(RN N .
(R LR PN
Zﬁ}:*a.; ‘“455 ShanghaiTech University

Jrreca o

CS211
Advanced Computer Architecture

L16 Memory Consistency

Chundong Wang
November 21st, 2025

Previously in CS211

* Cache coherence, making sure every store to memory is eventually
visible to any load to the same memory address

e Cache line states: {M, S, I} or {M, E, S, I}, or even more

e Cache miss if tag not present, or line has wrong state
e Write to a shared line is handled as a miss

* Snoopy coherence:

* Broadcast updates and probe all cache tags on any miss of any processor,
used to be bus connection, now often broadcast over point-to-point links

* Lower latency, but consumes lots of bandwidth on both the communication
bus and for probing the cache tags

* Directory coherence:
 Structure keeps track of which caches can have copies of data, and only send
messages/probes to those caches
* Complicated to get right with all the possible overlapping cache transactions

Synchronization

The need for synchronization arises
whenever there are concurrent processes
in a system (even in a uniprocessor
system).

Two classes of synchronization:

* Producer-Consumer: A consumer process
must wait until the producer process has
produced data

* Mutual Exclusion: Ensure that only one
process uses a resource at a given time

!

(o)) LIS R R R

¢/ ShanghaiTech University

producer

~.

consumer

!

P1

P2

Resource

Shared

) Lmnsay

2z Lll‘él\\“ I
‘i}\;wfjﬁ ShanghaiTech University

— flag <
— data <]

Consumer
processor

Producer
processor

Shared Memory

Initially £1lag=0, data=0

sw (data), 10 spin: 1lw x1, (flag)
sw (flag), 0x01 beqz x1, spin
lw x2, (data)

e |sthis correct?

What value does x2 hold after both processors finish running this code?

o) bR ek

%/ ShanghaiTech University

Memory Consistency Model

* Sequential ISA only specifies that each processor sees its own memory
operations in program order

* Memory consistency model describes what values can be returned by load
instructions across multiple hardware threads

* Coherence describes the legal values a single memory address should return

» Consistency describes properties across al/l memory addresses

* Order in which memory operations performed by one thread become visible to
other threads

* Coherence only guarantees that writes to address X will eventually propagate to
other processors

* Consistency deals with when writes to X propagate to other processors, relative
to reads and writes to other addresses

* Memory consistency defines the allowed behavior of loads and stores to different
addresses in a parallel system

E#w AR

. 45/ ShanghaiTech University

Memory Consistency

* Trailer:
* Multiprocessors reorder memory operations in unintuitive and strange ways

* This behavior is required for performance
* Application programmers rarely see this behavior

» Systems (OS and compiler) developers see it all the time

A memory consistency model is a contract between the hardware and
software. The hardware promises to only reorder operations in ways
allowed by the model, and in return, the software acknowledges that

all such reorderings are possible and that is needs to account for them.

T £ B ok oy

¢/ ShanghaiTech University

Memory operation ordering

* A program defines a sequence of loads and stores
* The “program order” of the loads and stores

* Four types of memory operation orderings
* Wy — R, write to x must commit before subsequent read from y
* Ry = Ry: read from x must commit before subsequent read from y
* Ry = W, read to x must commit before subsequent write to y
* Wy = W,,: write to x must commit before subsequent write to y

“write must commit before subsequent read” means:
When a write comes before a read in program order, the
write must commit (its results are visible) by the time the
read occurs.

(oAl k¥ B A

28 Iy, &
’*ﬁ}\&éy{? ShanghaiTech University
Jrreca o

Simple Producer-Consumer Example

flag
Producer data Consumer
Initially £1lag=0, data=0
sw (data), 10 spin: 1lw x1, (flag)
sw (flag), 0x01 beqz x1, spin

lw x2, (data)

Can consumer read flag=1 before data
written by producer visible to consumer?

