
CS211
Advanced Computer Architecture

L11 Branch Prediction

Chundong Wang

October 29th, 2025

CS211@ShanghaiTech 1

Previously in CS211

• Out-of-order Execution
• Scoreboarding algorithm

• Register renaming

• Issue, completion, commit
• In-order or out-of-order

CS211@ShanghaiTech 4

Control-Flow Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may
have > 10 pipeline stages
between next PC calculation
and branch resolution !

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline
width + buffers

CS211@ShanghaiTech 5

Reducing Control-Flow Penalty

• Software solutions
• Eliminate branches - loop unrolling

• Increases the run length between branches
• Reduce resolution time - instruction scheduling

• Compute the branch condition as early as possible (of limited value
because branches often in critical path through code)

•Hardware solutions
• Bypass – usually results are used immediately
• Architectural change – find something else to do (delay slots)

• Replaces pipeline bubbles with useful work (requires software
cooperation) – quickly see diminishing returns

• Speculate, i.e., branch prediction
• Speculative execution of instructions beyond the branch
• Many advances in accuracy, widely used

CS211@ShanghaiTech 6

Branch Prediction

Motivation:
Branch penalties limit performance of deeply pipelined
processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to that following branch

CS211@ShanghaiTech 7

Importance of Branch Prediction

• Consider 4-way superscalar with 8 pipeline stages from fetch to
dispatch, and 80-entry ROB, and 3 cycles from issue to branch
resolution

• On a misprediction, could throw away 8*4+(80-1)=111 instructions

Scalar (never run more than 1 insn per cycle) Superscalar (executing multiple insns in parallel)

CS211@ShanghaiTech 8

Static Branch Prediction (I)

• Always not-taken
• Simple to implement: no need for data structures, no direction prediction

• Low accuracy: ~30-40%

• Compiler can layout code such that the likely path is the “not-taken” path

• Always taken
• No direction prediction

• Better accuracy: ~60-70%
• Backward branches (i.e. loop branches) are usually taken

• Backward branch: target address lower than branch PC

• Backward taken, forward not taken (BTFN)
• Predict backward (loop) branches as taken, others not-taken

CS211@ShanghaiTech 9

Static Branch Prediction (II)

• Profile-based
• Idea: Compiler determines likely direction for each branch using profile run.

Encodes that direction as a hint bit in the branch instruction format.

+ Per branch prediction (more accurate than schemes in previous slide)
→ accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN → 50% accuracy
TNTNTNTNTNTNTNTNTNTN → 50% accuracy

-- Accuracy depends on the representativeness of profile input set

CS211@ShanghaiTech 10

Static Branch Prediction (III)

• Program-based (or, program analysis based)
• Idea: Use heuristics based on program analysis to determine statically-

predicted direction
• Opcode heuristic: Predict BLEZ as NT (negative integers used as error

values in many programs)
• Loop heuristic: Predict a branch guarding a loop execution as taken (i.e.,

execute the loop)
• Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support

• Ball and Larus, “Branch prediction for free,” PLDI 1993.
• 20% misprediction rate

CS211@ShanghaiTech 11

Static Branch Prediction (III)

• Programmer-based
• Idea: Programmer provides the statically-predicted direction

• Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer?

CS211@ShanghaiTech 12

Dynamic Prediction

Predictor
Input

Truth/Feedback

Prediction

Operations
• Predict
• Update

Prediction as a feedback control process

CS211@ShanghaiTech 13

Dynamic Branch Prediction
learning based on past behavior

•Temporal correlation
• The way a branch resolves may be a good predictor of the

way it will resolve at the next execution

•Spatial correlation
• Several branches may resolve in a highly correlated

manner (a preferred path of execution)

CS211@ShanghaiTech 14

One-Bit Branch History Predictor

•Also known as Branch History Table (BHT)

•For each branch, remember last way branch went

•Has problem with loop-closing backward branches,
as two mispredictions occur on every loop
execution

1. first iteration predicts loop backwards branch not-taken (loop was
exited last time)

2. last iteration predicts loop backwards branch taken (loop
continued last time)

CS211@ShanghaiTech 15

One-Bit Branch History Predictor

Predict
not

taken

Predict
taken

actually not
taken

actually taken

actually
taken

actually not taken

Predict same as last outcome

CS211@ShanghaiTech 16

Branch Prediction Bits
• Assume 2 BP bits per instruction, 2‐Bit Saturating Counter
• Change the prediction after two consecutive mistakes!

