
CS211
Advanced Computer Architecture

L15 Cache Coherence

Chundong Wang

November 19th, 2025

CS211@ShanghaiTech 1

The Shift to Multicore

[https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/]

End of
Dennard
Scaling

• Since 2005, improvements in system performance
mainly due to increasing cores per chip

• Why? Technology scaling
Limited instruction-level parallelism

CS211@ShanghaiTech 2

Dennard scaling refers to the reduction of
MOS supply voltage in concert with the
scaling of feature sizes, so that as transistors
get smaller, their power density stays
roughly constant.

Multicore Performance

• What factors may limit multicore performance?
• Limited application parallelism

• Memory accesses and inter-core communication

• Programming complexity

CS211@ShanghaiTech 3

Amdahl’s Law

• Speedup= timewithout enhancement / timewith enhancement

• Suppose an enhancement speeds up a fraction f of a task by a factor
of S

timenew = timeold·((1-f) + f/S) ➔

Soverall = 1 / ((1-f) + f/S)

Corollary: Make the common case fast

CS211@ShanghaiTech 4

Amdahl’s Law and Parallelism

• Say you write a program that can do 90% of the work in parallel, but
the other 10% is sequential

• What is the maximum speedup you can get by running on a multicore
machine?

• What f do you need to use a 1000-core machine well?

CS211@ShanghaiTech 5

Coherence & Consistency

• Shared memory systems:
• Have multiple private caches for performance reasons

• Need to provide the illusion of a single shared memory

• Intuition: A read should return the most recently written value
• What is “most recent”?

• Formally:
• Coherence: What values can a read return?

• Concerns reads/writes to a single memory location

• Consistency: When do writes become visible to reads?
• Concerns reads/writes to multiple memory locations

CS211@ShanghaiTech 6

Implementing Cache Coherence

• Coherence protocols must enforce two rules:
• Write propagation: Writes eventually become visible to all processors
• Write serialization: Writes to the same location are serialized (all processors

see them in the same order)

• How to ensure write propagation?
• Write-invalidate protocols: Invalidate all other cached copies before

performing the write
• Write-update protocols: Update all other cached copies after performing the

write

• How to track sharing state of cached data and serialize requests to
the same address?
• Snooping-based protocols: All caches observe each other’s actions through a

shared bus (bus is the serialization point)
• Directory-based protocols: A coherence directory tracks contents of private

caches and serializes requests (directory is the serialization point)

CS211@ShanghaiTech 7

Bus Management

• A “bus” is a collection of shared wires
• Newer “buses” use point-point links

• Only one “master” can initiate a transaction by driving wires at any one
time

• Multiple “slaves” can observe and conditionally respond to the transaction
on the wires
• slaves decode address on bus to see if they should respond (memory is most common slave)

• some masters can also act as slaves

• Masters arbitrate for access with requests to bus “controller”
• Some buses only allow one master (in which case, it’s also the controller)

Master 0 Master 1 Slave 0 Slave 1
Bus

Controller

Clock/Control

Address

Data

RequestGrant

CS211@ShanghaiTech 8

Shared-Memory Multiprocessor

CPU1

Use snoopy mechanism to keep all processors’ view of
memory coherent

Memory
Bus

Main
Memory
(DRAM)

DMA

Snoopy
Cache

CPU2
Snoopy
Cache

CPU3
Snoopy
Cache

Disk

DMA Network

Bus Control

CS211@ShanghaiTech 9

Snoopy Cache, Goodman 1983

• Idea: Have cache watch (or snoop upon) other memory transactions,
and then “do the right thing”

• Snoopy cache tags are dual-ported

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

CS211@ShanghaiTech 10

Snoopy Cache-Coherence Protocols

•Write miss:
• the address is invalidated in all other caches before the

write is performed

•Read miss:
• if a dirty copy is found in some cache, a write-back is

performed before the memory is read

CS211@ShanghaiTech 11

Cache State-Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has state bits

Address tag

state
bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

Read miss
(P1 gets line from memory)

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

CS211@ShanghaiTech 12

Two-Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

CS211@ShanghaiTech 13

Observation

• If a line is in the M state then no other cache can have a valid copy
of the line!

