WA
ool
\-,v‘rpe S5, 2
JEiRaE
i i, Jx
s
o s A
Jirscu o

EwBHRZKRT
ShanghaiTech University

CS211
Advanced Computer Architecture

L11 Branch Prediction

Chundong Wang
October 29th, 2025

D) b R A

¢/ ShanghaiTech University

Previously in CS211

* Out-of-order Execution
* Scoreboarding algorithm
* Register renaming

* I[ssue, completion, commit
* In-order or out-of-order

EwBHRZKRT

ShanghaiTech University

B
o Y
Fampasy
g gy, p
i-"‘ W J 5
qmq;*‘
Jirecuos

Control-Flow Penaltyl\|

ext fetch
started
Modern processors may
have > 10 pipeline stages
between next PC calculation Buffer
and branch resolution !
. . Buffer
How much work is lost if
pipeline doesn’t follow
correct instruction flow? Units
~ : : Result
Loop length x pipeline Branch

width + buffers executed

CS211@ShanghaiTech 5

j ShanghaiTech University

;%ﬁi@ﬂ&ﬁ%

Reducing Control-Flow Penalty

* Software solutions
* Eliminate branches - loop unrolling
* Increases the run length between branches
* Reduce resolution time - instruction scheduling

* Compute the branch condition as early as possible (of limited value
because branches often in critical path through code)

* Hardware solutions
* Bypass — usually results are used immediately
* Architectural change — find something else to do (delay slots)

* Replaces pipeline bubbles with useful work (requires software
cooperation) — quickly see diminishing returns

* Speculate, i.e., branch prediction
. Speculative execution of instructions beyond the branch
* Many advances in accuracy, widely used

LA
(R
S
zakas
ECH

=) B A Bk

EX el ”""-L Z .] .
1”“"30 L ShanghaiTech University

Branch Prediction

Motivation:
Branch penalties limit performance of deeply pipelined
processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:
e Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
e Keep result computation separate from commit
e Kill instructions following branch in pipeline
e Restore state to that following branch

Successive

EwBHRZKRT

ShanghaiTech University

Importance of Branch Prediction

* Consider 4-way superscalar with 8 pipeline stages from fetch to
dispatch, and 80-entry ROB, and 3 cycles from issue to branch
resolution

* On a misprediction, could throw away 8*4+(80-1)=111 instructions

D x N different instructions overlapped

D different instructions overlapped

Instructions
Successive
Instructions

|1213:415}6:7:8:9:|0:||1|2 |‘2‘3‘4|5|6|7‘8‘9‘|0‘||‘|2

Time in cycles Time in cycles

Scalar (never run more than 1 insn per cycle) Superscalar (executing multiple insns in parallel)

CS211@ShanghaiTech 8

D) b R A

¢/ ShanghaiTech University

Static Branch Prediction (l)

* Always not-taken
» Simple to implement: no need for data structures, no direction prediction
* Low accuracy: ~30-40%
* Compiler can layout code such that the likely path is the “not-taken” path

* Always taken
* No direction prediction

* Better accuracy: ~¥60-70%
* Backward branches (i.e. loop branches) are usually taken
* Backward branch: target address lower than branch PC

e Backward taken, forward not taken (BTFN)
* Predict backward (loop) branches as taken, others not-taken

CS211@ShanghaiTech 9

#

e
=R A i}
CH

) B R BART
‘ & ShanghaiTech University

Saresios

TANE

Static Branch Prediction (lI)

e Profile-based

* Idea: Compiler determines likely direction for each branch using profile run.
Encodes that direction as a hint bit in the branch instruction format.