Pred
¬taken

actually ¬ taken

actually
taken

actually
taken Pred

¬taken
Pred
taken

Pred
taken

actually ¬ taken

actually ¬ taken
actually ¬ taken

BP state:
(predict take/¬take) x (last prediction right/wrong)

actually
taken

actually
taken

CS211@ShanghaiTech 17

Widely used in practice, e.g., MIPS R10000, four states named as
strongly taken, weakly taken, weakly not taken, strongly not taken.

Branch History Table (BHT)

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

CS211@ShanghaiTech 18

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the
last N branches executed by the processor

if (x[i] < 7) then

y += 1;

if (x[i] < 5) then

c -= 4;

If first condition false, second condition also false

CS211@ShanghaiTech 19

Speculating Both Directions?

•An alternative to branch prediction is to execute
both directions of a branch speculatively
• resource requirement is proportional to the number of concurrent

speculative executions

• only half the resources engage in useful work when both directions of
a branch are executed speculatively

• branch prediction takes less resources than speculative execution of
both paths

•With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction!

CS211@ShanghaiTech 20

Limitations of BHTs
Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly predicted

taken branch
penalty

Jump Register
penalty

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

CS211@ShanghaiTech 21

Branch Target Buffer (untagged)

I-Cache PC

k

predicted
target PC

target

BP bits are stored with the predicted target address.

IF Stage: If (BP=taken) then next_PC=target; else next_PC=PC+4

Later: check prediction, if wrong then kill the instruction
and update BTB & BPb, else update BPb

CS211@ShanghaiTech 22

BPb

BP

Branch Target Buffer
(BTB) (2k entries)

BTB is only for Control Instructions

• BTB contains useful information for branch and jump
instructions only
•➔Do not update it for other instructions

• For all other instructions the next PC is PC+4 !

• How to achieve this effect without decoding the instruction?

CS211@ShanghaiTech 23

Branch Target Buffer (tagged)

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

CS211@ShanghaiTech 24

Combining BTB and BHT

• BTB entries are considerably more expensive than BHT, but
can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

• BHT can hold many more entries and is more accurate

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

BTB

BHTBHT in later
pipeline stage
corrects when
BTB misses a
predicted taken
branch

BTB/BHT only updated after branch resolves in E stage

CS211@ShanghaiTech 25

Uses of Jump Register (JR)

•Switch statements (jump to address of matching case)

•Dynamic function call (jump to run-time function
address)

•Subroutine returns (jump to return address)

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

BTB works well if usually return to the same place
 Often one function called from many distinct call sites!

CS211@ShanghaiTech 26

Subroutine Return Stack
Small structure to accelerate JR for subroutine returns, typically much more
accurate than BTBs.

&fb()

&fc()

Push call address when
function call executed

Pop return address when
subroutine return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

CS211@ShanghaiTech 27

Return Stack in Pipeline

•How to use return stack (RS) in deep fetch pipeline?

•Only know if subroutine call/return at decode

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

RSRS Push/Pop
after decode
gives large
bubble in fetch
stream.

Return Stack prediction checked

CS211@ShanghaiTech 28

• Can remember whether PC is subroutine call/return using
BTB-like structure

• Instead of target-PC, just store push/pop bit

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

RS

Push/Pop before
instructions decoded!

Return Stack prediction checked

Return Stack in Pipeline

CS211@ShanghaiTech 29

In-Order vs. Out-of-Order Branch Prediction

• Speculative fetch but not speculative
execution - branch resolves before
later instructions complete

• Completed values held in bypass
network until commit

• Speculative execution, with branches
resolved after later instructions complete

• Completed values held in rename registers
in ROB or unified physical register file until
commit

Fetch

Decode

Execute

Commit

In-Order Issue Out-of-Order Issue

Fetch

Decode

Execute

Commit

ROB

Br. Pred.

Resolve

Br. Pred.

Resolve

• Both styles of machine can use same branch predictors in front-end fetch pipeline,
and both can execute multiple instructions per cycle
• Common to have 10-30 pipeline stages in either style of design

In-Order

In-Order

In-Order

Out-of-Order

CS211@ShanghaiTech 30

InO vs. OoO Mispredict Recovery

• In-order execution?
• Design so no instruction issued after branch can write-back before

branch resolves

• Kill all instructions in pipeline behind mispredicted branch

•Out-of-order execution?
• Multiple instructions following branch in program order can complete

before branch resolves

• A simple solution would be to handle like precise traps

• Problem?