• Memory stays coherent, multiple differing copies cannot exist

M

S I

Write miss

Other processor
intent to write

Read
miss

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Other processor reads
P1 writes back

CS211@ShanghaiTech 14

MESI: An Enhanced MSI protocol

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent to
write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write, P1
writes back

CS211@ShanghaiTech 15

increased performance for private data

MESI vs. MSI

• Advantage?
• If a block is in the E state, it can be written without generating any invalidates,

which optimizes the case where a block is read by a single cache before being
written by that same cache.
• A subsequent write to a block in the exclusive state by the same core need not acquire

bus access or generate an invalidate, since the block is known to be exclusively in this
local cache; the processor merely changes the state to modified.

• Disadvantage?
• Complexity

CS211@ShanghaiTech 16

The Problem with MESI

• Observation: Shared state requires the data to be clean
• i.e., all caches that have the block have the up-to-date copy and so does the memory

• Problem: Need to write the block to memory when BusRd happens when
the block is in Modified state

• Why is this a problem?
• Memory can be updated unnecessarily → some other processor may want to write

to the block again

CS211@ShanghaiTech 18

Improving on MESI
• Idea 1: Do not transition from M→S on a BusRd. Invalidate the copy and

supply the modified block to the requesting processor directly without
updating memory

• Idea 2: Transition from M→S, but designate one cache as the owner (O),
who will write the block back when it is evicted
• Now “Shared” means “Shared and potentially dirty”

• This is a version of the MOESI protocol

CS211@ShanghaiTech 19

Tradeoffs in Sophisticated Cache
Coherence Protocols

◼The protocol can be optimized with more states and prediction mechanisms
to

+ Reduce unnecessary invalidates and transfers of blocks

◼However, more states and optimizations
-- Are more difficult to design and verify (lead to more cases to take care of, race
conditions)

-- Provide diminishing returns

CS211@ShanghaiTech 20

Optimized Snoop with Level-2 Caches

• Processors with two-level caches
• small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
• Miss in L2 ⇒ Not present in L1
• Only if invalidation hits in L2 ⇒ probe and invalidate in L1

• Snooping on L2 does not much affect CPU-L1
bandwidth

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CS211@ShanghaiTech 21

Intervention

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared

• The memory may respond to the request also!

Does memory know it has stale data?
Cache-1 needs to intervene through memory controller to supply
correct data to cache-2

cache-1A 200

CPU-Memory bus

CPU-1 CPU-2

cache-2

memory (stale data)A 100

CS211@ShanghaiTech 22

False Sharing

state line addr data0 data1 ... dataN

A cache line contains more than one word

Cache-coherence is done at the line-level and not
word-level

Suppose M1 writes wordi and M2 writes wordk and
i ≠ k but both words have the same line address.

What can happen?

CS211@ShanghaiTech 23

Performance of
Symmetric Multiprocessors (SMPs)

Cache performance is combination of:
•Uniprocessor cache miss traffic
•Traffic caused by communication

• Results in invalidations and subsequent cache misses

•Coherence misses
• Sometimes called a Communication miss

• 4th C of cache misses along with Compulsory, Capacity, &
Conflict.

