
CS211
Advanced Computer Architecture

L12 Superscalar and VLIW

Chundong Wang

October 31st, 2025

CS211@ShanghaiTech 1

Speculative Execution

• Branch Prediction

• Static

• Dynamic

CS211@ShanghaiTech 2

Instruction-level parallelism

• How to achieve instruction-level parallelism?
• Pipelining

• Superscalar

• Multiple processors

• Multiple independent operations per instruction
• VLIW

CS211@ShanghaiTech 3

Superscalar
To fetch, issue to execution units, and complete more than one instruction at a time

CS211@ShanghaiTech 4

Superscalar Execution

◼Idea: Fetch, decode, execute, retire multiple instructions per cycle
❑N-wide superscalar → N instructions per cycle

◼Need to add the hardware resources for doing so

◼Hardware performs the dependence checking between concurrently-
fetched instructions

◼Superscalar execution and out-of-order execution are orthogonal
concepts
❑Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]

CS211@ShanghaiTech 5

In-Order Superscalar Processor Example

• Multiple copies of datapath: Can fetch/decode/execute multiple
instructions per cycle

• Dependencies make it tricky to issue multiple instructions at once

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction

Memory

Register

File Data

Memory

A
L
U

s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Here: Ideal IPC = 2

In-Order Superscalar Performance Example

lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DM
IM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DM
IM

or

sw
80

$s0

+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)

Superscalar Performance with Dependencies

lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3
and $t2, $s4, $t0
or $t3, $s5, $s6
sw $s7, 80($t3)

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lw
lw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DM
IM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF

+

DM

sw

IM

$s7

9

$s3

$s2

$s3

$s2

-
$t0

or
or $t3, $s5, $s6

IM

Ideal IPC = 2

Actual IPC = 1.2 (6 instructions issued in 5 cycles)

Superscalar Execution Tradeoffs

◼Advantages
❑Higher IPC (instructions per cycle)

◼Disadvantages
❑Higher complexity for dependency checking

◼Require checking within a pipeline stage

◼Renaming becomes more complex in an OoO processor

❑More hardware resources needed

CS211@ShanghaiTech 9

Superscalar Control Logic Scaling

• Each issued instruction must somehow check against W*L instructions,
i.e., growth in hardware W*(W*L)

• For in-order machines, L is related to pipeline latencies and check is
done during issue (interlocks or scoreboard)

• For out-of-order machines, L also includes time spent in instruction
buffers (instruction window or ROB), and check is done by
broadcasting tags to waiting instructions at write back (completion)

• As W increases, larger instruction window is needed to find enough
parallelism to keep machine busy => greater L

=> Out-of-order control logic grows faster than W2 (~W3)

Lifetime L

Issue Group

Previously
Issued

Instructions

Issue Width W

CS211@ShanghaiTech 10

Out-of-Order Control Complexity:
MIPS R10000

Control
Logic

[SGI/MIPS Technologies
Inc., 1995]

CS211@ShanghaiTech 11

Sequential ISA Bottleneck

Check instruction
dependencies

Superscalar processor

a = foo(b);
for (i=0, i<

Sequential
source code

Superscalar compiler

Find independent
operations

Schedule
operations

Sequential
machine code

Schedule
execution

CS211@ShanghaiTech 12

VLIW
Very Long Instruction Word

CS211@ShanghaiTech 13

VLIW: Very Long Instruction Word

•Multiple operations packed into one instruction
•Each operation slot is for a fixed function
•Constant operation latencies are specified

Two Integer Units,
Single-Cycle Latency

Two Load/Store Units,
Three-Cycle Latency Two Floating-Point Units,

Four-Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

CS211@ShanghaiTech 14

VLIW Design Principles

• The architecture:
• Allows operation parallelism within an instruction

• No cross-operation RAW check

• Provides deterministic latency for all operations
• Latency measured in ‘instructions’

• No data use before data ready => no data interlocks

CS211@ShanghaiTech 15

Early VLIW Machines

•FPS AP120B (1976)
• scientific attached array processor

• first commercial wide instruction machine

• hand-coded vector math libraries using software pipelining and loop
unrolling

•Multiflow Trace (1987)
• commercialization of ideas from Fisher’s Yale group including “trace

scheduling”