E#w AR

ShanghaiTech University

% £
zafau
EAMTE

'g&:uémmh‘ 7

A% “fs

s
Jrreca o

Sequential Consistency (SC)

A Memory Model

Pl |[P| |P| |P| |P]| |P

M

“A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program”

Leslie Lamport (Turing Award, 2013)

Sequential Consistency = arbitrary order-preserving
interleaving of memory references of sequential programs
over a single shared memory

CS211@ShanghaiTech 10

T EW N A

Zi%' U‘ﬂj ShanghaiTech University

Simple Producer-Consumer Example

flag
data

Producer Consumer

Initially f1lag=0, data=0

spin: 1lw x1, (flag)
sw (data), 10 é beqz x1, spin
4 sw (flag), 0x01 lw x2, (data)

< Dependencies from sequential ISA

Dependencies added by sequentially
consistent memory model

SC
* Each thread’s operations happened in program order (happened-before)
* All operations were manipulating a single shared memory

11

TIY) £ R A

2 NS
’*% % #&/ ShanghaiTech University
/rEcn O

Sequential consistency (switch metaphor)

* All processors issue loads and stores in program order

 Memory chooses a processor at random, performs a memory
operation to completion, then chooses another processor, ...

Memory

Processor
0

Processor
1

Processor
2

Processor
3

(1)(2)(3)(4)
(1)(3)(2)(4)
(3)(1)(4)(2)

Can we eventually have x1 == 0 &&
x2 == 0 w.r.t SC?

T £ B ok oy

¢/ ShanghaiTech University

Most real machines are not SC

Architectural optimizations that are
correct for uniprocessors often violate

* Only a few commercial ISAs require SC = sequential consistency and result in a
« Neither x86 nor ARM nor RISC-V are SC new memory model for multiprocessors

* Originally, architects developed uniprocessors with optimized
memory systems (e.g., store buffer)

* When uniprocessors were lashed together to make multiprocessors,
resulting machines were not SC

* Requiring SC would make simpler machines slower, or requires
adding complex hardware to retain performance

* Architects/language designers/applications developers work hard to
explain weak memory behavior

* Resulted in “weak” memory models with fewer guarantees

13

o) bR ek

%/ ShanghaiTech University

Consistency Models

* Sequential Consistency
* All reads and writes in order

 Relaxed Consistency (one or more of the following)
* Loads may be reordered after loads
* e.g., PA-RISC, Power, Alpha
Loads may be reordered after stores
* e.g., PA-RISC, Power, Alpha
Stores may be reordered after stores
* e.g., PA-RISC, Power, Alpha, PSO
Stores may be reordered after loads
* e.g., PA-RISC, Power, Alpha, PSO, TSO, x86
Other more esoteric characteristics
* e.g., Alpha

A b Bk

ias #¢/ ShanghaiTech University

Motivation for relaxed consistency

* [ssues with sequential consistency
* Too conservative ordering requirements
* Limits the aggressiveness of performance enhancement techniques

A ==0
)
)

o
(o]
(1
2
These two inst don’t conflict:

no need to wait for the first
one to finish

Writing takes a long time

Memory

Store Buffers

* CPU can continue execution
while earlier committed stores
are still propagating through
memory system

* Processor can commit other
instructions (including loads and

stores) while first store is
committing to memory

 Committed store buffer can be
combined with speculative store
buffer in an out-of-order CPU

* Load optimizations:

* Local loads can go ahead of
buffered stores if to different
address

* Local loads can bypass value from
earlier buffered store if to same
address

R LT

\4,3“: ShanghaiTech University

CPU

CPU

Cache Cache

I

Main Memory

TI) £ B Bk ¥

¢/ ShanghaiTech University

Store Buffers: Who Cares?

* Performance improvement

* Every modern processor uses them
* Intel x86, ARM, SPARC

* Need a weaker memory model
e TSO: Total Store Ordering
* Slightly harder to reason about than SC
* x86 uses an incompletely specified form of TSO

TI) £ B Bk ¥

\4;5 ShanghaiTech University

TSO: total store ordering

e TSO is the strongest memory model in common use
* Allows local buffering of stores by processor

* Reads by other processors cannot return new value of A until the write
to A is observed by all processors

0 0 N Y
0 1 Y Y
1 0 Y Y

R L PN

\4:3“: ShanghaiTech University

Allowing reads to move ahead of writes

* Four types of memory operation orderings

/l _. L) A - - a’a aVa'a¥la'a

* Ry = Ry: read from x must commit before subsequent read from y
* Ry = W, read to x must commit before subsequent write to y
* W, = W,: write to x must commit before subsequent write to y

* InTSO, only W, = R,, order is relaxed. The W, — W), constraint still

exists.
* Writes by the same thread are not reordered (they occur in program order)

Relaxed memory consistency issues arise from the optimization of reordering
memory operations. (Consistency is unrelated to whether or not caches exist in

the system.)

