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The Shift to Multicore

[https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/]

End of 
Dennard 
Scaling

• Since 2005, improvements in system performance 
mainly due to increasing cores per chip

• Why? Technology scaling
Limited instruction-level parallelism
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Dennard scaling refers to the reduction of 
MOS supply voltage in concert with the 
scaling of feature sizes, so that as transistors 
get smaller, their power density stays 
roughly constant.



Multicore Performance

• What factors may limit multicore performance?
• Limited application parallelism

• Memory accesses and inter-core communication

• Programming complexity
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Amdahl’s Law

• Speedup= timewithout enhancement / timewith enhancement

• Suppose an enhancement speeds up a fraction f of a task by a factor 
of S

timenew = timeold·( (1-f ) + f/S ) ➔

Soverall = 1 / ( (1-f) + f/S )

Corollary: Make the common case fast
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Amdahl’s Law and Parallelism

• Say you write a program that can do 90% of the work in parallel, but 
the other 10% is sequential

• What is the maximum speedup you can get by running on a multicore 
machine?

• What f do you need to use a 1000-core machine well?
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Coherence & Consistency 

• Shared memory systems: 
• Have multiple private caches for performance reasons 

• Need to provide the illusion of a single shared memory

• Intuition: A read should return the most recently written value
• What is “most recent”?

• Formally:
• Coherence: What values can a read return?

• Concerns reads/writes to a single memory location

• Consistency: When do writes become visible to reads? 
• Concerns reads/writes to multiple memory locations
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Implementing Cache Coherence 

• Coherence protocols must enforce two rules: 
• Write propagation: Writes eventually become visible to all processors
• Write serialization: Writes to the same location are serialized (all processors 

see them in the same order)

• How to ensure write propagation? 
• Write-invalidate protocols: Invalidate all other cached copies before 

performing the write
• Write-update protocols: Update all other cached copies after performing the 

write

• How to track sharing state of cached data and serialize requests to 
the same address?
• Snooping-based protocols: All caches observe each other’s actions through a 

shared bus (bus is the serialization point)
• Directory-based protocols: A coherence directory tracks contents of private 

caches and serializes requests (directory is the serialization point)

CS211@ShanghaiTech 7



Bus Management

• A “bus” is a collection of shared wires
• Newer “buses” use point-point links

• Only one “master” can initiate a transaction by driving wires at any one 
time

• Multiple “slaves” can observe and conditionally respond to the transaction 
on the wires
• slaves decode address on bus to see if they should respond (memory is most common slave)

• some masters can also act as slaves

• Masters arbitrate for access with requests to bus “controller”
• Some buses only allow one master (in which case, it’s also the controller)

Master 0 Master 1 Slave 0 Slave 1
Bus 

Controller

Clock/Control

Address

Data

RequestGrant
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Shared-Memory Multiprocessor

CPU1

Use snoopy mechanism to keep all processors’ view of 
memory coherent

Memory
Bus

Main 
Memory 
(DRAM)

DMA

Snoopy 
Cache

CPU2
Snoopy 
Cache

CPU3
Snoopy 
Cache

Disk

DMA Network

Bus Control
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Snoopy Cache, Goodman 1983

• Idea: Have cache watch (or snoop upon) other memory transactions, 
and then “do the right thing”

• Snoopy cache tags are dual-ported

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W 

Used to drive Memory Bus
when Cache is Bus Master

A

R/W 
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Snoopy Cache-Coherence Protocols

•Write miss:  
• the address is invalidated in all other caches before the 

write is performed

•Read miss:  
• if a dirty copy is found in some cache, a write-back is 

performed before the memory is read  
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Cache State-Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has state bits

Address tag

state
bits Write miss

(P1 gets line from memory)

Other processor
intent to write 
(P1 writes back)

Read miss
(P1 gets line from memory)

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in 
processor P1

Other processor reads
(P1 writes back)
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Two-Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

CS211@ShanghaiTech 13



Observation

• If a line is in the M state then no other cache can have a valid copy 
of the line!