+ Per branch prediction (more accurate than schemes in previous slide)
— accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

ITTTTTTTTTNNNNNNNNNN - 50% accuracy
TNTNTNTNTNTNTNTNTNTN - 50% accuracy

-- Accuracy depends on the representativeness of profile input set

EwBHRZKRT

ShanghaiTech University

o
& S
@A
EAQTE
g4 i, 42
3,5, “fs
L
irga W

Static Branch Prediction (lI1)

* Program-based (or, program analysis based)

* Idea: Use heuristics based on program analysis to determine statically-
predicted direction

* Opcode heuristic: Predict BLEZ as NT (negative integers used as error
values in many programs)

* Loop heuristic: Predict a branch guarding a loop execution as taken (i.e.,
execute the loop)

* Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires compiler analysis and ISA support

e Ball and Larus, “Branch prediction for free,” PLDI 1993.
* 20% misprediction rate

CS211@ShanghaiTech 11

#

L
=f
CH

TANE

AR R AN
& ShanghaiTech University

Saresios

Static Branch Prediction (lI1)

* Programmer-based
* |dea: Programmer provides the statically-predicted direction

* Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer?

CS211@ShanghaiTech 12

=) B R B Ky

#:.#4&/ ShanghaiTech University

Dynamic Prediction

Truth/Feedback
Input . Prediction
Predictor >
Operations
Prediction as a feedback control process * Predict
* Update

CS211@ShanghaiTech 13

ey Bl N BEATE

O "5@5 ShanghaiTech University

3
HuY

v
Jireg

Dynamic Branch Prediction
learning based on past behavior

*Temporal correlation

* The way a branch resolves may be a good predictor of the
way it will resolve at the next execution

*Spatial correlation

* Several branches may resolve in a highly correlated
manner (a preferred path of execution)

EwBHRZKRT
5%3'” ‘Jg‘: ShanghaiTech University

Ut o

EELE
TARSE

g Aéw.ﬁ_
CH

One-Bit Branch History Predictor

* Also known as Branch History Table (BHT)
* For each branch, remember last way branch went

* Has problem with loop-closing backward branches,
as two mispredictions occur on every loop

execution

1. firstiteration predicts loop backwards branch not-taken (loop was
exited last time)

2. lastiteration predicts loop backwards branch taken (loop
continued last time)

One-Bit Branch History Predictor

actually taken

Predict :
actually not Predict
not
taken taken
taken

actually not taken

Predict same as last outcome

i) BNk

¢/ ShanghaiTech University

actually
taken

EwBHRZKRT

ShanghaiTech University

AL
& i{
<,)
ELED
EARZE
@ L z
24 i, g
73, i
"'u& o ;‘;5‘
e

Branch Prediction Bits

e Assume 2 BP bits per instruction, 2-Bit Saturating Counter
e Change the prediction after two consecutive mistakes!

actually

actually - taken
taken

actually

actually e
taken Pred actually - taken
taken
actually
aken
actually - taken actually - taken
Pred
taken
BP state:

(predict take/-take) x (last prediction right/wrong)

Widely used in practice, e.g., MIPS R10000, four states nhamed as
strongly taken, weakly taken, weakly not taken, strongly not taken.

CS211@ShanghaiTech 17

Branch History Table (BHT)
Fetch PC |O|O
I\ ~ J |
_F,k L{ 2k_entry
I-Cache BHT Index L1 BHT,
: | 2 bits/entry
Instruction
Opcode offset
A
+
) }
Branch? Target PC Taken/-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

CS211@ShanghaiTech

18

W

SEED

EwBHRZKRT

ShanghaiTech University

e

Exploiting Spatial Correlation

Yeh and Patt, 1992

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c = 4;

If first condition false, second condition also false

History register, H, records the direction of the
last N branches executed by the processor

EELE
EARZE

\ B R B kY
%2 7%/ ShanghaiTech University

Farresios

BT
wpié’ e
CH

Speculating Both Directions?

* An alternative to branch prediction is to execute

both directions of a branch speculatively

* resource requirement is proportional to the number of concurrent
speculative executions

* only half the resources engage in useful work when both directions of
a branch are executed speculatively

* branch prediction takes less resources than speculative execution of
both paths

* With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction!