• available in configurations with 7, 14, or 28 operations/instruction

• 28 operations packed into a 1024-bit instruction word

•Cydrome Cydra-5 (1987)
• 7 operations encoded in 256-bit instruction word

• rotating register file

CS211@ShanghaiTech 16

VLIW Compiler Responsibilities

•Schedule operations to maximize parallel
execution

•Guarantee intra-instruction parallelism

•Schedule to avoid data hazards (no interlocks)
• Typically separates operations with explicit NOPs

CS211@ShanghaiTech 17

Loop Execution

How many FP ops/cycle?

for (i=0; i<N; i++)
B[i] = A[i] + C;

Int1 Int2 M1 M2 FP+ FPx

loop: fldadd x1

fadd

fsdadd x2 bne

1 fadd / 8 cycles = 0.125

loop: fld f1, 0(x1)
add x1, 8
fadd f2, f0, f1
fsd f2, 0(x2)
add x2, 8
bne x1, x3, loop

Compile

Schedule

CS211@ShanghaiTech 18

Loop Unrolling

for (i=0; i<N; i++)
B[i] = A[i] + C;

for (i=0; i<N; i+=4)
{

B[i] = A[i] + C;
B[i+1] = A[i+1] + C;
B[i+2] = A[i+2] + C;
B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

CS211@ShanghaiTech 19

Scheduling Loop Unrolled Code

loop: fld f1, 0(x1)

fld f2, 8(x1)

fld f3, 16(x1)
fld f4, 24(x1)

add x1, 32

fadd f5, f0, f1

fadd f6, f0, f2

fadd f7, f0, f3

fadd f8, f0, f4

fsd f5, 0(x2)

fsd f6, 8(x2)

fsd f7, 16(x2)

fsd f8, 24(x2)

add x2, 32

bne x1, x3, loop

Schedule

Int1 Int2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

fld f1

fld f2

fld f3

fld f4add x1 fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

fsd f6

fsd f7

fsd f8add x2 bne

How many FLOPS/cycle? 4 fadds / 11 cycles = 0.36
CS211@ShanghaiTech 20

Software Pipelining

How many FLOPS/cycle?

loop: fld f1, 0(x1)

fld f2, 8(x1)

fld f3, 16(x1)
fld f4, 24(x1)

add x1, 32

fadd f5, f0, f1

fadd f6, f0, f2

fadd f7, f0, f3

fadd f8, f0, f4

fsd f5, 0(x2)

fsd f6, 8(x2)

fsd f7, 16(x2)

add x2, 32

fsd f8, -8(x2)

bne x1, x3, loop

Int1 Int 2 M1 M2 FP+ FPx
Unroll 4 ways first

fld f1

fld f2

fld f3

fld f4

fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

fsd f6

fsd f7

fsd f8

add x1

add x2

bne

fld f1

fld f2

fld f3

fld f4

fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

fsd f6

fsd f7

fsd f8

add x1

add x2

bne

fld f1

fld f2

fld f3

fld f4

fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

add x1

loop:
iterate

prolog

epilog

4 fadds / 4 cycles = 1 CS211@ShanghaiTech 21

Software Pipelining vs. Loop Unrolling

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

CS211@ShanghaiTech 22

What if there are no loops?

• Branches limit basic block size in
control-flow intensive irregular code

• Difficult to find ILP in individual basic
blocksBasic block

CS211@ShanghaiTech 23

Trace Scheduling [Fisher, Ellis]

• Trace scheduling
• A compiler technique that increases ILP by

removing control dependencies, allowing
operations following branches to be moved up and
speculatively executed in parallel with operations
before the branch.

• Trace selection: find a likely sequence of basic
blocks whose operations will be put together into a
smaller number of instructions

• Trace compaction: squeeze the trace into a small
number of wide instructions

• Use profiling feedback or compiler heuristics to
find common branch paths

• Schedule whole “trace” at once

• Add fix-up code to cope with branches jumping
out of trace

CS211@ShanghaiTech 24

Problems with “Classic” VLIW

• Knowing branch probabilities
• Profiling requires a significant extra step in build process

• Object-code compatibility
• have to recompile all code for every machine, even for two machines in same

generation

• Object code size
• instruction padding wastes instruction memory/cache

• loop unrolling/software pipelining replicates code

• Scheduling variable latency memory operations
• caches and/or memory bank conflicts impose statically unpredictable

variability

• Scheduling for statically unpredictable branches
• optimal schedule varies with branch path

CS211@ShanghaiTech 25

VLIW Instruction Encoding

•Schemes to reduce effect of unused fields
• Compressed format in memory, expand on I-cache refill