• Memory stays coherent, multiple differing copies cannot exist

M

S I

Write miss

Other processor
intent to write

Read
miss

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Other processor reads
P1 writes back
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MESI: An Enhanced MSI protocol

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in 
processor P1

P1 intent to 
write

Read miss, 
not sharedOther 

processor
reads

Other processor 
intent to write, P1 
writes back
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MESI vs. MSI

• Advantage?
• If a block is in the E state, it can be written without generating any invalidates, 

which optimizes the case where a block is read by a single cache before being 
written by that same cache.
• A subsequent write to a block in the exclusive state by the same core need not acquire 

bus access or generate an invalidate, since the block is known to be exclusively in this 
local cache; the processor merely changes the state to modified.

• Disadvantage?
• Complexity 

CS211@ShanghaiTech 16



The Problem with MESI

• Observation: Shared state requires the data to be clean 
• i.e., all caches that have the block have the up-to-date copy and so does the memory

• Problem: Need to write the block to memory when BusRd happens when 
the block is in Modified state

• Why is this a problem?
• Memory can be updated unnecessarily → some other processor may want to write 

to the block again
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Improving on MESI
• Idea 1: Do not transition from M→S on a BusRd. Invalidate the copy and 

supply the modified block to the requesting processor directly without 
updating memory

• Idea 2: Transition from M→S, but designate one cache as the owner (O), 
who will write the block back when it is evicted
• Now “Shared” means “Shared and potentially dirty”

• This is a version of the MOESI protocol
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Tradeoffs in Sophisticated Cache 
Coherence Protocols

◼The protocol can be optimized with more states and prediction mechanisms 
to

+ Reduce unnecessary invalidates and transfers of blocks

◼However, more states and optimizations 
-- Are more difficult to design and verify (lead to more cases to take care of, race 
conditions)

-- Provide diminishing returns
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Optimized Snoop with Level-2 Caches

• Processors with two-level caches
• small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
• Miss in L2 ⇒ Not present in L1
• Only if invalidation hits in L2 ⇒ probe and invalidate in L1

• Snooping on L2 does not much affect CPU-L1 
bandwidth

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $
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Intervention

When a read-miss for A occurs in cache-2, 
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared

• The memory may respond to the request also!

Does memory know it has stale data?
Cache-1 needs to intervene through memory controller to supply 
correct data to cache-2

cache-1A 200

CPU-Memory bus

CPU-1 CPU-2

cache-2

memory (stale data)A 100
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False Sharing

state     line addr data0 data1        ...            dataN

A cache line contains more than one word

Cache-coherence is done at the line-level and not 
word-level

Suppose M1 writes wordi and M2 writes wordk and
i ≠ k but both words have the same line address.

What can happen?
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Performance of
Symmetric Multiprocessors (SMPs)

Cache performance is combination of:
•Uniprocessor cache miss traffic
•Traffic caused by communication 

• Results in invalidations and subsequent cache misses

•Coherence misses
• Sometimes called a Communication miss

• 4th C of cache misses along with Compulsory, Capacity, & 
Conflict.
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Coherency Misses

•True sharing misses arise from the communication 
of data through the cache coherence mechanism
• Invalidates due to 1st write to shared line

• Reads by another CPU of modified line in different cache

• Miss would still occur if line size were 1 word

•False sharing misses when a line is invalidated 
because some word in the line, other than the one 
being read, is written into
• Invalidation does not cause a new value to be communicated, but 

only causes an extra cache miss

• Line is shared, but no word in line is actually shared
miss would not occur if line size were 1 word
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MP Performance 2MiB Cache Commercial Workload:
OLTP, Decision Support (Database), Search Engine

• True sharing,
false sharing 
increase going 
from 1 to 8 CPUs
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Scaling Snoopy/Broadcast Coherence
• When any processor gets a miss, must probe every other cache

• Scaling up to more processors limited by:
• Communication bandwidth over bus

• Snoop bandwidth into tags

• Can improve bandwidth by using multiple interleaved buses with 
interleaved tag banks
• E.g, two bits of address pick which of four buses and four tag banks to use –

(e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte line)

• Buses don’t scale to large number of connections, so can use 
point-to-point network for larger number of nodes, but then 
limited by tag bandwidth when broadcasting snoop requests.

• Insight: Most snoops fail to find a match!
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Scalable Approach: Directories

• Every memory line has associated directory 
information
• keeps track of copies of cached lines and their states

• on a miss, find directory entry, look it up, and communicate only with 
the nodes that have copies if necessary

• in scalable networks, communication with directory and copies is 
through network transactions

•Many alternatives for organizing directory 
information
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Directory Cache Protocol

• Assumptions: Reliable network, FIFO message delivery between any given 
source-destination pair

CPU

Cache

Interconnection Network

Directory 
Controller

DRAM Bank

Directory 
Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory 
Controller

DRAM Bank

Directory 
Controller

DRAM Bank

DataTagStat.

