[
CL-
P g
JEGREE
i i, Jx

s
o s A
4/p5cH“l"«

EwBHRZKRT
ShanghaiTech University

CS211
Advanced Computer Architecture

L12 Superscalar and VLIW

Chundong Wang
October 31st, 2025



j ShanghaiTech University

:3}3@
;é
ECH

) B R R TF

Speculative Execution

* Branch Prediction
* Static

* Dynamic

CS211@ShanghaiTech 2
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Instruction-level parallelism

* How to achieve instruction-level parallelism?
* Pipelining
e Superscalar
* Multiple processors

* Multiple independent operations per instruction
« VLIW
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Superscalar

To fetch, issue to execution units, and complete more than one instruction at a time

CS211@ShanghaiTech 4
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Superscalar Execution

BIdea: Fetch, decode, execute, retire multiple instructions per cycle
LIN-wide superscalar = N instructions per cycle

BMNeed to add the hardware resources for doing so

MHardware performs the dependence checking between concurrently-
fetched instructions

B Superscalar execution and out-of-order execution are orthogonal
concepts

L Can have all four combinations of processors:
[in-order, out-of-order] x [scalar, superscalar]

CS211@ShanghaiTech 5
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In-Order Superscalar Processor Example

* Multiple copies of datapath: Can fetch/decode/execute multiple
instructions per cycle

* Dependencies make it tricky to issue multiple instructions at once

CLK CLK CLK CLK
CLK _
PC RD A1 L
- A A2
= A3 RD1 h
Ad RD4 g A1 RD1
Instruction |: A5 Reg.ister % - A2 RD2 .
Memory Ab File ~RD2 < Data
RD5
W8 L— Memory
WD1
WD2

Here: Ideal IPC = 2
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n-Order Superscalar Performance Example

lw $te, 40($s0) Ideal IPC = 2
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80(%$s0)

1 2 4 5 6 7 8

>

Time (cycles)

3
N $s0MA M Y
1w $t0, 40($s0) — 40 :B— — =
IM RF [5s1 DM . RF
add $tl, S$sl, $s2 2dd $52 :B— -
M $s1M] M Mst2
sub $t2, $sl1, $s3 sub $s3 :B— s
M RF [5o3 DM RF
3
and $t3, $s3, S$s4 and -[ 554 :B— I Ras
V $Slv V V 4
or $t4, $sl, $s5 = -[ $s5 :D— S
IM RF [5s0 DM RF
5
sw  $s5, 80($s0) ] P

Actual IPC = 2 (6 instructions issued in 3 cycles)
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Superscalar Performance with Dependencies

lw $to, 40($s9) Ideal IPC = 2
add $t1, $to, $s1

sub $t0, $s2, $s3
and $t2, $s4, $to
or $t3, $s5, $s6
sw $s7, 80(%$t3)

Time (cycles)

1w $to

1w $t0, 40($s0)

RF

add $t1, , ss1

sub $t0, $s2, S$s3

and $t2, $s4, @

RF

$s4R

Y

8% [
I

M

n an { _v$t2
RF (555 DM RF
or $t3, $s5, $s6 A o { 556 I A
M St3R M M
sw $s7, 80¢( ) sw { ” %ﬁ $s7
RF

! sl

Actual IPC = 1.2 (6 instructions issued in 5 cycles)
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Superscalar Execution Tradeoffs

BAdvantages
W Higher IPC (instructions per cycle)

MDisadvantages
UHigher complexity for dependency checking
M Require checking within a pipeline stage
B Renaming becomes more complex in an OoO processor
LMore hardware resources needed



#

L
=f
CH

AR R AN

£/ ShanghaiTech University

Superscalar Control Logic Scaling

TANE

_ lssue Width W
Issue Group
7m
Previously , \\\\\A\\\\
Issued L NN Lifetime L
Instructions |

* Each issued instruction must somehow check against W*L instructions,
i.e., growth in hardware oc W*(W*L)

e For in-order machines, L is related to pipeline latencies and check is
done during issue (interlocks or scoreboard)

* For out-of-order machines, L also includes time spent in instruction
buffers (instruction window or ROB), and check is done by
broadcasting tags to waiting instructions at write back (completion)

* As W increases, larger instruction window is needed to find enough
parallelism to keep machine busy => greater L

=> Qut-of-order control logic grows faster than W? (~W?3)

CS211@ShanghaiTech 10



Instiitction
Cache

Control
Logic

CGrad
Unit

Register
Rename

[ SGI/MIPS Technologies
Inc., 1995 |
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Cache B

