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Cache coloring for high performance

• Page coloring (cache coloring)
• Different colors to physical pages

• Same color → same cache set

• How to use page coloring to put data into different sets

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May
2020), 1540–1554. DOI:https://doi.org/10.14778/3397230.3397247
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Tag Set Index Line OffsetCache’s perspective

Memory’s perspective Physical page no. Page Offset

Color
4KB , so 0-11 bits

0-5 bits
Intel® Xeon® Processor E5-2667 v3, 2048 sets 6-16 bits



Cache coloring for high performance

• Virtual page no → physical page no
• In the charge of OS

• In-page offset

• Huge Page
• 2MB, 1GB, …
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Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May
2020), 1540–1554. DOI:https://doi.org/10.14778/3397230.3397247

Tag Set Index Line OffsetCache’s perspective

Memory’s perspective Physical page no. Page Offset

17 bits

12 bits

Page Offset

Color

21 bits

With huge page, programmers customize in-page layout 
➔data in a page not contending one set, less conflict



Cache is changing

• ADR 
• A super-capacitor installed to flush all cache lines to memory (if pesistent) in 

case of power fail

4

Volatile cache

Non-volatile memory

Cache w/ eADR

Non-volatile memory

→ eADR

Transient persistence

Taiyu Zhou, Yajuan Du, Fan Yang, Xiaojian Liao, and Youyou Lu. 2023. Efficient Atomic Durability on eADR-Enabled Persistent Memory. In Proceedings of the 
International Conference on Parallel Architectures and Compilation Techniques (PACT '22). Association for Computing Machinery, New York, NY, USA, 124–134. 
https://doi.org/10.1145/3559009.3569676

Chongnan Ye, Meng Chen, Qisheng Jiang, and Chundong Wang. 2023. Hercules: Enabling Atomic Durability for Persistent Memory with Transient Persistence 
Domain. ACM Trans. Embed. Comput. Syst. Just Accepted (July 2023). https://doi.org/10.1145/3607473



Types of Data Hazards 
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Consider executing a sequence of 
rk ← ri op  rj

type of instructions
Data-dependence

r3 ←  r1 op r2 Read-after-Write  
r5 ←  r3 op r4 (RAW) hazard

Anti-dependence
r3 ←  r1 op r2 Write-after-Read 
r1 ←  r4 op r5 (WAR) hazard

Output-dependence
r3 ←  r1 op r2 Write-after-Write 
r3 ←  r6 op r7 (WAW) hazard



Register vs. Memory Dependence

Data hazards due to register operands can be 
determined at the decode stage, but data hazards 
due to memory  operands can be determined only 
after computing the effective address

Store: M[r1 + disp1] ← r2  

Load: r3 ← M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

6



Data Hazards: An Example
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I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMUL.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards



Complex Pipelining: Motivation

Pipelining becomes complex when we want 
high performance in the presence of:

• Long latency or partially pipelined floating-point 
units

• Memory systems with variable access time

• Multiple arithmetic and memory units

8



Issues in Complex Pipeline Control
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IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not 
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different 
functional units
• Out-of-order write hazards due to variable latencies of different functional 
units
• How to handle exceptions?



Recap: Complex In-Order Pipeline
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• Delay writeback so all operations 
have same latency to W stage
• Write ports never oversubscribed 

(one inst. in & one inst. out every 
cycle)

• Stall pipeline on long latency 
operations, e.g., divides, cache 
misses

• Handle exceptions in-order at 
commit point

Commit 
Point

PC
Inst. 
Mem

D Decode X1 X2
Data 
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined 
divider

How to prevent increased writeback latency 
from slowing down single-cycle integer 
operations?



Complex Pipeline
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IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write 
hazards without 
equalizing all pipeline 
depths and without 
bypassing?



Instruction Scheduling
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I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMULT.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6



Out-of-order Completion
In-order Issue
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Latency
I1 FDIV.D f6, f6, f4 4

I2 FLD f2, 45(x3) 1

I3 FMULT.D f0, f2, f4 3

I4 FDIV.D f8, f6, f2 4

I5 FSUB.D f10, f0, f6 1

I6 FADD.D f6, f8, f2 1

in-order comp 1   2

out-of-order comp  1   2

1 2 3   4        3 5   4 6   5 6

2 3   1 4   3 5   5 4 6   6



When is it Safe to Issue an Instruction?

Suppose a data structure keeps track of all the 
instructions in all the functional units

The following checks need to be made before the 
Issue stage can dispatch an instruction

• Is the required function unit available?

• Is the input data available?   (RAW?)

• Is it safe to write the destination? (WAR? WAW?)

• Is there a structural conflict at the WB stage?

14



A Data Structure for Correct Issues
Keeps track of the status of Functional Units
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The instruction i at the Issue stage consults this table

FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div



Simplifying the Data Structure 
Assuming In-order Issue
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Suppose the instruction is not dispatched by the Issue stage if a 
RAW hazard exists or the required functional unit (FU) is busy, 
and that operands are latched by FU on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?