SR H

D
<, o
EESERY
feAgzsl
w
zi Huu,Ik ’.
A% Jo
N AE
O
recH U

EwBHRZKRT

ShanghaiTech University

Limitations of BHTs

Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

A | PC Generation/Mux

Correctly predicted
taken branch P | Instruction Fetch Stage 1
penalty F | Instruction Fetch Stage 2
B | Branch Address Calc/Begin Decode

Complete Decode

Jump Register

J | Steer Instructions to Functional units
penalty R
E

Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

CS211@ShanghaiTech 21

#

L2

—

\.’{:‘éc g
e

AR R AN
f ShanghaiTech University

Farresios

TANE

Branch Target Buffer (untagged)

I-Cache PC
predicted
I f target PC
. __| Branch Target Buffer
e k . s | (BTB) (2 entries)
I target BP

BP bits are stored with the predicted target address.

IF Stage: If (BP=taken) then next_PC=target; else next_ PC=PC+4

Later: check prediction, if wrong then kill the instruction
and update BTB & BPb, else update BPb

40 R Bk
5%3'” ‘f: ShanghaiTech University

Ut

EELE
TARSE

e é: A
CH

BTB is only for Control Instructions

* BTB contains useful information for branch and jump
instructions only

« =»Do not update it for other instructions

e For all other instructions the next PCis PC+4 |

* How to achieve this effect without decoding the instruction?

T B R Bk

%%' “‘sf ShanghaiTech University

Branch Target Buffer (tagged)
2k-entry direct-mapped BTB

I-Cache PC (can also be associative)
Entry PC %—H—dl pFEdiCted
— , target PC
. k . . :
. ° ° °
o ° ® []
_ match valid target

e Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

e Next PC determined before branch fetched and decoded

CS211@ShanghaiTech 24

{&“\ %

)
<, £
@A
EAQTE
2 i, g
3,5, “fs
L
'WpEcH“l"«

EwBHRZKRT

ShanghaiTech University

Combining BTB and BHT

* BTB entries are considerably more expensive than BHT, but
can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

* BHT can hold many more entries and is more accurate

d
A | PC Generation/Mux
BTB | | P | Instruction Fetch Stage 1

F | Instruction Fetch Stage 2
BHT in later BHT| | B | Branch Address Calc/Begin Decode
pipeline stage | C | D g
corrects when omplete Decode
BTB misses a J | Steer Instructions to Functional units
predicted taken R | Register File Read
branch

/ E | Integer Execute

BTB/BHT only updated after branch resolves in E stage

CS211@ShanghaiTech 25

Gai) B R oAy

3l s, J2 . .
1"”';, ““,5? ShanghaiTech Universi ty

Uses of Jump Register (JR)

* Switch statements (jump to address of matching case)

BTB works well if same case used repeatedly

* Dynamic function call (jump to run-time function
address)
BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in virtual

function call)
e Subroutine returns (jump to return address)

BTB works well if usually return to the same place
= Often one function called from many distinct call sites!

How well does BTB work for each of these cases?

CS211@ShanghaiTech 26

Y B A Bk
5%3'” ‘Jg‘: ShanghaiTech University

Ut o

EELE
TARSE

g Aéw.ﬁ_
CH

Subroutine Return Stack

Small structure to accelerate JR for subroutine returns, typically much more
accurate than BTBs.

fa() { £b(); }
fb() { £fc(); }
fc() { £d4(); }

Pop return address when

Push call address when
function call executed/\ m subroutine return decoded

&£d () k entries
&fc () (typically k=8-16)
&fb ()

EwBHRZKRT

ShanghaiTech University

AL
SR
<, £

@A
EAQTE
2 g, g 2
SRS
% £
i 0 A
4”5:H“"‘

Return Stack in Pipeline

* How to use return stack (RS) in deep fetch pipeline?

