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Cache coloring for high performance

 Page coloring (cache coloring)

» Different colors to physical pages
* Same color = same cache set

Intel® Xeon® Processor E5-2667 v3, 2048 sets

Cache’s perspective

Memory’s perspective

* How to use page coloring to put data into different sets

0-5 bits

| 6-16 bits
jv
Tag Set Index Line Offset
| |
Physical page no. : W Pag'e Offset
|

Color

4KB, so 0-11 bits

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May

2020), 1540-1554. DOI:https://doi.org/10.14778/3397230.3397247
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Cache coloring for high performance

* Virtual page no = physical page no
* In the charge of OS

* In-page offset

|« 17 bits >
Cache’s perspective Tag Set Index Line Offset
[ 21 bits gl
. 7
Memory’s perspective| Physical page no. % Page Offset
Colorl 12 bits—>

* Huge Page
* 2MB, 1GB, ...

With huge page, programmers customize in-page layout
=>»data in a page not contending one set, less conflict

Kefei Wang, Jian Liu, and Feng Chen. 2020. Put an elephant into a fridge: optimizing cache efficiency for in-memory key-value stores. Proc. VLDB Endow. 13, 9 (May
2020), 1540-1554. DOI:https://doi.org/10.14778/3397230.3397247
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Cache is changing

* ADR = eADR

* A super-capacitor installed to flush all cache lines to memory (if pesistent) in
case of power fail

Transient persistence

VoIatlle cache Cache w/ eADR
Non-volatile memory Non-volatile memory

Taiyu Zhou, Yajuan Du, Fan Yang, Xiaojian Liao, and Youyou Lu. 2023. Efficient Atomic Durability on eADR-Enabled Persistent Memory. In Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques (PACT '22). Association for Computing Machinery, New York, NY, USA, 124-134.
https://doi.org/10.1145/3559009.3569676

Chongnan Ye, Meng Chen, Qisheng Jiang, and Chundong Wang. 2023. Hercules: Enabling Atomic Durability for Persistent Memory with Transient Persistence
Domain. ACM Trans. Embed. Comput. Syst. Just Accepted (July 2023). https://doi.org/10.1145/3607473
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Types of Data Hazards

Consider executing a sequence of
[y <1 op
type of instructions
Data-dependence
rs §r1 opr, Read-after-Write
s & ryopr, (RAW) hazard

Anti-dependence
ry& r,opr, Write-after-Read
rl‘(:4 op I (WAR) hazard
Output-dependence
ry<& rpopr, Write-after-Write
<~r3 & rgopry (WAW) hazard
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Register vs. Memory Dependence

Data hazards due to register operands can be
determined at the decode stage, but data hazards
due to memory operands can be determined only
after computing the effective address

Store: M[rl + displ] & r2
Load: r3 < M[rd4d + disp2]

Does (rl + displ) = (r4 + disp2) °?
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Data Hazards: An Example

/, FDIV.D _f6 f6, f4

I FLD

I FMUL.D

I, FDIV.D

I FSUB.D

I FADD.D \f6, 8, f2
RAW Hazards
WAR Hazards

WAW Hazards
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Complex Pipelining: Motivation

Pipelining becomes complex when we want
high performance in the presence of:

* Long latency or partially pipelined floating-point
units

* Memory systems with variable access time
* Multiple arithmetic and memory units
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Issues in Complex Pipeline Control

e Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
e Structural conflicts at the write-back stage due to variable latencies of different

functional units
e Qut-of-order write hazards due to variable latencies of different functional

units

e How to handle exceptions?
ALU > Mem
IF ™ ID [>flssue % WB
Fadd
GPRs
FPRs
Fmul
.
[}

Fdiv




Recap: Complex In-Order Pipeline
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Data
Mem

Inst. Decode |{ GPRs
Mem
* Delay writeback so all operations Y
have same latency to W stage R
] S

* Write ports never oversubscribed
(oneinst. in & one inst. out every

cycle)

« Stall pipeline on long latency
operations, e.g., divides, cache

misses

* Handle exceptions in-order at

commit point

How to prevent increased writeback latency

from slowing down single-cycle integer

operations?

FMul

[FDiv

npipelin
divider

i
= 3
EB=

i

Commit
Point

10



Complex Pipeline
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ALU T

Mem

/

IF " ID |—

Fadd

WB

Fmul

Can we solve write
hazards without

equalizing all pipeline
depths and without

Fdiv

|

bypassing?