NO: Operands read at issue

YES: Out-of-order completion

Anti-dependence
r3 ←  r1 op r2 Write-after-Read 
r1 ←  r4 op r5 (WAR) hazard

Output-dependence
r3 ←  r1 op r2 Write-after-Write 
r3 ←  r6 op r7 (WAW) hazard



Simplifying the Data Structure ...

•No WAR hazard 
➔ no need to keep src1 and src2

•The Issue stage does not dispatch an instruction in 
case of a WAW hazard
➔ a register name can occur at most once in the dest column

•WP[reg#] : a bit-vector to record the registers for 
which writes are pending
• These bits are set by the Issue stage and cleared by the WB stage

➔ Each pipeline stage in the FU's must carry the register destination 
field and a flag to indicate if it is valid

18



Scoreboard for In-order Issues
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Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which writes 
are pending. 

These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest src1 src2) 
against the scoreboard (Busy & WP) to dispatch

FU available? 
RAW?
WAR?

WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]



Scoreboard Dynamics
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I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3) 
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved 
Int(1) Add(1)  Mult(3)   Div(4)    WB for Writes

t0  I1 f6 f6

t1  I2 f2 f6 f6, f2

t2 f6 f2 f6, f2 I2

t3  I3 f0 f6 f6, f0

t4 f0 f6 f6, f0 I1

t5  I4 f0 f8 f0, f8

t6 f8 f0 f0, f8 I3

t7  I5 f10 f8 f8, f10

t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6



In-Order Issue Limitations: an example
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latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) .  .  .  .  .  .  2 3 4 4 3 5 .  .  . 5 6 6

1 2

34

5

6

In-order issue restriction prevents 
instruction 4 from being dispatched



Out-of-Order Issue

• Issue stage buffer holds multiple instructions waiting to issue.

• Decode adds next instruction to buffer if there is space and the 
instruction does not cause a WAR or WAW hazard.
• Note: WAR possible again because issue is out-of-order (WAR not possible with 

in-order issue and latching of input operands at functional unit)

• Any instruction in buffer whose RAW hazards are satisfied can be issued 
(for now, at most one dispatch per cycle). On a write back (WB), new 
instructions may get enabled.

22

IF ID WB

ALU Mem

Fadd

Fmul

Issue



Issue Limitations: In-Order & Out-of-Order
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latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) .  .  .  .  .  .  2 3 4 4 3 5 .  .  . 5 6 6

1 2

34

5

6

Out-of-order: 1 (2,1) 4 4 .  .  .  .  2 3  .  .  3 5 .  .  . 5 6 6

Out-of-order execution did not allow any significant improvement!



How many instructions can be in the pipeline?
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Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide any 
significant performance improvement!

Number of Registers



Overcoming the Lack of Register Names
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Floating Point pipelines often cannot be kept filled with 
small number of registers.

IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than 
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution 
in 1967 using on-the-fly register renaming



Issue Limitations: In-Order & Out-of-Order
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latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4’, f2, f8 4

6 FADD.D f10, f6, f4’ 1

1 2

34

5

6

Any antidependence can be eliminated by renaming.
(renaming ➔ additional storage)  
Can it be done in hardware? yes!

X

In-order: 1 (2,1) .  .  .  .  .  .  2 3 4 4 3 5 .  .  . 5 6 6
Out-of-order: 1 (2,1) 4 4 5  .  .  .  2 (3,5) 3 6 6



Register Renaming
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• Decode does register renaming and adds instructions to the issue-stage 
instruction reorder buffer (ROB)

➔ renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been satisfied can be 
dispatched

➔ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue



Renaming Structures
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Renaming 
table &
regfile

Reorder 
buffer

Load
Unit

FU FU Store
Unit

< t, result >

Ins#   use  exec   op    p1    src1   p2   src2 t1

t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the Decode 
stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the 
tag by its value
is an expensive 
operation



Reorder Buffer Management
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Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1

t2

.

.

.

tn

ptr2

next to 
deallocate

ptr1

next
available

Ins#     use   exec      op     p1     src1      p2      src2

Destination registers 
are renamed to the 
instruction’s slot tag

Is it obvious where an architectural register value is? 
No 



Renaming & Out-of-order Issue
An example
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• When are tags in sources 
replaced by data?

• When can a name be reused?

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec   op  p1   src1   p2  src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p    data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes



Renaming & Out-of-order Issue
An example
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1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec   op  p1   src1   p2  src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p    data
f1
f2
f3
f4
f5
f6
f7
f8

t1

1          1        0        LD     

t2

2          1        0        LD     

5          1        0        DIV       1        v1           0         t4     
4          1        0        SUB     1        v1           1         v1

t4

3          1        0        MUL     0        t2            1         v1

t3

t5

v1

1          1        1        LD     0

4          1        1        SUB     1        v1           1         v14           0

v4

5          1        0        DIV       1        v1           1         v4     

2          1        1        LD     2           0     

3          1        0        MUL     1        v2            1         v1

⚫ Insert instruction in ROB
⚫ Issue instruction from ROB
⚫ Complete instruction
⚫ Empty ROB entry 



Reorder Buffer Management
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t1

t2

.

