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Previously in CS211

• Out-of-order Execution
• Scoreboarding algorithm

• Register renaming

• Issue, completion, commit
• In-order or out-of-order
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Control-Flow Penalty
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Modern processors may 
have > 10 pipeline stages 
between next PC calculation 
and branch resolution !

How much work is lost if 
pipeline doesn’t follow 
correct instruction flow?

~ Loop length x pipeline 
width + buffers
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Reducing Control-Flow Penalty 

• Software solutions
• Eliminate branches - loop unrolling

• Increases the run length between branches
• Reduce resolution time - instruction scheduling

• Compute the branch condition as early as possible (of limited value 
because branches often in critical path through code)

•Hardware solutions
• Bypass – usually results are used immediately
• Architectural change – find something else to do (delay slots)

• Replaces pipeline bubbles with useful work (requires software 
cooperation) – quickly see diminishing returns

• Speculate, i.e., branch prediction
• Speculative execution of instructions beyond the branch
• Many advances in accuracy, widely used
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Branch Prediction

Motivation:
Branch penalties limit performance of deeply pipelined 
processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to that following branch
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Importance of Branch Prediction

• Consider 4-way superscalar with 8 pipeline stages from fetch to 
dispatch, and 80-entry ROB, and 3 cycles from issue to branch 
resolution

• On a misprediction, could throw away 8*4+(80-1)=111 instructions

Scalar (never run more than 1 insn per cycle) Superscalar (executing multiple insns in parallel)
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Static Branch Prediction (I)

• Always not-taken
• Simple to implement: no need for data structures, no direction prediction

• Low accuracy: ~30-40%

• Compiler can layout code such that the likely path is the “not-taken” path

• Always taken
• No direction prediction

• Better accuracy: ~60-70% 
• Backward branches (i.e. loop branches) are usually taken

• Backward branch: target address lower than branch PC

• Backward taken, forward not taken (BTFN)
• Predict backward (loop) branches as taken, others not-taken
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Static Branch Prediction (II)

• Profile-based
• Idea: Compiler determines likely direction for each branch using profile run. 

Encodes that direction as a hint bit in the branch instruction format. 

+ Per branch prediction (more accurate than schemes in previous slide) 
→ accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN → 50% accuracy 
TNTNTNTNTNTNTNTNTNTN → 50% accuracy

-- Accuracy depends on the representativeness of profile input set

CS211@ShanghaiTech 10



Static Branch Prediction (III)

• Program-based (or, program analysis based)
• Idea: Use heuristics based on program analysis to determine statically-

predicted direction
• Opcode heuristic: Predict BLEZ as NT (negative integers used as error 

values in many programs)
• Loop heuristic: Predict a branch guarding a loop execution as taken (i.e., 

execute the loop)
• Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support

• Ball and Larus, “Branch prediction for free,” PLDI 1993.
• 20% misprediction rate
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Static Branch Prediction (III)

• Programmer-based
• Idea: Programmer provides the statically-predicted direction

• Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than 
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer? 
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Dynamic Prediction

Predictor
Input

Truth/Feedback 

Prediction

Operations
• Predict
• Update

Prediction as a feedback control process
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Dynamic Branch Prediction
learning based on past behavior

•Temporal correlation
• The way a branch resolves may be a good predictor of the 

way it will resolve at the next execution

•Spatial correlation 
• Several branches may resolve in a highly correlated 

manner (a preferred path of execution)
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One-Bit Branch History Predictor

•Also known as Branch History Table (BHT)

•For each branch, remember last way branch went

•Has problem with loop-closing backward branches, 
as two mispredictions occur on every loop 
execution

1. first iteration predicts loop backwards branch not-taken (loop was 
exited last time)

2. last iteration predicts loop backwards branch taken (loop 
continued last time)
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One-Bit Branch History Predictor

Predict 
not 

taken

Predict  
taken

actually not 
taken 

actually taken 

actually 
taken 

actually not taken 

Predict same as last outcome
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Branch Prediction Bits
• Assume 2 BP bits per instruction, 2‐Bit Saturating Counter 
• Change the prediction after two consecutive mistakes!

Pred
¬taken

actually ¬ taken

actually 
taken

actually 
taken Pred

¬taken
Pred
taken

Pred
taken

actually ¬ taken

actually ¬ taken
actually ¬ taken

BP state:
(predict take/¬take) x (last prediction right/wrong)

actually 
taken

actually 
taken
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Widely used in practice, e.g., MIPS R10000, four states named as 
strongly taken, weakly taken, weakly not taken, strongly not taken.



Branch History Table (BHT)

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?
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Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the 
last N branches executed by the processor

if (x[i] < 7) then

y += 1;

if (x[i] < 5) then

c -= 4;

If first condition false, second condition also false
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Speculating Both Directions? 

•An alternative to branch prediction is to execute 
both directions of a branch speculatively
• resource requirement is proportional to the number of concurrent 

speculative executions

• only half the resources engage in useful work when both directions of 
a branch are executed speculatively

• branch prediction takes less resources than speculative execution of 
both paths

•With accurate branch prediction, it is more cost 
effective to dedicate all resources to the predicted 
direction!
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Limitations of BHTs
Only predicts branch direction. Therefore, cannot redirect fetch stream until 
after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly predicted 

taken branch 
penalty

Jump Register 
penalty

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline 
(+ another 6 stages)
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Branch Target Buffer (untagged)

I-Cache PC

k

predicted
target PC

target

BP bits are stored with the predicted target address. 

