phases

• Instruction fetch/decode/rename always in-order
• Need to parse ISA sequentially to get correct semantics

• Proposals for speculative OoO instruction fetch, e.g., Multiscalar.
Predict control flow and data dependencies across sequential
program segments fetched/decoded/executed in parallel, fixup if
prediction wrong

•Dispatch (place instruction into machine buffers to
wait for issue) also always in-order
• Some use “Dispatch” to mean “Issue”, but not in CS211 lectures

38

In-Order versus Out-of-Order Issue

•In-order issue:
• Issue stalls on RAW dependencies or structural hazards,

or possibly WAR/WAW hazards
• Instruction cannot issue to execution units unless all

preceding instructions have issued to execution units

•Out-of-order issue:
• Instructions dispatched in program order to reservation

stations (or other forms of instruction buffer) to wait for
operands to arrive, or other hazards to clear

• While earlier instructions wait in issue buffers, following
instructions can be dispatched and issued out-of-order

39

In-Order versus Out-of-Order Completion

•All but the simplest machines have out-of-order
completion, due to different latencies of functional
units and desire to bypass values as soon as
available

•Classic RISC 5-stage integer pipeline just barely has
in-order completion
• Load takes two cycles, but following one-cycle integer op completes

at same time, not earlier

• Adding pipelined FPU immediately brings OoO completion

40

In-Order versus Out-of-Order Commit

• In-order commit supports precise traps, standard
today
• Some proposals to reduce the cost of in-order commit by retiring

some instructions early to compact reorder buffer, but this is just an
optimized in-order commit

•Out-of-order commit was effectively what early
OoO machines implemented (imprecise traps) as
completion irrevocably changed machine state
• i.e., complete == commit in these machines

41

Conclusion

• In-order completion

• Out-of-order completion

• In-order issue

• Out-of-order issue

• In-order commit

• Out-of-order commit

CS211@ShanghaiTech 42

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Krste Asanovic (UC Berkeley)

• Prof. Yonghong Yan (UNC Charlotte)

• Prof. Daniel Sanchez (MIT)

CS211@ShanghaiTech 43

	Default Section
	Slide 1: CS211 Advanced Computer Architecture L10 Out of Order Execution

	Introduction
	Slide 2: Cache coloring for high performance
	Slide 3: Cache coloring for high performance
	Slide 4: Cache is changing
	Slide 5: Types of Data Hazards
	Slide 6: Register vs. Memory Dependence
	Slide 7: Data Hazards: An Example
	Slide 8: Complex Pipelining: Motivation
	Slide 9: Issues in Complex Pipeline Control
	Slide 10: Recap: Complex In-Order Pipeline
	Slide 11: Complex Pipeline
	Slide 12: Instruction Scheduling
	Slide 13: Out-of-order Completion In-order Issue
	Slide 14: When is it Safe to Issue an Instruction?
	Slide 15: A Data Structure for Correct Issues Keeps track of the status of Functional Units
	Slide 17: Simplifying the Data Structure Assuming In-order Issue
	Slide 18: Simplifying the Data Structure ...
	Slide 19: Scoreboard for In-order Issues
	Slide 20: Scoreboard Dynamics
	Slide 21: In-Order Issue Limitations: an example
	Slide 22: Out-of-Order Issue
	Slide 23: Issue Limitations: In-Order & Out-of-Order
	Slide 24: How many instructions can be in the pipeline?
	Slide 25: Overcoming the Lack of Register Names
	Slide 26: Issue Limitations: In-Order & Out-of-Order
	Slide 27: Register Renaming
	Slide 28: Renaming Structures
	Slide 29: Reorder Buffer Management
	Slide 30: Renaming & Out-of-order Issue An example
	Slide 31: Renaming & Out-of-order Issue An example
	Slide 32: Reorder Buffer Management
	Slide 33: IBM 360/91 Floating-Point Unit R. M. Tomasulo, 1967
	Slide 34: Out-of-Order Fades into Background
	Slide 35: In-Order Commit for Precise Traps
	Slide 36: Separating Completion from Commit
	Slide 37: Phases of Instruction Execution
	Slide 38: In-Order versus Out-of-Order Phases
	Slide 39: In-Order versus Out-of-Order Issue
	Slide 40: In-Order versus Out-of-Order Completion
	Slide 41: In-Order versus Out-of-Order Commit
	Slide 42: Conclusion

	Acknowledgement
	Slide 43: Acknowledgements