11



Instruction Scheduling

I, FDIV.D _fe, f6, f4
I, FLD
I FMULT.D
1, FDIV.D
Is FSUB.D
17
-
I, FADD.D \f6 /‘\
Valid orderings:
out-of-order |, / /5 l, /s I

out-of-order I l I I5 l4 ls

12



Out-of-order Completion
In-order Issue

Iy

in-order comp

out-of-ordercomp 1 2 2 3 1 4

FDIV.D

FLD

FMULT.D

FDIV.D

FSUB.D

FADD.D

f6,
f2,
fo,
f8,
f10,

fe,

3

f6,
45(x3)
f2,
f6,
fo,

f8,

12® @123 4w

5 3

|~

f4

fa

f2

f6

f2

[~
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Latency
4
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When is it Safe to Issue an Instruction?

Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the
Issue stage can dispatch an instruction

* |s the required function unit available?

* |s the input data available? (RAW?)

* |s it safe to write the destination? (WAR? WAW?)
Is there a structural conflict at the WB stage?



A Data Structure for Correct Issues
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Keeps track of the status of Functional Units

Name

Busy

Op Dest Srcl Src2

Int
Mem

Add1
Add?2
Add3

Multl
Mult2

Div

The instruction i at the Issue stage consults this table

FU available?
RAW?
WAR?
WAW?

check the busy column

search the dest column for i's sources
search the source columns for i's destination
search the dest column for i's destination

An entry is added to the table if no hazard is detected,;
An entry is removed from the table after Write-Back

15
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Simplifying the Data Structure
Assuming In-order Issue

Suppose the instruction is not dispatched by the Issue stage if a
RAW hazard exists or the required functional unit (FU) is busy,
and that operands are latched by FU on issue:

Can the dispatched instruction cause a
WAR hazard ?

NO: Operands read at issue

WAW hazard ?
YES: Out-of-order completion

AuotipdiégaptertEnce
ryé& rpoph, Write-after-Réate
r, & rg0Opry (WAR)Hzezzarct

17
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Simplifying the Data Structure ...

* No WAR hazard

=>» no need to keep srcl and src2

* The Issue stage does not dispatch an instruction in
case of a WAW hazard

=» a register name can occur at most once in the dest column

* WP[reg#] : a bit-vector to record the registers for

which writes are pending

* These bits are set by the Issue stage and cleared by the WB stage

=» Each pipeline stage in the FU's must carry the register destination
field and a flag to indicate if it is valid
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Scoreboard for In-order Issues
Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)
These bits are hardwired to FU's.

WP|[reg#] : a bit-vector to record the registers for which writes

are pending.
These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest srcl src2)
against the scoreboard (Busy & WP) to dispatch

FU available? Busy[FU#]
RAW? WP[src1] or WP[src2]

WAR? cannot arise
WAW ? WP[dest]

19



Scoreboard Dynamics
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Functional Unit Status Registers Reserved
Int(1),Add(1), Mult(3) Div(4) {WB for Writes
to|, f6 f6
t1|1, 2 f6 f6, f2
t2 f6| |2 f6, 2 I,
t3(1; fo f6 f6, fO
t4 fq f6 f6, fO I
t5 fO fo,
t6 fo fo, I
t7 |1 f10 , f10
t8 f10 ,
t9
t10|7, f6 f6
t1i] f6 f6 Is
I; FDIV.D f6, fe, f4
I, FLD f2, 45(x3)
I FMULT.D fo, f2, f4
Is FSUB.D f10,  fO, f6
I FADD.D fe, f8, f2 20



In-Order Issue Limitations: an example

1 FLD

2 FLD

3 FMULT.D
4 FSUB.D
5 FDIV.D
6 FADD.D
In-order:

f2,
f4,
f6,
f8,
f4,

f10,

1(2,1). . ..

N\

34(x2)
45(x3)
f4,
f2,
f2,

f6,

latency

1

long
f2 3
f2 1
f8 4
f4 1

. 2344 35.

. .56

T B R Bk
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(o))

In-order issue restriction prevents
instruction 4 from being dispatched

21
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ALU‘ " Mem

V7

IF |1 ID p—issue WB

\

Fadd

Fmul

* |ssue stage buffer holds multiple instructions waiting to issue.

* Decode adds next instruction to buffer if there is space and the
instruction does not cause a WAR or WAW hazard.

* Note: WAR possible again because issue is out-of-order (WAR not possible with
in-order issue and latching of input operands at functional unit)

* Any instruction in buffer whose RAW hazards are satisfied can be issued
(for now, at most one dispatch per cycle). On a write back (WB), new
instructions may get enabled.



Issue Limitations: In-Order & Out-of-Order &~

1 FLD f2,
2 FLD f4,
3 FMULT.D f6,
4 FSUB.D f8,
5 FDIV.D f4,
6 FADD.D f10,
In-order: 1(2,1). .

Out-of-order: 1(2,1)44. . . .

34(x2)
45(x3)
f4,
f2,
f2,

f6,

f2

f2

f8

f4

ShanghaiTech University

o8

T B R Bk

latency

long
3

1

5. ..
5

o o
a O
(o)} le))

Out-of-order execution did not allow any significant improvement!