* Only know if subroutine call/return at decode

r"’

A
P
F
RS Push/Pop k RS B
after decode |
gives large
bubble in fetch J
stream. R
E

/

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Return Stack prediction checked

CS211@ShanghaiTech 28

EwBHRZKRT

ShanghaiTech University

AL
SR
<, £

@A
EAQTE
2 g, g 2
SRS
% £
i 0 A
4”5:H“"‘

Return Stack in Pipeline

e Can remember whether PC is subroutine call/return using
BTB-like structure

* Instead of target-PC, just store push/pop bit

(RS A | PC Generation/Mux

Instruction Fetch Stage 1

Push/Pop before
instructions decoded!

P
F | Instruction Fetch Stage 2
B | Branch Address Calc/Begin Decode

| | Complete Decode

Steer Instructions to Functional units

J
R | Register File Read
E

/ Integer Execute

Return Stack prediction checked

CS211@ShanghaiTech 29

Co. (S Rk
In-Order vs. Out-of-Order Branch Predictiont s e

In-Order Issue Out-of-Order Issue

4 ~
Fetch Br. Pred. Fetch Br. Pred.
I 7' In-Order T 7y
Decode Resolve Decode Resolve
In-Order
Q= L —
) -0Of-
Execute — ROB | | Execute } Out-of-Order
v In-Order_< v
Commit Commit
k —

» Speculative fetch but not speculative » Speculative execution, with branches
execution - branch resolves before resolved after later instructions complete
later instructions complete * Completed values held in rename registers

e Completed values held in bypass in ROB or unified physical register file until
network until commit commit

e Both styles of machine can use same branch predictors in front-end fetch pipeline,
and both can execute multiple instructions per cycle
e Common to have 10-30 pipeline stages in either style of design

CS211@ShanghaiTech 30

#

. R
N
CH

TANE

\ B R B kY
¥ a@ ShanghaiTech University

Farresios

InO vs. 000 Mispredict Recovery

* In-order execution?

* Design so no instruction issued after branch can write-back before
branch resolves

* Kill all instructions in pipeline behind mispredicted branch

e Qut-of-order execution?

e Multiple instructions following branch in program order can complete
before branch resolves

* A simple solution would be to handle like precise traps
* Problem?

PC

Branch Misprediction in Pipeline

nject correct PC

Fetch

—>| Decode

il Branch

Resolutio

b
"
£

BT
o f LT
2 }"é”’hu{ jz
O _«t

CH

Saresios

EwBHRZKRT

ShanghaiTech University

—>| Reorder Buffer

—

1 ‘/Comp/ete

Execute

* Can have multiple unresolved branches in ROB

Commit

* Can resolve branches out-of-order by killing all the instructions in ROB

that follow a mispredicted branch

 MIPS R10K uses four mask bits to tag instructions that are dependent
on up to four speculative branches

* Mask bits cleared as branch resolves, and reused for next branch

CS211@ShanghaiTech

32

Y B A Bk

5%3'” ”"‘.@5 ShanghaiTech University

e o

EELE
TARSE

e é: A
CH

Rename Table Recovery

* Have to quickly recover rename table on branch mispredictions

* MIPS R10K only has four snapshots for each of four outstanding
speculative branches

* Alpha 21264 has 80 snapshots, one per ROB instruction

The R10000 processor can speculate up to four branches deep.

Shadow copies of the mapping tables are kept every time a
prediction is made, allowing the R10000 processor to recover from

a mispredicted branch in a single cycle.
(MIPS R10000 Microprocessor User's Manual)

D) b R A

¢/ ShanghaiTech University

Improving Instruction Fetch

* Performance of speculative out-of-order machines often limited by
instruction fetch bandwidth

* speculative execution can fetch 2-3x more instructions than are committed
* misprediction penalties dominated by time to refill instruction window
* taken branches are particularly troublesome

#

L
T
CH

AR R AN
f ShanghaiTech University

Farresios

TANE

Taken Branch Limit

* Integer codes have a taken branch every 6-9 instructions

* To avoid fetch bottleneck, must execute multiple taken branches per
cycle when increasing performance