E#w AR

. 45/ ShanghaiTech University

Strong versus Weak
Memory Consistency Models

 Stronger models provide more guarantees on ordering of loads and
stores across different hardware threads

 Easier ISA-level programming model

» Can require more hardware to ensure orderings (e.g., MIPS R10K was SC,
with hardware to speculate on load/stores and squash when ordering
violations detected across cores)

* Weaker models provide fewer guarantees
* Much more complex ISA-level programming model
* Extremely difficult to understand, even for experts
» Simpler to achieve high performance, as weaker models allow many
reorderings to be exposed to software

» Additional instructions (fences) are provided to allow software to specify
which orderings are required

TID) B R A

A W 5 . . .
o &/ ShanghaiTech Universi ty
& o

Fences in Producer-Consumer Example

flag
data

Producer > > Consumer

Initially £1lag=0, data=0

sw (data), 10 spin: 1lw x1, (flag)
fence w,w //Write-write fence beqz x1, spin
sw (flag), 0x01 fence r,r //Read-read fence

lw x2, (data)

Partial Store Ordering (PSO)

W= Wr-write-to-x-mustcommit-before subseguent-write-to-y

(Consumer may observe change to £1lag before change to data w/o fence)

22

T4 E W R B Ry

zh g5) A A
*o}‘}?fzf%ﬁ ShanghaiTech University
o

Why might it be useful to allow more
aggressive memory operation reorderings?

+ W—W5: processor might reorder write operations in a write buffer
(e.g., one is a cache miss while the other is a hit)

* Re—— W5 Re— Ry processor might reorder independent
instructions in an instruction stream (out-of-order execution)

* Motivation is increased performance
e Overlap multiple reads and writes in the memory system

* Execute reads as early as possible and writes as late as possible to hide
memory latency

TI) £ B Bk ¥

¢/ ShanghaiTech University

Synchronization to the Rescue

 Memory reordering seems like a nightmare (it is!)

* Every architecture provides synchronization primitives to make
memory ordering stricter

* Fence (memory barrier) instructions prevent reorderings, but are
expensive

* All memory operations complete before any memory operation after it can
begin

e Other synchronization primitives (per address):
» read-modify-write/compare-and-swap, transactional memory, ...

O Lmnsas
Range of Memory Consistency Models

e SC “Sequential Consistency”
* MIPS R10K

* TSO “Total Store Ordering”

* processor can see its own writes before others do (store buffer)
* IBM-370 TSO, x86 TSO, SPARC TSO (default), RISC-V RVTSO (optional)

e Weak, multi-copy-atomic memory models
* all processors see writes by another processor in same order
e Revised ARMv8 memory model
* RISC-V RVWMO, baseline weak memory model for RISC-V

* Weak, non-multi-copy-atomic memory models
e processors can see another’s writes in different orders
ARMv7, original ARMv8
IBM POWER
Digital Alpha (extremely weak MCM)

Recent consensus is that these appear to be too weak for general-purpose
processors

25

Multi-Copy Atomic models

CPU

CPU

Buffer

Buffer

(L R N
) £ R Ay
Zﬁ}‘};’;d;ﬂfjf ShanghaiTech University

ECH V!

____t------t—----PdmoﬂmeVMMMy

Shared Memory

* Each hardware thread must view its own memory operations in program
order, but can buffer these locally and reorder accesses around the

buffer

e But once a local store is made visible to one other hardware thread in
system, all other hardware threads must also be able to observe it (this

is what is meant by “atomic”)

R E \ s .
) £ R Ay
Zﬁ}‘};«%{f ShanghaiTech University

ECH V!