23
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How many instructions can be in the pipeline?

Which features of an ISA limit the number of
instructions in the pipeline?

Number of Registers

Out-of-order dispatch by itself does not provide any
significant performance improvement!
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Overcoming the Lack of Register Names

Floating Point pipelines often cannot be kept filled with

small number of registers.
IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution
in 1967 using on-the-fly register renaming



Issue Limitations: In-Order & Out—of-Order
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latency
1 FLD f2, 34(x2)
2 FLD f4, 45(x3) long \‘
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2 1
5 FDIV.D f4’, f2, f8 4
6 FADD.D f10, f6, f4’ 1 \
In-order: 1(2,1)...... 2344 35...566

Qut-of-order:

1(2,1)445 . . .

2(3,5)366

Any antidependence can be eliminated by renaming.
(renaming = additional storage)
Can it be done in hardware? yes!

26



Y B A Bk

g4 i, o=
1% “‘:j ShanghaiTech University

BT
ECH

Register Renaming

l ALUT |Mem J
IF || ID —+lssue .

WB
Fadd 7

Fmul

 Decode does register renaming and adds instructions to the issue-stage
instruction reorder buffer (ROB)

=>» renaming makes WAR or WAW hazards impossible

* Any instruction in ROB whose RAW hazards have been satisfied can be
dispatched

=» Qut-of-order or dataflow execution

27
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Renaming Structures

Renaming .
table &
regfile ) |
Ins# Juse |exec| op |[pl| srcl |p2] src2 t;
Reorder t;
buffer
tn
Replacing the |
tag by its value b3 b3 I } l
IS an expensive Load FU U Store
operation Unit Unit
| | | <t, result >

e Instruction template (i.e., tag t) is allocated by the Decode
stage, which also associates tag with register in regfile
e When an instruction completes, its tag is deallocated

28
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Reorder Buffer Management
Ins# use exec op pl srcl p2 src2
ptr,
next to

—_—
deallocate . _
Destination reglsters

are renamed to the
instruction’s slot tag

ptr,
next

—

available

Instruction slot is candidate for execution when:
e It holds a valid instruction (“use” bit is set)
e |t has not already started execution (“exec” bit is clear)
e Both operands are available (p1 and p2 are set)

Is it obvious where an architectural register value is?
No 29



Renaming & Out-of-order Issue

An example
Renaming table

f1
£2
f3
f4
f5
f6
£7
f8

Data (v;) / Tag (t)

p data

EwBHRZKRT
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Reorder buffer

Ins# use exec op pl srcl p2 src2

1FLD

2 FLD

3 FMULT.D
4 FSUB.D
5 FDIV.D

6 FADD.D

34(x2)
45(x3)
f4,
f2,
f2,

f2
f2
f8
f4

e When are tags in sources

replaced by data?
Whenever an FU produces data

e When can a name be reused?
Whenever an instruction completes

30



Renaming & Out-of-order Issue

An example
Renaming table

Reorder buffer

{&“\ %

I

%, 2
ERpAHE
zagza
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p data Ins# use exec op pl srcl p2 src2
f1 1 0| 0 | LD t;
f2 v 2 | o] a | t,
f3 3 1|0 |[MuL D] w vl ts
f4 b 4 Do fsuB |1 | w1 vl t,
fo 5 [1]o [ov [1] w 4 ts
f6 t3 ‘
f7
f8 v4
Data (v;) / Tag (t)

1FLD 2, 34(x2)

2 FLD f4, 45(x3) ® |Insert instruction in ROB

3 FMULT.D f6, f4, f2 ® [ssue instruction from ROB

4 FSUB.D f8, f2, f2 ® Complete instruction

5FDIV.D 4, £, f8 ® Empty ROB entry

6 FADD.D f10, fo, f4

31



R LT

¢/ ShanghaiTech University

Reorder Buffer Management

Ins# use exec op pl srcl p2 src2

ptr,
next to
deallocate

Destination registers
are renamed to the
instruction’s slot tag

ptr,
next

—

available

ROB managed circularly
e “exec” bit is set when instruction begins execution
e\When an instruction completes, its “use” bit is marked free
e ptr, is incremented only if the “use” bit is marked free

32



IBM 360/91 Floating-Point Unit

R. M. Tomasulo, 1967
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Floating-Point
Regfile

1|p|tag/data load instructions 1 0| tag/data
2|p|tag/data )
p|tag/data buffers 2 |p|tag/data [*
3 tag/data
p|tag/data | (from 3 |p|tag
4 dat 4 |p|tag/data
p |tag/data memory)
5(p|tag/data .
6
Distribute I
instruction 1 p|tag/data |p|tag/data 11 1 3
2 |p|tag/data |p|tag/data| 1|p|tag/data|p]|tag/data
templates 3 |p|tag/data |[p|tag/data| 2{p|tag/data |p|tag/data
by
functional \ Adder / \ Mult /
units
, | < tag, result > |
0 ta,c;; Jdata] Common bus ensures that data is made available
buffers - : : - L -
store p|tag/data| immediately to all the instructions waiting for it.
(to memory) |p|tag/data

Match tag, if equal, copy value & set presence

a7

b”.