• used in Multiflow Trace

• introduces instruction addressing challenge

• Provide a single-op VLIW instruction

• Cydra-5 UniOp instructions

• Mark parallel groups

• used in TMS320C6x DSPs, Intel IA-64

Group 1 Group 2 Group 3

CS211@ShanghaiTech 26

Cydra-5:
Memory Latency Register (MLR)

• Problem: Loads have variable latency

• Solution: Let software choose desired memory latency

• Compiler schedules code for maximum load-use distance

• Software sets MLR to latency that matches code schedule

• Hardware ensures that loads take exactly MLR cycles to return values
into processor pipeline
• Hardware buffers loads that return early

• Hardware stalls processor if loads return late

CS211@ShanghaiTech 27

Intel Itanium, EPIC IA-64

• EPIC is the style of architecture (cf. CISC, RISC)
• Explicitly Parallel Instruction Computing (really just VLIW)

• IA-64 is Intel’s chosen ISA (cf. x86, MIPS)
• IA-64 = Intel Architecture 64-bit

• An object-code-compatible VLIW

• Merced was first Itanium implementation (cf. 8086)
• First customer shipment expected 1997 (actually 2001)

• McKinley, second implementation shipped in 2002

• Recent version, Poulson, eight cores, 32nm, announced 2011

CS211@ShanghaiTech 28

IA-64 Instruction Format

• Template bits (5 bits) describe grouping of these instructions
(3*41bits) with others in adjacent bundles

• Each group contains instructions that can execute in parallel

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2group i-1

bundle j bundle j+1bundle j+2bundle j-1

IA-64 instructions are encoded in bundles.

CS211@ShanghaiTech 29

IA-64 Registers

• 128 General Purpose 64-bit Integer Registers

• 128 General Purpose 64/80-bit Floating Point Registers

• 64 1-bit Predicate (not Predict) Registers
• Used to support branch predication (not prediction)

• Encoded and placed in the lower 6 bits of each instruction

• Set using compare or test instructions
• If predicate register set, run that instruction

• Otherwise, instruction treated as nop

CS211@ShanghaiTech 30

IA-64 Registers

• 128 General Purpose 64-bit Integer Registers

• 128 General Purpose 64/80-bit Floating Point Registers

• 64 1-bit Predicate Registers

• GPRs “rotate” to reduce code size for software pipelined loops
• Rotation is a simple form of register renaming allowing one instruction to

address different physical registers on each iteration

• To support software pipelining

CS211@ShanghaiTech 31

Problems: Scheduled loops require lots of registers,
Lots of duplicated code in prolog, epilog

Solution: Allocate new set of registers for each loop iteration

Rotating Register File

P0
P1
P2
P3
P4
P5
P6
P7

RRB=3

+Rx

Rotating Register Base (RRB) register points to base of current
register set. Value added on to logical register specifier to give
physical register number. Usually, split into rotating and non-
rotating registers.
R0 to R31 are static and refer to the first 32 physical registers;
R32 to R127 are rotating registers

CS211@ShanghaiTech 32

Rotating Register File
(Previous Loop Example)

bloopsd f9, ()fadd f5, f4, ...ld f1, ()

Three cycle load latency encoded
as difference of 3 in register
specifier number (f4 - f1 = 3)

Four cycle fadd latency encoded
as difference of 4 in register

specifier number (f9 – f5 = 4)

bloopsd P17, ()fadd P13, P12,ld P9, () RRB=8

bloopsd P16, ()fadd P12, P11,ld P8, () RRB=7

bloopsd P15, ()fadd P11, P10,ld P7, () RRB=6

bloopsd P14, ()fadd P10, P9,ld P6, () RRB=5

bloopsd P13, ()fadd P9, P8,ld P5, () RRB=4

bloopsd P12, ()fadd P8, P7,ld P4, () RRB=3

bloopsd P11, ()fadd P7, P6,ld P3, () RRB=2

bloopsd P10, ()fadd P6, P5,ld P2, () RRB=1
CS211@ShanghaiTech 33

IA-64 Predicated Execution
Problem: Mispredicted branches limit ILP

Solution: Eliminate hard to predict branches with predicated execution
• Almost all IA-64 instructions can be executed conditionally under predicate

• Instruction becomes NOP if predicate register false

Inst 1
Inst 2
br a==b, b2

Inst 3
Inst 4
br b3

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1
Inst 2
p1,p2 <- cmp(a==b)
(p1) Inst 3 || (p2) Inst 5
(p1) Inst 4 || (p2) Inst 6
Inst 7
Inst 8