‘Address
- Queue
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Sequential ISA Bottleneck

Sequential Superscalar compiler Sequential

source code machine code
a = foo(b); f/f —) —
for (i=0, i< /Q I

Find independent Schedule
operations operations

Superscalar processor

| |
-

Check instruction Schedule
dependencies execution

CS211@ShanghaiTech 12
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VLIW

Very Long Instruction Word

CS211@ShanghaiTech 13
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VLIW: Very Long Instruction Word

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FPOp1l FP Op 2

! ! ! ! ' '

Two Integer Units,
Single-Cycle Latency

Two Load/Store Units,
Three-Cycle Latency Two Floating-Point Units,
Four-Cycle Latency

* Multiple operations packed into one instruction
* Each operation slot is for a fixed function
* Constant operation latencies are specified

CS211@ShanghaiTech 14
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VLIW Design Principles

* The architecture:

* Allows operation parallelism within an instruction
* No cross-operation RAW check

* Provides deterministic latency for all operations
* Latency measured in ‘instructions’
* No data use before data ready => no data interlocks
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Early VLIW Machines

« FPS AP120B (1976)

* scientific attached array processor
* first commercial wide instruction machine

* hand-coded vector math libraries using software pipelining and loop
unrolling

* Multiflow Trace (1987)

* commercialization of ideas from Fisher’s Yale group including “trace
scheduling”

* available in configurations with 7, 14, or 28 operations/instruction
» 28 operations packed into a 1024-bit instruction word

* Cydrome Cydra-5 (1987)

» 7 operations encoded in 256-bit instruction word
* rotating register file
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VLIW Compiler Responsibilities

*Schedule operations to maximize parallel
execution

*Guarantee intra-instruction parallelism

*Schedule to avoid data hazards (no interlocks)
* Typically separates operations with explicit NOPs
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Loop Execution

for (i=0; i<N; i++)
B[i] = A[i] + C; Intl1 Int2 M1 M2 FP+ FPx
| . loop: |
l Compile P- fadd xt fl
loop: fld f1, O(x1) fadd
add x1, 8 Schedule 7
fadd 2, f0, f1
fsd f2, 0(x2) -
add x2, 8
' dd x2
bne x1, x3, loop Iaixm—fﬁﬂ

How many FP ops/cycle?

1 fadd / 8 cycles = 0.125

CS211@ShanghaiTech 18
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Loop Unrolling

for (i=0; i<N; i++)
B[i] = A[i] + C;

Unroll inner loop to perform 4
iterations at once

for (i=0; i<N; i+=4)

{
B[i] =A[i]+C;
B[i+1] = A[i+1] + C;
B[i+2] = A[i+2] + C;
B[i+3] = A[i+3] + C;
b

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

CS211@ShanghaiTech 19
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Scheduling Loop Unrolled Code

Unroll 4 ways

loop: fld f1, 0(x1)
fld 2, 8(x1) Intl Int2 M1 M2 FP+  FPx
fld 3, 16(x1) loop: T
fld f4, 24(x1) AN
add x1, 32 P \
fadd 15, 10, 11 add x1 fd f4 Tradd 15
fadd f6, fO, f2 Schedule / fdd fe
fadd f7, f0, f3 > 7/ fadd 7
fadd f8, f0, f4 / fadd 8
fsd 5, 0(x2) fsd 5
fsd 16, 8(x2) fsd f6
fsd 7, 16(x2) fsd f7
fsd f8, 24(x2) add x2 _bne  fsd {8
add x2, 32
bne x1, x3, loop

How many FLOPS/cycle? 4 fadds/ 11 cycles = 0.36

CS211@ShanghaiTech



Software Pipelining

Unroll 4 ways first

loop: fld f1, 0(x1)
fid f2, 8(x1)

fid 3, 16(x1)
fld f4, 24(x1)

add x1, 32
fadd 15, 0, f1
fadd f6, f0, f2

r

fadd f7, f0, f3
fadd f8, f0, f4
fsd 5, 0(x2)

fsd 6, 8(x2)

fsd 7, 16(x2)
add x2, 32

fsd 8, -8(x2)
bne x1, x3, loop

How many FLOPS/cycle?

iterate

epilog <

4 fadds / 4 cycles = 1

\~

CE
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Intl Int2 M1 M2 FP+ FPx
fld f1
fld f2
fld f3
add x1 fld f4
fld f1 fadd f5
fld f2 fadd f6
fld f3 fadd f7
add x1 fld f4 fadd f8

fsd f5 |fadd f5
fsd f6 fadd f6
add x2 fsd 7 [fadd f7
bne fsd f8 fadd f8
fsd f5

CS211@ShanghaiTech
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Software Pipelining vs. Loop Unrolling
Loop Unrolled

Wind-down overhead
performance

49

Startup overhead

L

:Loop Iteratioa time
Software Pipelined
performance
NN time

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

CS211@ShanghaiTech 22
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What if there are no loops?