CS211@ShanghaiTech 24

Coherency Misses

•True sharing misses arise from the communication
of data through the cache coherence mechanism
• Invalidates due to 1st write to shared line

• Reads by another CPU of modified line in different cache

• Miss would still occur if line size were 1 word

•False sharing misses when a line is invalidated
because some word in the line, other than the one
being read, is written into
• Invalidation does not cause a new value to be communicated, but

only causes an extra cache miss

• Line is shared, but no word in line is actually shared
miss would not occur if line size were 1 word

CS211@ShanghaiTech 25

MP Performance 2MiB Cache Commercial Workload:
OLTP, Decision Support (Database), Search Engine

• True sharing,
false sharing
increase going
from 1 to 8 CPUs

CS211@ShanghaiTech 26

Scaling Snoopy/Broadcast Coherence
• When any processor gets a miss, must probe every other cache

• Scaling up to more processors limited by:
• Communication bandwidth over bus

• Snoop bandwidth into tags

• Can improve bandwidth by using multiple interleaved buses with
interleaved tag banks
• E.g, two bits of address pick which of four buses and four tag banks to use –

(e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte line)

• Buses don’t scale to large number of connections, so can use
point-to-point network for larger number of nodes, but then
limited by tag bandwidth when broadcasting snoop requests.

• Insight: Most snoops fail to find a match!

CS211@ShanghaiTech 27

e.g., Intel QuickPath
Interconnect

Scalable Approach: Directories

• Every memory line has associated directory
information
• keeps track of copies of cached lines and their states

• on a miss, find directory entry, look it up, and communicate only with
the nodes that have copies if necessary

• in scalable networks, communication with directory and copies is
through network transactions

•Many alternatives for organizing directory
information

CS211@ShanghaiTech 28

Directory Cache Protocol

• Assumptions: Reliable network, FIFO message delivery between any given
source-destination pair

CPU

Cache

Interconnection Network

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

DataTagStat.

Each line in cache has
state field plus tag

DataStat. Directory

Each line in memory
has state field plus bit
vector directory with
one bit per processor

CS211@ShanghaiTech 29

Cache States

•For each cache line, there are 4 possible states:
• C-invalid (= Nothing): The accessed data is not resident in the

cache.
• C-shared (= Sh): The accessed data is resident in the cache,

and possibly also cached at other sites. The data in memory is
valid.

• C-modified (= Ex): The accessed data is exclusively resident in
this cache, and has been modified. Memory does not have
the most up-to-date data.

• C-transient (= Pending): The accessed data is in a transient
state (for example, the site has just issued a protocol request,
but has not received the corresponding protocol reply).

CS211@ShanghaiTech 30

Home directory states

•For each memory line, there are 4 possible states:
• R(dir): The memory line is shared by the sites specified in dir (dir

is a set of sites). The data in memory is valid in this state. If dir is
empty (i.e., dir = ∅), the memory line is not cached by any site.

• W(id): The memory line is exclusively cached at site id, and has
been modified at that site. Memory does not have the most up-
to-date data.

• TR(dir): The memory line is in a transient state waiting for the
acknowledgements to the invalidation requests that the home
site has issued.

• TW(id): The memory line is in a transient state waiting for a line
exclusively cached at site id (i.e., in C-modified state) to make
the memory line at the home site up-to-date.

CS211@ShanghaiTech 31

The home site is the node where the memory location and
the directory entry of an address reside

Read miss, to uncached or shared line

Directory
Controller

DRAM Bank

CPU

Cache

1
Load request at head of

CPU->Cache queue.

2Load misses in cache.

3Send ShReq message
to directory.

4
Message received at
directory controller.

5
Access state and directory for

line. Line’s state is R, with zero or
more sharers.

6
Update directory by
setting bit for new
processor sharer.

7
Send ShRep message with

contents of cache line.

8 ShRep arrives at cache.

9

Update cache tag and data and
return load data to CPU.

Interconnection Network

CS211@ShanghaiTech 32

Write miss, to read shared line

Directory
Controller

DRAM Bank

CPU

Cache

1
Store request at head of

CPU->Cache queue.

2Store misses in cache.

3Send ExReq message
to directory.

4
ExReq message received
at directory controller.

5
Access state and directory for

line. Line’s state is R, with some
set of sharers.

