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Dennard scaling refers to the reduction of

: : MOS supply voltage in concert with the
Th e S h Ift to M u Itl CO re scaling of feature sizes, so that as transistors
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp [https://www.karlrupp.net/2018/02 /42-years-of-microprocessor-trend-data/]

» Since 2005, improvements in system performance
mainly due to increasing cores per chip

 Why? Technology scaling

Limited instruction-level parallelism
CS211@ShanghaiTech 2
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Multicore Performance
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Performance

» What factors may limit multicore performance?

* Limited application parallelism
* Memory accesses and inter-core communication
* Programming complexity

CS211@ShanghaiTech 3
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Amdahl’s Law

* Speedup= tlmewithout enhancement/ tlmewith enhancement

» Suppose an enhancement speeds up a fraction f of a task by a factor
of S

tirnenew = tirT]eold'( (1'f) +f/5) >
overaII =1 / ( (1 f) +f/5)

time,q
(1-°) f
. time,ey X
(1-°) f/S

Corollary: Make the common case fast
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Amdahl’s Law and Parallelism

e Say you write a program that can do 90% of the work in parallel, but
the other 10% is sequential

* What is the maximum speedup you can get by running on a multicore
machine?

* What f do you need to use a 1000-core machine well?
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Coherence & Consistency

e Shared memory systems:
* Have multiple private caches for performance reasons
* Need to provide the illusion of a single shared memory

* Intuition: A read should return the most recently written value
* What is “most recent”?

* Formally:

* Coherence: What values can a read return?
» Concerns reads/writes to a single memory location

e Consistency: When do writes become visible to reads?
* Concerns reads/writes to multiple memory locations

CS211@ShanghaiTech
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Implementing Cache Coherence

* Coherence protocols must enforce two rules:
* Write propagation: Writes eventually become visible to all processors

* Write serialization: Writes to the same location are serialized (all processors
see them in the same order)

* How to ensure write propagation?
* Write-invalidate protocols: Invalidate all other cached copies before
performing the write

* Write-update protocols: Update all other cached copies after performing the
write

* How to track sharing state of cached data and serialize requests to
the same address?
* Snooping-based protocols: All caches observe each other’s actions through a
shared bus (bus is the serialization point)
» Directory-based protocols: A coherence directory tracks contents of private
caches and serializes requests (directory is the serialization point)
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Grani [Request
Bus Master O Master 1 Slave 0 Slave 1
Controller
A A A A A A
Clock/Control $ $ 1\ $ 1\ $ $
Address ‘1’ ‘1’
Data Y Y Y \ 4

* A “bus” is a collection of shared wires

* Newer “buses” use point-point links

* Only one “master” can initiate a transaction by driving wires at any one

time

* Multiple “slaves” can observe and conditionally respond to the transaction

on the wires

* slaves decode address on bus to see if they should respond (memory is most common slave)
* some masters can also act as slaves

* Masters arbitrate for access with requests to bus “controller”

* Some buses only allow one master (in which case, it’s also the controller)
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Shared-Memory Multiprocessor

Memory
Bus
} Main
<> Memory
Snoopy
cPU, Cache (DRAM)

CPU, |e—> Shoopy «—|{ > DMA
Cache

Snoopy
CPUs Cache

-

«—>»| DMA le=—» Network —2
Bus Control <
Y

Use snoopy mechanism to keep all processors’ view of
memory coherent
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Snoopy Cache, Goodman 1983

* |dea: Have cache watch (or snoop upon) other memory transactions,
and then “do the right thing”

* Snoopy cache tags are dual-ported

Proc.