IF Stage: If (BP=taken) then next_PC=target; else next_PC=PC+4

Later: check prediction, if wrong then kill the instruction 
and update BTB & BPb, else update BPb
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BPb

BP

Branch Target Buffer 
(BTB) (2k entries)



BTB is only for Control Instructions 

• BTB contains useful information for branch and jump 
instructions only
•➔Do not update it for other instructions

• For all other instructions the next PC is PC+4 ! 

• How to achieve this effect without decoding the instruction?
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Branch Target Buffer (tagged)

• Keep both the branch PC and target PC in the BTB 
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC
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Combining BTB and BHT

• BTB entries are considerably more expensive than BHT, but 
can redirect fetches at earlier stage in pipeline and can 
accelerate indirect branches (JR)

• BHT can hold many more entries and is more accurate

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

BTB

BHTBHT in later 
pipeline stage 
corrects when 
BTB misses a 
predicted taken 
branch

BTB/BHT only updated after branch resolves in E stage
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Uses of Jump Register (JR)

•Switch statements (jump to address of matching case)

•Dynamic function call (jump to run-time function 
address)

•Subroutine returns (jump to return address)

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in 
C++ programming, when objects have same type in virtual 
function call)

BTB works well if usually return to the same place
 Often one function called from many distinct call sites!
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Subroutine Return Stack
Small structure to accelerate JR for subroutine returns, typically much more 
accurate than BTBs.

&fb()

&fc()

Push call address when 
function call executed

Pop return address when 
subroutine return decoded 

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)
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Return Stack in Pipeline

•How to use return stack (RS) in deep fetch pipeline?

•Only know if subroutine call/return at decode 

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

RSRS Push/Pop 
after decode 
gives large 
bubble in fetch 
stream.

Return Stack prediction checked
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• Can remember whether PC is subroutine call/return using 
BTB-like structure

• Instead of target-PC, just store push/pop bit

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

RS

Push/Pop before 
instructions decoded!

Return Stack prediction checked

Return Stack in Pipeline
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In-Order vs. Out-of-Order Branch Prediction

• Speculative fetch but not speculative 
execution - branch resolves before 
later instructions complete

• Completed values held in bypass 
network until commit

• Speculative execution, with branches 
resolved after later instructions complete

• Completed values held in rename registers 
in ROB or unified physical register file until 
commit

Fetch

Decode

Execute

Commit

In-Order Issue Out-of-Order Issue

Fetch

Decode

Execute

Commit

ROB

Br. Pred.

Resolve

Br. Pred.

Resolve

• Both styles of machine can use same branch predictors in front-end fetch pipeline, 
and both can execute multiple instructions per cycle
• Common to have 10-30 pipeline stages in either style of design

In-Order

In-Order

In-Order

Out-of-Order
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InO vs. OoO Mispredict Recovery

• In-order execution?
• Design so no instruction issued after branch can write-back before 

branch resolves

• Kill all instructions in pipeline behind mispredicted branch

•Out-of-order execution?
• Multiple instructions following branch in program order can complete 

before branch resolves

• A simple solution would be to handle like precise traps

• Problem?
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Branch Misprediction in Pipeline

• Can have multiple unresolved branches in ROB

• Can resolve branches out-of-order by killing all the instructions in ROB 
that follow a mispredicted branch

• MIPS R10K uses four mask bits to tag instructions that are dependent 
on up to four speculative branches

• Mask bits cleared as branch resolves, and reused for next branch

Fetch Decode

Execute

CommitReorder Buffer

Kill

Kill Kill

PC

Inject correct PC

Branch
Prediction

Branch
Resolution

Complete
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Rename Table Recovery

• Have to quickly recover rename table on branch mispredictions

• MIPS R10K only has four snapshots for each of four outstanding 
speculative branches

• Alpha 21264 has 80 snapshots, one per ROB instruction
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The R10000 processor can speculate up to four branches deep. 
Shadow copies of the mapping tables are kept every time a 
prediction is made, allowing the R10000 processor to recover from 
a mispredicted branch in a single cycle. 
(MIPS R10000 Microprocessor User’s Manual)



Improving Instruction Fetch

• Performance of speculative out-of-order machines often limited by 
instruction fetch bandwidth
• speculative execution can fetch 2-3x more instructions than are committed

• misprediction penalties dominated by time to refill instruction window

• taken branches are particularly troublesome
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Taken Branch Limit

• Integer codes have a taken branch every 6-9 instructions

• To avoid fetch bottleneck, must execute multiple taken branches per 
cycle when increasing performance

• This implies:
• predicting multiple branches per cycle

• fetching multiple non-contiguous blocks per cycle
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Branch Address Cache
(Yeh, Marr, Patt)

PC

k

Entry PC

=

match

Valid

valid

predicted

target#1

target #1
len

len#1

predicted

target#2

target #2

Extend BTB to return multiple branch predictions per cycle

Source: https://hps.ece.utexas.edu/pub/yeh_ics7.pdf 

A mechanism for predicting multiple branches and fetching multiple non-consecutive basic 
blocks each cycle 
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Fetching Multiple Basic Blocks

•Requires either
• multiported cache: expensive

• interleaving: bank conflicts will occur

•Merging multiple blocks to feed to decoders adds 
latency, increasing mispredict penalty and reducing 
branch throughput
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Trace Cache
• Key Idea: Pack multiple non-contiguous basic blocks into one 

contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks

• Trace cache indexed by start address and next n branch 
predictions

• Used in Intel Pentium-4 processor to hold decoded uops

BRBRBR

CS211@ShanghaiTech 38



Conclusion

• Static Branch prediction

• Dynamic Branch prediction
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