6 Send one InvReq
message to each sharer.

11

ExRep arrives
at cache

12

Update cache tag and
data, then store data

from CPU

Interconnection Network

CPU

Cache

7

InvReq arrives
at cache.8

Invalidate
cache line.

Send InvRep
to directory.

9InvRep received.
Clear down sharer

bit.

10
When no more sharers,

send ExRep to cache.

Multiple sharers

CPU

Cache

CPU

Cache

CS211@ShanghaiTech 33

Concurrency Management

•Protocol would be easy to design if only one
transaction in flight across entire system

•But, want greater throughput and don’t want to
have to coordinate across entire system

•Great complexity in managing multiple
outstanding concurrent transactions to cache lines
• Can have multiple requests in flight to same cache line!

CS211@ShanghaiTech 34

Contention Resolution (for Write)

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

☺ 

3. RdEx
4. Invl

5a. Rev

5b. DatEx

☺

CS211@ShanghaiTech 35

Issues with Contention Resolution
• Need to escape race conditions by:

• NACKing requests to busy (pending invalidate) entries
• Original requestor retries

• OR, queuing requests and granting in sequence

• (Or some combination thereof)

• Fairness
• Which requestor should be preferred in a conflict?

• Interconnect delivery order, and distance, both matter

• Ping-ponging can be reduced w/ protocol optimizations OR better
higher-level synchronization
• With solutions like combining trees (for locks/barriers) and better shared-data-

structure design

CS211@ShanghaiTech 36

Scaling the Directory: Some Questions

• How large is the directory?

• How can we reduce the access latency to the directory?

• How can we scale the system to thousands of nodes?

• Can we get the best of snooping and directory protocols?
• Heterogeneity

• E.g., token coherence [Martin+, ISCA 2003]

CS211@ShanghaiTech 37

Conclusion

• Snooping-based

• Directory-based

CS211@ShanghaiTech 38

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Krste Asanovic (UC Berkeley)

• Prof. Mengjia Yan (MIT)

• Prof. Onur Mutlu (ETHZ)

CS211@ShanghaiTech 39

	Slide 1: CS211 Advanced Computer Architecture L15 Cache Coherence
	Slide 2: The Shift to Multicore
	Slide 3: Multicore Performance
	Slide 4: Amdahl’s Law
	Slide 5: Amdahl’s Law and Parallelism
	Slide 6: Coherence & Consistency
	Slide 7: Implementing Cache Coherence
	Slide 8: Bus Management
	Slide 9: Shared-Memory Multiprocessor
	Slide 10: Snoopy Cache, Goodman 1983
	Slide 11: Snoopy Cache-Coherence Protocols
	Slide 12: Cache State-Transition Diagram The MSI protocol
	Slide 13: Two-Processor Example (Reading and writing the same cache line)
	Slide 14: Observation
	Slide 15: MESI: An Enhanced MSI protocol
	Slide 16: MESI vs. MSI
	Slide 18: The Problem with MESI
	Slide 19: Improving on MESI
	Slide 20: Tradeoffs in Sophisticated Cache Coherence Protocols
	Slide 21: Optimized Snoop with Level-2 Caches
	Slide 22: Intervention
	Slide 23: False Sharing
	Slide 24: Performance of Symmetric Multiprocessors (SMPs)
	Slide 25: Coherency Misses
	Slide 26: MP Performance 2MiB Cache Commercial Workload: OLTP, Decision Support (Database), Search Engine
	Slide 27: Scaling Snoopy/Broadcast Coherence
	Slide 28: Scalable Approach: Directories
	Slide 29: Directory Cache Protocol
	Slide 30: Cache States
	Slide 31: Home directory states
	Slide 32: Read miss, to uncached or shared line
	Slide 33: Write miss, to read shared line
	Slide 34: Concurrency Management
	Slide 35: Contention Resolution (for Write)
	Slide 36: Issues with Contention Resolution
	Slide 37: Scaling the Directory: Some Questions
	Slide 38: Conclusion
	Slide 39: Acknowledgements