Each line in cache has 
state field plus tag

DataStat. Directory

Each line in memory 
has state field plus bit 
vector directory with 
one bit per processor
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Cache States

•For each cache line, there are 4 possible states:
• C-invalid (= Nothing): The accessed data is not resident in the 

cache.
• C-shared (= Sh): The accessed data is resident in the cache, 

and possibly also cached at other sites. The data in memory is 
valid.

• C-modified (= Ex): The accessed data is exclusively resident in 
this cache, and has been modified. Memory does not have 
the most up-to-date data.

• C-transient (= Pending): The accessed data is in a transient 
state (for example, the site has just issued a protocol request, 
but has not received the corresponding protocol reply).
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Home directory states

•For each memory line, there are 4 possible states:
• R(dir): The memory line is shared by the sites specified in dir (dir

is a set of sites). The data in memory is valid in this state.  If dir is 
empty (i.e., dir = ∅), the memory line is not cached by any site.

• W(id): The memory line is exclusively cached at site id, and has 
been modified at that site. Memory does not have the most up-
to-date data.

• TR(dir): The memory line is in a transient state waiting for the 
acknowledgements to the invalidation requests that the home 
site has issued.

• TW(id): The memory line is in a transient state waiting for a line 
exclusively cached at site id (i.e., in C-modified state) to make 
the memory line at the home site up-to-date.
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The home site is the node where the memory location and 
the directory entry of an address reside



Read miss, to uncached or shared line

Directory 
Controller

DRAM Bank

CPU

Cache

1
Load request at head of 

CPU->Cache queue.

2Load misses in cache.

3Send ShReq message 
to directory.

4
Message received at 
directory controller.

5
Access state and directory for 

line. Line’s state is R, with zero or 
more sharers.

6
Update directory by 
setting bit for new 
processor sharer.

7
Send ShRep message with 

contents of cache line.

8 ShRep arrives at cache.

9

Update cache tag and data and 
return load data to CPU.

Interconnection Network
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Write miss, to read shared line

Directory 
Controller

DRAM Bank

CPU

Cache

1
Store request at head of 

CPU->Cache queue.

2Store misses in cache.

3Send ExReq message 
to directory.

4
ExReq message received 
at directory controller.

5
Access state and directory for 

line. Line’s state is R, with some 
set of sharers.

6 Send one InvReq
message to each sharer. 

11

ExRep arrives 
at cache

12

Update cache tag and 
data, then store data 

from CPU

Interconnection Network

CPU

Cache

7

InvReq arrives 
at cache.8

Invalidate 
cache line. 

Send InvRep
to directory.

9InvRep received.  
Clear down sharer 

bit.

10
When no more sharers, 

send ExRep to cache.

Multiple sharers

CPU

Cache

CPU

Cache
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Concurrency Management

•Protocol would be easy to design if only one 
transaction in flight across entire system

•But, want greater throughput and don’t want to 
have to coordinate across entire system

•Great complexity in managing multiple 
outstanding concurrent transactions to cache lines
• Can have multiple requests in flight to same cache line!
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Contention Resolution (for Write)

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

☺ 

3. RdEx
4. Invl

5a. Rev

5b. DatEx

☺
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Issues with Contention Resolution
• Need to escape race conditions by:

• NACKing requests to busy (pending invalidate) entries
• Original requestor retries

• OR, queuing requests and granting in sequence

• (Or some combination thereof)

• Fairness
• Which requestor should be preferred in a conflict?

• Interconnect delivery order, and distance, both matter

• Ping-ponging can be reduced w/ protocol optimizations OR better 
higher-level synchronization
• With solutions like combining trees (for locks/barriers) and better shared-data-

structure design
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Scaling the Directory: Some Questions

• How large is the directory?

• How can we reduce the access latency to the directory?

• How can we scale the system to thousands of nodes?

• Can we get the best of snooping and directory protocols?
• Heterogeneity 

• E.g., token coherence [Martin+, ISCA 2003]
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Conclusion

• Snooping-based

• Directory-based
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