/\ * Branches limit basic block size in

control-flow intensive irregular code
_ e Difficult to find ILP in individual basic
Basic block blocks

~

/\.

N

CS211@ShanghaiTech 23
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Trace Scheduling [risher, eiiis]

* Trace scheduling

* A compiler technigue that increases ILP by
removing control dependencies, allowing
operations following branches to be moved up and
speculatively executed in parallel with operations
before the branch.

* Trace selection: find a likely sequence of basic
blocks whose operations will be put together into a
smaller number of instructions

* Trace compaction: squeeze the trace into a small
number of wide instructions

» Use profiling feedback or compiler heuristics to
find common branch paths

* Schedule whole “trace” at once

* Add fix-up code to cope with branches jumping
out of trace
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Problems with “Classic” VLIW

* Knowing branch probabilities
* Profiling requires a significant extra step in build process
* Object-code compatibility

* have to recompile all code for every machine, even for two machines in same
generation

* Object code size
* instruction padding wastes instruction memory/cache
* loop unrolling/software pipelining replicates code

e Scheduling variable latency memory operations

 caches and/or memory bank conflicts impose statically unpredictable
variability

» Scheduling for statically unpredictable branches
* optimal schedule varies with branch path



VLIW Instruction Encoding

e Schemes to reduce effect of unused fields

* Compressed format in memory, expand on I-cache refill
* used in Multiflow Trace
* introduces instruction addressing challenge
* Provide a single-op VLIW instruction
* Cydra-5 UniOp instructions
* Mark parallel groups
e used in TMS320C6x DSPs, Intel IA-64

I I
o

Group 1 Group 2 Group 3

CS211@ShanghaiTech
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Cydra-5:
Memory Latency Register (MLR)

* Problem: Loads have variable latency

e Solution: Let software choose desired memory latency

* Compiler schedules code for maximum load-use distance
* Software sets MLR to latency that matches code schedule

* Hardware ensures that loads take exactly MLR cycles to return values
into processor pipeline
* Hardware buffers loads that return early
* Hardware stalls processor if loads return late



Intel Itanium, EPIC |1A-64

e EPIC is the style of architecture (cf. CISC, RISC)
* Explicitly Parallel Instruction Computing (really just VLIW)

* |[A-64 is Intel’s chosen ISA (cf. x86, MIPS)
* |A-64 = Intel Architecture 64-bit
* An object-code-compatible VLIW

* Merced was first [tanium implementation (cf. 8086)

* First customer shipment expected 1997 (actually 2001)
* McKinley, second implementation shipped in 2002
* Recent version, Poulson, eight cores, 32nm, announced 2011

Al bR R

f ShanghaiTech University
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|A-64 Instruction Format

|Instruction 2 | Instruction 1 | Instruction 0 | Template |

128-bit instruction bundle

|A-64 instructions are encoded in bundles.

* Template bits (5 bits) describe grouping of these instructions
(3*41bits) with others in adjacent bundles

e Each group contains instructions that can execute in parallel

bundle j-1 bundle j bundle j+1bundle j+2
| \ \ | \ \ | \ \ | \ \ | \ \ Il

\ J N N\ )\l J
Y 'l Y N

group i-1 group i group i+1 group i+2

CS211@ShanghaiTech 29



|A-64 Registers

» 128 General Purpose 64-bit Integer Registers
» 128 General Purpose 64/80-bit Floating Point Registers

* 64 1-bit Predicate (not Predict) Registers
» Used to support branch predication (not prediction)
* Encoded and placed in the lower 6 bits of each instruction

* Set using compare or test instructions
* |f predicate register set, run that instruction
* Otherwise, instruction treated as nop

G B R Ry

f ShanghaiTech University
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|A-64 Registers

* 128 General Purpose 64-bit Integer Registers
* 128 General Purpose 64/80-bit Floating Point Registers
* 64 1-bit Predicate Registers

* GPRs “rotate” to reduce code size for software pipelined loops

* Rotation is a simple form of register renaming allowing one instruction to
address different physical registers on each iteration

* To support software pipelining

Problems: Scheduled loops require lots of registers,
Lots of duplicated code in prolog, epilog

Solution: Allocate new set of registers for each loop iteration



Rotating Register File
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P7

P6

P5

RRB=3

P4

P3

/'

P2

Rx

P1

PO
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Rotating Register Base (RRB) register points to base of current
register set. Value added on to logical register specifier to give
physical register number. Usually, split into rotating and non-

rotating registers.