Used to drive Memory Bus
> when Cache is Bus Master

A Snoopy read port

A
| Tags and :
R/W | State
Data
D (lines)

Cache

R/W attached to Memory
Bus
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Snoopy Cache-Coherence Protocols

*\Write miss:

* the address is invalidated in all other caches before the
write is performed

Read miss:

e if a dirty copy is found in some cache, a write-back is
performed before the memory is read
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The MSI protocol

Each cache line has state bits M: Modified

S: Shared
Address tag It Invalid
‘state
bits Write miss
(P1 gets line from memory) P, reads
Other processor reads or writes
(P, writes back)
Read miss Other processor
(P1 gets line from memory) intent to write

’ Y__ (P, writes back)
Other processor)@

intent to write Cache state in
processor Py

Read by any
processor

CS211@ShanghaiTech 12



Two-Processor Example

(Reading and writing the same cache line)

P, reads
P, writes
P, reads
P, writes
P, reads
P, writes
P, writes
P, writes
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P, reads,
2 . Or writes
P, wrlt/es brack ““{\‘e Write mis
/'/ ,@(\’&‘0 le intent to writg
Read—__ 3 Qxyﬁ
miss S |
P, intent to write
P2 P, reads, ) P, reads
P, write pack or writes
//S \§$ T\\\/\/rrtem|s
,/'/ o (\’&‘0 lPl intent to write
Read ¥ quﬁ
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P, intent to write
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Observation
P, reads
Other processor reads M Y\or writes
P, writes back Write miss

Other processor
intent to write

Read
miss >

S < |
Read by any Other processor
processor intent to write

 If aline is in the M state then no other cache can have a valid copy
of the line!

 Memory stays coherent, multiple differing copies cannot exist

CS211@ShanghaiTech 14
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MESI: An Enhanced MSI protocol

increased performance for private data

Each cache line has a tag M: Modified Exclusive
E: Exclusive but unmodified
Address tag S:Shared
state I Invalid
bits _ .
Write miss
: P, write P, read
Py write Read miss,
or read not shared

Other processor reads
P, writes back

Other processor
intent to write

Read miss,
shared

Y intent to wri

writes back

Other processor
intent to write

Read by any

rocessor .
P Cache state in

processor P,

CS211@ShanghaiTech 15
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MESI vs. MSI

* Advantage?

* If a block is in the E state, it can be written without generating any invalidates,
which optimizes the case where a block is read by a single cache before being
written by that same cache.

* A subsequent write to a block in the exclusive state by the same core need not acquire
bus access or generate an invalidate, since the block is known to be exclusively in this
local cache; the processor merely changes the state to modified.

* Disadvantage?
e Complexity
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* Observation: Shared state requires the data to be clean
* i.e., all caches that have the block have the up-to-date copy and so does the memory

TANE

* Problem: Need to write the block to memory when BusRd happens when
the block is in Modified state

* Why is this a problem?

* Memory can be updated unnecessarily 2 some other processor may want to write
to the block again

CS211@ShanghaiTech 18
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Improving on MESI

* |dea 1: Do not transition from M—>S on a BusRd. Invalidate the copy and
supply the modified block to the requesting processor directly without
updating memory

* |dea 2: Transition from M-S, but designate one cache as the owner (O),
who will write the block back when it is evicted
* Now “Shared” means “Shared and potentially dirty”
* This is a version of the MOESI protocol
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Tradeoffs in Sophisticated Cache
Coherence Protocols

BThe protocol can be optimized with more states and prediction mechanisms
to

+ Reduce unnecessary invalidates and transfers of blocks

BMHowever, more states and optimizations

-- Are more difficult to design and verify (lead to more cases to take care of, race
conditions)

-- Provide diminishing returns
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Optimized Snoop with Level-2 Caches

CPU CPU CPU CPU
| | | |
L1S L1S L1S L1S
L2 S L2 S L12S L2 S
Snoopeﬂ Snoopet Snoopeﬂ Snoopet

| | I I

* Processors with two-level caches
* small L1, large L2 (usually both on chip now)

* Inclusion property: entries in L1 must be in L2
* Miss in L2 = Not presentin L1
* Only if invalidation hits in L2 = probe and invalidate in L1