.

.

tn

ptr2

next to 
deallocate

ptr1

next
available

Ins#     use   exec      op     p1     src1      p2      src2

Destination registers 
are renamed to the 
instruction’s slot tag

ROB managed circularly
•“exec” bit is set when instruction begins execution 
•When an instruction completes, its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free



IBM 360/91 Floating-Point Unit
R. M. Tomasulo, 1967
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Mult

1

1
2
3
4
5
6

load
buffers
(from 
memory)

1
2
3
4

Adder

1
2
3

Floating-Point
Regfile

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available 
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute 
instruction 
templates
by 
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data



Out-of-Order Fades into Background

Renaming and Out-of-order execution was first implemented in 
1969 in IBM 360/91 but was effective only on a very small class 
of problems and thus did not show up in the subsequent 
models until mid-nineties.
• Did not address the memory latency problem which turned 

out be a much bigger issue than FU latency
• Precise traps

• Imprecise traps complicate debugging and OS code
• Note, precise interrupts are relatively easy to provide

• Branch prediction
• Amount of exploitable instruction-level parallelism (ILP) limited by control hazards

Also, simpler machine designs in new technology beat 
complicated machines in old technology

• Big advantage to fit processor & caches on one chip
• Microprocessors had era of 1%/week performance scaling

34



In-Order Commit for Precise Traps

• Instructions fetched and decoded into instruction reorder 
buffer in-order

• Execution is out-of-order ( ➔ out-of-order completion) 

• Commit (write-back to architectural state, i.e., regfile & 
memory) is in-order

• Temporary storage needed to hold results before commit 
(shadow registers and store buffers) 

35

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Trap?
Kill

Kill Kill

Inject handler PC



Separating Completion from Commit

•Re-order buffer holds register results from 
completion until commit
• Entries allocated in program order during decode
• Buffers completed values and exception state until in-order commit 

point
• Completed values can be used by dependents before committed 

(bypassing)
• Each entry holds program counter, instruction type, destination 

register specifier and value if any, and exception status (info often 
compressed to save hardware)

•Memory reordering needs special data structures
• Speculative store address and data buffers
• Speculative load address and data buffers

36



Phases of Instruction Execution
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Fetch: Instruction bits retrieved from 
instruction cache.

I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to 
functional units. When execution completes, 
all results and exception flags are available.

Decode: Instructions dispatched to 
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates 
architectural state (aka “graduation”), or 
takes precise trap/interrupt.

PC

Commit

Decode/Rename



In-Order versus Out-of-Order Phases

• Instruction fetch/decode/rename always in-order
• Need to parse ISA sequentially to get correct semantics

• Proposals for speculative OoO instruction fetch, e.g., Multiscalar.  
Predict control flow and data dependencies across sequential 
program segments fetched/decoded/executed in parallel, fixup if 
prediction wrong

•Dispatch (place instruction into machine buffers to 
wait for issue) also always in-order
• Some use “Dispatch” to mean “Issue”, but not in CS211 lectures

38



In-Order versus Out-of-Order Issue

•In-order issue:
• Issue stalls on RAW dependencies or structural hazards, 

or possibly WAR/WAW hazards
• Instruction cannot issue to execution units unless all 

preceding instructions have issued to execution units

•Out-of-order issue:
• Instructions dispatched in program order to reservation 

stations (or other forms of instruction buffer) to wait for 
operands to arrive, or other hazards to clear

• While earlier instructions wait in issue buffers, following 
instructions can be dispatched and issued out-of-order

39



In-Order versus Out-of-Order Completion

•All but the simplest machines have out-of-order 
completion, due to different latencies of functional 
units and desire to bypass values as soon as 
available

•Classic RISC 5-stage integer pipeline just barely has 
in-order completion
• Load takes two cycles, but following one-cycle integer op completes 

at same time, not earlier

• Adding pipelined FPU immediately brings OoO completion

40



In-Order versus Out-of-Order Commit

• In-order commit supports precise traps, standard 
today
• Some proposals to reduce the cost of in-order commit by retiring 

some instructions early to compact reorder buffer, but this is just an 
optimized in-order commit

•Out-of-order commit was effectively what early 
OoO machines implemented (imprecise traps) as 
completion irrevocably changed machine state
• i.e., complete == commit in these machines

41



Conclusion

• In-order completion

• Out-of-order completion

• In-order issue

• Out-of-order issue

• In-order commit

• Out-of-order commit

CS211@ShanghaiTech 42
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