* This implies:
 predicting multiple branches per cycle
 fetching multiple non-contiguous blocks per cycle

#

T EmR Ay

Branch Address Cache
(Yeh, Marr, Patt)

Entry PC Valid predicted len predicted

target #1 target #2
Tk
PC X
) — -
match valid target#l len#fl target#2

Extend BTB to return multiple branch predictions per cycle

A mechanism for predicting multiple branches and fetching multiple non-consecutive basic

blocks each cycle

Source: https://hps.ece.utexas.edu/pub/yeh ics7.pd

fC5211@ShanghaiTech

36

https://hps.ece.utexas.edu/pub/yeh_ics7.pdf

Ty LR BRT

i Ae/ ShanghaiTech University

3
HuY

v
Jirec

Fetching Multiple Basic Blocks

* Requires either
* multiported cache: expensive
* interleaving: bank conflicts will occur

* Merging multiple blocks to feed to decoders adds
latency, increasing mispredict penalty and reducing
branch throughput

EwBHRZKRT

ShanghaiTech University

AL
SR
<, £

@A
EAQTE
2 g, g 2
SRS
% £
i 0 A
4”5:H“"‘

Trace Cache

» Key ldea: Pack multiple non-contiguous basic blocks into one
contiguous trace cache line

BR BR BR
BR BR BR

Single fetch brings in multiple basic blocks

Trace cache indexed by start address and next n branch
predictions

Used in Intel Pentium-4 processor to hold decoded uops

CS211@ShanghaiTech 38

D R EAY

ShanghaiTech University

Conclusion

e Static Branch prediction

* Dynamic Branch prediction

CS211@ShanghaiTech 39

#

L2
\"f—:jé : g‘
e

AR R AN
f ShanghaiTech University

el

TANE

Acknowledgements

* These slides contain materials developed and copyright by:
* Prof. Krste Asanovic (UC Berkeley)

Prof. James C. Hoe (CMU)

Prof. Daniel Sanchez (MIT)

Prof. Nima Honarmand (SUNY)

Prof. Onur Mutlu (ETHZ)

	Slide 1: CS211 Advanced Computer Architecture L11 Branch Prediction
	Slide 4: Previously in CS211
	Slide 5: Control-Flow Penalty
	Slide 6: Reducing Control-Flow Penalty
	Slide 7: Branch Prediction
	Slide 8: Importance of Branch Prediction
	Slide 9: Static Branch Prediction (I)
	Slide 10: Static Branch Prediction (II)
	Slide 11: Static Branch Prediction (III)
	Slide 12: Static Branch Prediction (III)
	Slide 13: Dynamic Prediction
	Slide 14: Dynamic Branch Prediction learning based on past behavior
	Slide 15: One-Bit Branch History Predictor
	Slide 16: One-Bit Branch History Predictor
	Slide 17: Branch Prediction Bits
	Slide 18: Branch History Table (BHT)
	Slide 19: Exploiting Spatial Correlation Yeh and Patt, 1992
	Slide 20: Speculating Both Directions?
	Slide 21: Limitations of BHTs
	Slide 22: Branch Target Buffer (untagged)
	Slide 23: BTB is only for Control Instructions
	Slide 24: Branch Target Buffer (tagged)
	Slide 25: Combining BTB and BHT
	Slide 26: Uses of Jump Register (JR)
	Slide 27: Subroutine Return Stack
	Slide 28: Return Stack in Pipeline
	Slide 29
	Slide 30: In-Order vs. Out-of-Order Branch Prediction
	Slide 31: InO vs. OoO Mispredict Recovery
	Slide 32: Branch Misprediction in Pipeline
	Slide 33: Rename Table Recovery
	Slide 34: Improving Instruction Fetch
	Slide 35: Taken Branch Limit
	Slide 36: Branch Address Cache (Yeh, Marr, Patt)
	Slide 37: Fetching Multiple Basic Blocks
	Slide 38: Trace Cache
	Slide 39: Conclusion
	Slide 40: Acknowledgements