* Snooping on L2 does not much affect CPU-L1
bandwidth
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Intervention

CPU-1 CPU-2
|

A 200 cache-1 cache-2
1 1

CPU-Memory bus
|

Al 100 memory (stale data)

When a read-miss for A occurs in cache-2,

a read request for A is placed on the bus
e Cache-1 needs to supply & change its state to shared

e The memory may respond to the request also!
Does memory know it has stale data?
Cache-1 needs to intervene through memory controller to supply
correct data to cache-2

CS211@ShanghaiTech 22



False Sharing

state |line addr |data0 | datal

dataN

A cache line contains more than one word
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Cache-coherence is done at the line-level and not

word-level

Suppose M; writes word; and M, writes word) and

i # k but both words have the same line address.

What can happen?

CS211@ShanghaiTech
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Performance of
Symmetric Multiprocessors (SMPs)

Cache performance is combination of:
* Uniprocessor cache miss traffic

* Traffic caused by communication
* Results in invalidations and subsequent cache misses

 Coherence misses

* Sometimes called a Communication miss

* 4th C of cache misses along with Compulsory, Capacity, &
Conflict.
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Coherency Misses

* True sharing misses arise from the communication

of data through the cache coherence mechanism

* Invalidates due to 1st write to shared line
* Reads by another CPU of modified line in different cache
* Miss would still occur if line size were 1 word

* False sharing misses when a line is invalidated

because some word in the line, other than the one

being read, is written into

* |Invalidation does not cause a new value to be communicated, but
only causes an extra cache miss

* Line is shared, but no word in line is actually shared
= miss would not occur if line size were 1 word
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MP Performance 2MiB Cache Commercial Workload:
OLTP, Decision Support (Database), Search Engine

3

H Instruction

O Conflict/Capacity
OCold

m False Sharing

@ True Sharing

N
o

e True sharing,
false sharing

increase going
from 1to 8 CPUs &

N

Memeory cycles per instruction
4]

1 i
[
0.5
0 ! I I I
1 2 4 6 8

Processor count

CS211@ShanghaiTech 26
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Scaling Snoopy/Broadcast Coherence

* When any processor gets a miss, must probe every other cache

* Scaling up to more processors limited by:
* Communication bandwidth over bus
* Snoop bandwidth into tags

* Can improve bandwidth by using multiple interleaved buses with
interleaved tag banks
* E.g, two bits of address pick which of four buses and four tag banks to use —
(e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte line)

* Buses don’t scale to large number of connections, so can use
point-to-point network for larger number of nodes, but then
limited by tag bandwidth when broadcasting snoop requests.

* Insight: Most snoops fail to find a match!

e.g., Intel QuickPath
Interconnect
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Scalable Approach: Directories

* Every memory line has associated directory

information

* keeps track of copies of cached lines and their states

* on a miss, find directory entry, look it up, and communicate only with
the nodes that have copies if necessary

* in scalable networks, communication with directory and copies is
through network transactions

* Many alternatives for organizing directory
information



Directory Cache Protocol
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CPU CPU CPU CPU CPU CPU Each line in cache has
v 1 v 1 v 1 vy 1 v 1 v 1 state field plus tag
| A ! A | A | A | A | u// Stat Tag Da—'_t?__
Cache Cache Cache Cache Cache Cache [
- - - - - - Each line in memory
] ] ] ] ] ] has state field plus bit
Interconnection Network vector directory with
T 1 T 1 T 1 T 1 one bit per processor
Stat. | Directory Data
a r a a I ///
Directory Directory Directory 'DirectorY T
__Controller Controller | Controller Controller | -~~~
L///
DRAM Bank DRAM Bank DRAM Bank DRAM Bank

* Assumptions: Reliable network, FIFO message delivery between any given

source-destination pair
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*For each cache line, there are 4 possible states:

 C-invalid (= Nothing): The accessed data is not resident in the
cache.

e C-shared (= Sh): The accessed data is resident in the cache,
and possibly also cached at other sites. The data in memory is
valid.