RO to R31 are static and refer to the first 32 physical registers;

R32 to R127 are rotating registers
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Rotating Register File
(Previous Loop Example)

Three cycle load latency encoded
as difference of 3 in register
specifier number (f4 - f1 = 3)

Four cycle fadd latency encoded
as difference of 4 in register
specifier number (f9 — f5 = 4)

/

Id f1, () fadd f5, 4, ... sdfo,() | bloop |

Id P9, () fadd P13,P12, | sd P17,() | bloop RRB=8

1d P8, () ddP12,P11, | sdP16,() | bloop RRB=7

d P7, () faleO, sd P15, () | bloop RRB=6

Id P6, () fadd P10, P9 sd P14, () bloop RRB=5

Id PS5, () fadd P9, PS\ sd P13, () | bloop RRB=4

|d P4, () fadd P8, P7, sd P12,() | bloop RRB=3

Id P3, () fadd P7, P6, \Qll, () | bloop RRB=2

Id P2, () fadd P6, P5, ., . o590 P10, () bloop RRB=1 .
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|A-64 Predicated Execution

Problem: Mispredicted branches limit ILP

Solution: Eliminate hard to predict branches with predicated execution
* Almost all IA-64 instructions can be executed conditionally under predicate
* Instruction becomes NOP if predicate register false

bO:| Inst 1 .
Inst 2 it
bra==b, b2 |— Inst 1
Inst 2
b1: Inst 3 else
Inst 4 Predicati pl,p2 <- cmp(a==b)
br b3 — | Fredication - (p1)inst3 || (p2) Inst 5
P (p1) Inst4 || (p2)Inst6
b2 Inst5 . 7 Inst 7
Inst 6 Inst 8
One basic block
b3:| Inst 7 «
Inst 8 Mahlke et al, ISCA95: On
average >50% branches removed

Four basic blocks <Warning: Complicates bypassing!.



|A-64 Speculative Execution

Problem: Branches restrict compiler code motion
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Solution: Speculative operations that don’t cause exceptions

Inst 1
Inst 2
br a==!o, b2

1

Load rl1
Use rl
Inst 3

Can’t move load above branch
because might cause spurious
exception

Load.srl «—

Inst 1
Inst 2
bra==b, b2

1

Chk.s rl, fix-up
Use rl D—

Inst 3

Speculative load
never causes
exception, but sets
“poison” bit on
destination
register

Check for exception
in original home
—__block jumps to fix-up
code if exception

detected

Particularly useful for scheduling long latency loads early
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Problem: Possible memory hazards limit code scheduling

Solution: Hardware to check pointer hazards

Inst 1
Inst 2
Store

Load rl
Userl
Inst 3

Can’t move load above store
because store might be to
same address

Load.arl «—
Inst 1
Inst 2

Data speculative load
adds address to
_address check table

Store invalidates any
matching loads in

Store <«

Load.c

Use rl \

Inst 3

address check table

~Check if load invalid (or
missing), jJump to fixup
code if so

Requires associative hardware in address check table
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Limits of Static Scheduling

e Statically unpredictable branches

 Variable memory latency (unpredictable cache misses)
* Code size explosion

* Compiler complexity

* Despite several attempts, VLIW has failed in general-purpose
computing arena (so far).
* More complex VLIW architectures are close to in-order superscalarin
complexity, no real advantage on large complex apps.
* Successful in embedded DSP market
e Simpler VLIWs with more constrained environment, friendlier code.
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Intel Kills Itanium

* Donald Knuth “ ... Itanium approach that was supposed to be so
terrific—until it turned out that the wished-for compilers were
basically impossible to write.”

* “Intel officially announced the end of life and product discontinuance
of the Itanium CPU family on January 30th, 2019”, Wikipedia
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Conclusion

e Superscalar

* VLIW

CS211@ShanghaiTech 39
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