Predication

One basic block

Mahlke et al, ISCA95: On
average >50% branches removed

Warning: Complicates bypassing!CS211@ShanghaiTech 34

IA-64 Speculative Execution

Problem: Branches restrict compiler code motion

Inst 1
Inst 2
br a==b, b2

Load r1
Use r1
Inst 3

Can’t move load above branch
because might cause spurious
exception

Load.s r1
Inst 1
Inst 2
br a==b, b2

Chk.s r1, fix-up
Use r1
Inst 3

Speculative load
never causes
exception, but sets
“poison” bit on
destination
register

Check for exception
in original home
block jumps to fix-up
code if exception
detected

Particularly useful for scheduling long latency loads early

Solution: Speculative operations that don’t cause exceptions

CS211@ShanghaiTech 35

IA-64 Data Speculation

Problem: Possible memory hazards limit code scheduling

Requires associative hardware in address check table

Inst 1
Inst 2
Store

Load r1
Use r1
Inst 3

Can’t move load above store
because store might be to
same address

Load.a r1
Inst 1
Inst 2
Store
Load.c
Use r1
Inst 3

Data speculative load
adds address to
address check table

Store invalidates any
matching loads in
address check table

Check if load invalid (or
missing), jump to fixup
code if so

Solution: Hardware to check pointer hazards

CS211@ShanghaiTech 36

Limits of Static Scheduling

• Statically unpredictable branches

• Variable memory latency (unpredictable cache misses)

• Code size explosion

• Compiler complexity

• Despite several attempts, VLIW has failed in general-purpose
computing arena (so far).
• More complex VLIW architectures are close to in-order superscalar in

complexity, no real advantage on large complex apps.

• Successful in embedded DSP market
• Simpler VLIWs with more constrained environment, friendlier code.

CS211@ShanghaiTech 37

Intel Kills Itanium

• Donald Knuth “ … Itanium approach that was supposed to be so
terrific—until it turned out that the wished-for compilers were
basically impossible to write.”

• “Intel officially announced the end of life and product discontinuance
of the Itanium CPU family on January 30th, 2019”, Wikipedia

CS211@ShanghaiTech 38

Conclusion

• Superscalar

• VLIW

CS211@ShanghaiTech 39

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Krste Asanovic (UC Berkeley)

• Prof. Joel Emer (MIT)

• Prof. Daniel Sanchez (MIT)

• Prof. Onur Mutlu (ETHZ)

CS211@ShanghaiTech 40

	Slide 1: CS211 Advanced Computer Architecture L12 Superscalar and VLIW
	Slide 2: Speculative Execution
	Slide 3: Instruction-level parallelism
	Slide 4: Superscalar
	Slide 5: Superscalar Execution
	Slide 6: In-Order Superscalar Processor Example
	Slide 7: In-Order Superscalar Performance Example
	Slide 8: Superscalar Performance with Dependencies
	Slide 9: Superscalar Execution Tradeoffs
	Slide 10: Superscalar Control Logic Scaling
	Slide 11: Out-of-Order Control Complexity: MIPS R10000
	Slide 12: Sequential ISA Bottleneck
	Slide 13: VLIW
	Slide 14: VLIW: Very Long Instruction Word
	Slide 15: VLIW Design Principles
	Slide 16: Early VLIW Machines
	Slide 17: VLIW Compiler Responsibilities
	Slide 18: Loop Execution
	Slide 19: Loop Unrolling
	Slide 20: Scheduling Loop Unrolled Code
	Slide 21: Software Pipelining
	Slide 22: Software Pipelining vs. Loop Unrolling
	Slide 23: What if there are no loops?
	Slide 24: Trace Scheduling [Fisher, Ellis]
	Slide 25: Problems with “Classic” VLIW
	Slide 26: VLIW Instruction Encoding
	Slide 27: Cydra-5: Memory Latency Register (MLR)
	Slide 28: Intel Itanium, EPIC IA-64
	Slide 29: IA-64 Instruction Format
	Slide 30: IA-64 Registers
	Slide 31: IA-64 Registers
	Slide 32: Rotating Register File
	Slide 33: Rotating Register File (Previous Loop Example)
	Slide 34: IA-64 Predicated Execution
	Slide 35: IA-64 Speculative Execution
	Slide 36: IA-64 Data Speculation
	Slide 37: Limits of Static Scheduling
	Slide 38: Intel Kills Itanium
	Slide 39: Conclusion
	Slide 40: Acknowledgements