» C-modified (= Ex): The accessed data is exclusively resident in
this cache, and has been modified. Memory does not have
the most up-to-date data.

e C-transient (= Pending): The accessed data is in a transient
state (for example, the site has just issued a protocol request,
but has not received the corresponding protocol reply).
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Home directory states

*For each memory line, there are 4 possible states:

* R(dir): The memory line is shared by the sites specified in dir (dir
is a set of sites). The data in memory is valid in this state. If dir is
empty (i.e., dir = @), the memory line is not cached by any site.

* W(id): The memory line is exclusively cached at site id, and has
been modified at that site. Memory does not have the most up-
to-date data.

* TR(dir): The memory line is in a transient state waiting for the
acknowledgements to the invalidation requests that the home
site has issued.

* TW(id): The memory line is in a transient state waiting for a line
exclusively cached at site id (i.e., in C-modified state) to make
the memory line at the home site up-to-date.

The home site is the node where the memory location and
the directory entry of an address reside
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Read miss, to uncached or shared line

CPU
Load request at head of v 1
CPU—>qCache queue @ Update cache tag and data and
' y ' @ return load data to CPU.
Load misses in cache.@ Cache
Send ShReq message@ - ShRep arrives at cache.
to directory. IRE;

Interconnection Network

— _— -
S

Message received at - @ Send ShRep message with
directory controller. @ T contents of cache line.

\ 4

Directory
Controller

Update directory by
setting bit for new
processor sharer.

DRAM Bank

Access state and directory for @
line. Line’s state is R, with zero or
more sharers.
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Write miss, to read shared line

Multiple sharers
CPU \
CPU

Store request at head of +] 1 Update cache tag and R ]
CPU->Cache queue. @ —| data, then store data
- : @ fromCPU |nalidate  OEEH
Store misses in cache.@ Cache cache line J
¥— ExRep arrives ' Cafhe F InvReq arrives
Send ExReq message @ @ at cache Se”‘?' Ianep Josssis F7> at cache.
to directory. T to directory.

— A ‘.--I1+-— -—
Interconnection Network

— _— - Y _— -
A

ExReg message received Y When no more sharers,
at directory controller. @ T send ExRep to cache.

'Di"rectory
Controll @ Send one InvReq

message to each sharer.

InvRep received.
Clear down sharer

bit. DRAM Bank

Access state and directory for @
line. Line’s state is R, with some
set of sharers.
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Concurrency Management

* Protocol would be easy to design if only one
transaction in flight across entire system

* But, want greater throughput and don’t want to
have to coordinate across entire system

* Great complexity in managing multiple

outstanding concurrent transactions to cache lines
e Can have multiple requests in flight to same cache line!
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Contention Resolution (for Write)

1a. RdEx 1b. RdEX
—
4. I”V'ﬁ/ 3. RAEX
PO Home P1 @
5a. Rev
2a. DatEx 5b. NACK

5b. DatEx
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Issues with Contention Resolution

* Need to escape race conditions by:

* NACKing requests to busy (pending invalidate) entries
* Original requestor retries

* OR, queuing requests and granting in sequence
* (Or some combination thereof)

* Fairness
* Which requestor should be preferred in a conflict?
* Interconnect delivery order, and distance, both matter

* Ping-ponging can be reduced w/ protocol optimizations OR better
higher-level synchronization

* With solutions like combining trees (for locks/barriers) and better shared-data-
structure design
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Scaling the Directory: Some Questions =

* How large is the directory?
* How can we reduce the access latency to the directory?
* How can we scale the system to thousands of nodes?

* Can we get the best of snooping and directory protocols?
* Heterogeneity
e E.g., token coherence [Martin+, ISCA 2003]



D R EAY

ShanghaiTech University

Conclusion

* Snooping-based

* Directory-based

CS211@ShanghaiTech 38
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