33
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Out-of-Order Fades into Background

Renaming and Out-of-order execution was first implemented in
1969 in IBM 360/91 but was effective only on a very small class
of problems and thus did not show up in the subsequent
models until mid-nineties.

* Did not address the memory latency problem which turned
out be a much bigger issue than FU latency

* Precise traps
* Imprecise traps complicate debugging and OS code
* Note, precise interrupts are relatively easy to provide

* Branch prediction
* Amount of exploitable instruction-level parallelism (ILP) limited by control hazards

Also, simpler machine designs in new technology beat
complicated machines in old technology

 Big advantage to fit processor & caches on one chip

* Microprocessors had era of 1%/week performance scaling

34
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In-Order Commit for Precise Traps
In-order Out-of-order In-order
Fetch [ Decode ——| Reorder Buffer f—— CoOmmit
ar— [
Kill = |
Execute |

Inject handler PC

* Instructions fetched and decoded into instruction reorder
buffer in-order

 Execution is out-of-order ( =2 out-of-order completion)

 Commit (write-back to architectural state, i.e., regfile &
memory) is in-order

e Temporary storage needed to hold results before commit
(shadow registers and store buffers)

35
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Separating Completion from Commit

* Re-order buffer holds register results from

completion until commit

* Entries allocated in program order during decode

» Buffers completed values and exception state until in-order commit
point

* Completed values can be used by dependents before committed
(bypassing)

e Each entry holds program counter, instruction type, destination

register specifier and value if any, and exception status (info often
compressed to save hardware)

* Memory reordering needs special data structures

» Speculative store address and data buffers
* Speculative load address and data buffers

36
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Phases of Instruction Execution

PC
L+ Fetch: Instruction bits retrieved from
|-cache : :
—3 instruction cache.
Fetch Buffer
Y Decode: Instructions dispatched to
Decode/Rename .
7 appropriate issue buffer
Issue Buffer
I Execute: Instructions and operands issued to
{Functional Units] functional units. When execution completes,
| all results and exception flags are available.
Result Buffer
¥ Commit: Instruction irrevocably updates

[ Commit ] architectural state (aka “graduation”), or

[ . .
Architectural takes precise trap//nterrupt.

State

37
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In-Order versus Out-of-Order Phases

* Instruction fetch/decode/rename always in-order

* Need to parse ISA sequentially to get correct semantics

* Proposals for speculative OoO instruction fetch, e.qg., Multiscalar.
Predict control flow and data dependencies across sequential
program segments fetched/decoded/executed in parallel, fixup if
prediction wrong

* Dispatch (place instruction into machine buffers to

wait for issue) also always in-order
* Some use “Dispatch” to mean “Issue”, but not in CS211 lectures

38



Y B A Bk
5%3'” ‘Jg‘: ShanghaiTech University

Ut o

EELE
TARSE

e é: A
CH

In-Order versus Out-of-Order Issue

*ln-order issue:

* Issue stalls on RAW dependencies or structural hazards,
or possibly WAR/WAW hazards

* Instruction cannot issue to execution units unless all
preceding instructions have issued to execution units

e Qut-of-order issue:

* Instructions dispatched in program order to reservation
stations (or other forms of instruction buffer) to wait for
operands to arrive, or other hazards to clear

* While earlier instructions wait in issue buffers, following
instructions can be dispatched and issued out-of-order

39
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In-Order versus Out-of-Order Completion

* All but the simplest machines have out-of-order
completion, due to different latencies of functional
units and desire to bypass values as soon as
available

* Classic RISC 5-stage integer pipeline just barely has

in-order completion

 Load takes two cycles, but following one-cycle integer op completes
at same time, not earlier

* Adding pipelined FPU immediately brings OoO completion

40



EwBHRZKRT
5%3'” ‘Jg‘: ShanghaiTech University

Ut o

EELE
TARSE

e é: A
CH

In-Order versus Out-of-Order Commit

* In-order commit supports precise traps, standard
today

* Some proposals to reduce the cost of in-order commit by retiring
some instructions early to compact reorder buffer, but this is just an
optimized in-order commit

* Out-of-order commit was effectively what early
000 machines implemented (imprecise traps) as
completion irrevocably changed machine state

*j.e., complete == commit in these machines

41



Conclusion

* In-order completion
e OQut-of-order completion

* In-order issue
e Qut-of-order issue

* In-order commit
e Qut-of-order commit
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