CS211@ShanghaiTech 31

Branch Misprediction in Pipeline

• Can have multiple unresolved branches in ROB

• Can resolve branches out-of-order by killing all the instructions in ROB
that follow a mispredicted branch

• MIPS R10K uses four mask bits to tag instructions that are dependent
on up to four speculative branches

• Mask bits cleared as branch resolves, and reused for next branch

Fetch Decode

Execute

CommitReorder Buffer

Kill

Kill Kill

PC

Inject correct PC

Branch
Prediction

Branch
Resolution

Complete

CS211@ShanghaiTech 32

Rename Table Recovery

• Have to quickly recover rename table on branch mispredictions

• MIPS R10K only has four snapshots for each of four outstanding
speculative branches

• Alpha 21264 has 80 snapshots, one per ROB instruction

CS211@ShanghaiTech 33

The R10000 processor can speculate up to four branches deep.
Shadow copies of the mapping tables are kept every time a
prediction is made, allowing the R10000 processor to recover from
a mispredicted branch in a single cycle.
(MIPS R10000 Microprocessor User’s Manual)

Improving Instruction Fetch

• Performance of speculative out-of-order machines often limited by
instruction fetch bandwidth
• speculative execution can fetch 2-3x more instructions than are committed

• misprediction penalties dominated by time to refill instruction window

• taken branches are particularly troublesome

CS211@ShanghaiTech 34

Taken Branch Limit

• Integer codes have a taken branch every 6-9 instructions

• To avoid fetch bottleneck, must execute multiple taken branches per
cycle when increasing performance

• This implies:
• predicting multiple branches per cycle

• fetching multiple non-contiguous blocks per cycle

CS211@ShanghaiTech 35

Branch Address Cache
(Yeh, Marr, Patt)

PC

k

Entry PC

=

match

Valid

valid

predicted

target#1

target #1
len

len#1

predicted

target#2

target #2

Extend BTB to return multiple branch predictions per cycle

Source: https://hps.ece.utexas.edu/pub/yeh_ics7.pdf

A mechanism for predicting multiple branches and fetching multiple non-consecutive basic
blocks each cycle

CS211@ShanghaiTech 36

https://hps.ece.utexas.edu/pub/yeh_ics7.pdf

Fetching Multiple Basic Blocks

•Requires either
• multiported cache: expensive

• interleaving: bank conflicts will occur

•Merging multiple blocks to feed to decoders adds
latency, increasing mispredict penalty and reducing
branch throughput

CS211@ShanghaiTech 37

Trace Cache
• Key Idea: Pack multiple non-contiguous basic blocks into one

contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks

• Trace cache indexed by start address and next n branch
predictions

• Used in Intel Pentium-4 processor to hold decoded uops

BRBRBR

CS211@ShanghaiTech 38

Conclusion

• Static Branch prediction

• Dynamic Branch prediction

CS211@ShanghaiTech 39

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Krste Asanovic (UC Berkeley)

• Prof. James C. Hoe (CMU)

• Prof. Daniel Sanchez (MIT)

• Prof. Nima Honarmand (SUNY)

• Prof. Onur Mutlu (ETHZ)

CS211@ShanghaiTech 40

	Slide 1: CS211 Advanced Computer Architecture L11 Branch Prediction
	Slide 4: Previously in CS211
	Slide 5: Control-Flow Penalty
	Slide 6: Reducing Control-Flow Penalty
	Slide 7: Branch Prediction
	Slide 8: Importance of Branch Prediction
	Slide 9: Static Branch Prediction (I)
	Slide 10: Static Branch Prediction (II)
	Slide 11: Static Branch Prediction (III)
	Slide 12: Static Branch Prediction (III)
	Slide 13: Dynamic Prediction
	Slide 14: Dynamic Branch Prediction learning based on past behavior
	Slide 15: One-Bit Branch History Predictor
	Slide 16: One-Bit Branch History Predictor
	Slide 17: Branch Prediction Bits
	Slide 18: Branch History Table (BHT)
	Slide 19: Exploiting Spatial Correlation Yeh and Patt, 1992
	Slide 20: Speculating Both Directions?
	Slide 21: Limitations of BHTs
	Slide 22: Branch Target Buffer (untagged)
	Slide 23: BTB is only for Control Instructions
	Slide 24: Branch Target Buffer (tagged)
	Slide 25: Combining BTB and BHT
	Slide 26: Uses of Jump Register (JR)
	Slide 27: Subroutine Return Stack
	Slide 28: Return Stack in Pipeline
	Slide 29
	Slide 30: In-Order vs. Out-of-Order Branch Prediction
	Slide 31: InO vs. OoO Mispredict Recovery
	Slide 32: Branch Misprediction in Pipeline
	Slide 33: Rename Table Recovery
	Slide 34: Improving Instruction Fetch
	Slide 35: Taken Branch Limit
	Slide 36: Branch Address Cache (Yeh, Marr, Patt)
	Slide 37: Fetching Multiple Basic Blocks
	Slide 38: Trace Cache
	Slide 39: Conclusion
	Slide 40: Acknowledgements