Hierarchical Shared Buffering

CPU CPU CPU CPU
Intermediate Intermediate
Buffer Buffer

Shared Memory

« Common in large systems to have shared intermediate buffers on path
between CPUs and global memory

* Potential optimization is to allow some CPUs see some writes by a CPU
before other CPUs

* Shared memory stores are not seen to happen atomically by other
threads (non multi-copy atomic)

R LT

¢/ ShanghaiTech University

Non-Multi-Copy Atomic

Initially X == Y ==
Pl: P2: P3:
1li x1, 1 1w x1, X lw x1, Y
sw x1, X sw x1, Y fence r,r

1w x2, X

CanP3.x1=1,and P3.x2=0"7

* In general, Non-MCA is very difficult to reason about

e Software in one thread cannot assume all data it sees is visible to
other threads, so how to share data structures?

* Adding local fences to require ordering of each thread’s accesses is
insufficient — need a more global memory barrier to ensure all
writes are made visible

T £ R oA

¢/ ShanghaiTech University

Conflicting data accesses

* Two memory accesses by different processors conflict if
* They access to the same memory location
* At least one is a write
e Unordered by synchronization operations

* Unsynchronized program

* Conflicting accesses not ordered by synchronization (e.g., a fence, operation
with release/acquire semantics, barrier, etc.)

* Unsynchronized programs contain data races: the output of the program
depends on relative speed of processors (non-deterministic program results)

E#w AR

oins./¢/ ShanghaiTech University

Synchronized programs

* Synchronized programs yield SC results on non-SC systems
» Synchronized programs are data-race-free

* If there are no data races, reordering behavior doesn’t matter

» Accesses are ordered by synchronization, and synchronization forces
sequential consistency

* In practice, most programs you encounter will be synchronized (via
locks, barriers, etc. implemented in synchronization libraries)
* Very few programmers do programming that relies on SC

* Rather than via ad-hoc reads/writes to shared variables like in the example
programs

\4,3“: ShanghaiTech University

TI) Ew R BoA
Relaxed Memory Models

* Motivation

* To obtain higher performance by allowing reordering of memory operations
(reordering is not allowed by sequential consistency)

* Not all dependencies assumed by SC are supported, and software has
to explicitly insert additional dependencies where needed

* Which dependencies are dropped depends on the particular memory
model
* IBM370, TSO, PSO, WO, PC, Alpha, RMO, ...
* Some ISAs allow several memory models, some machines have switchable
memory models

* How to introduce needed dependencies varies by system
» Explicit FENCE instructions (sometimes called sync or memory barrier
instructions)
* Implicit effects of atomic memory instructions

32

(L R N
) £ R Ay
Zﬁ}‘};’;d;ﬂfjf ShanghaiTech University

ECH V'

Do not forget Compiler and Language!

//Thread 1 //Thread 2 //Thread 1 //Thread 2
X =0 X =0 X=1 X =0
For i in (1:100): For i in (1:100):
X =1 Print X
Print X
1111111111112 1111111111112
111111011111 111111000000-

» Compiler can reorder/remove memory operations:
* Instruction scheduling, move loads before stores if to different address
» Register allocation, cache load value in register, don’t check memory

* Prohibiting these optimizations would result in very poor
performance

33

o) bR ek

\423“: ShanghaiTech University

Language-Level Memory Models

* Programming languages have memory models too

* Hide details of each ISA’s memory model underneath language
standard
* c.f. Cfunction declarations versus ISA-specific subroutine linkage convention

* Language memory models: C/C++, Java

* Modern (C11, C++11) and not-so-modern (Java 5) languages guarantee
sequential consistency for data-race-free programs (“SC for DRF”)

* Compilers will insert the necessary synchronization to cope with the
hardware memory model
* Describe legal behaviors of threaded code in each language and what
optimizations are legal for compiler to make

* E.g., Cl1/C++11: atomic load(memory order seq cst)
maps to RISC-V fence rw,rw; lw; fence r,rw

(i) L p

Zﬁ}\;éfj ShanghaiTech University
Jirsca oy

Release Consistency [Garachorloo 1990]

* Observation that consistency only matters when processes
communicate data

* Only need to have consistent view when one process shares its
updates to other processes

* Other processes only need to ensure they receive updates after they

acquire access to shared data

Ensure critical
section updates
visible before
release visible

S

P1 P2
Acquire

- Other
Critical Code

Release —~ .
Acquire

Other "

Code Critical

Release

Ensure acquire
happened before
critical section
reads data

35

Ca) kR B K

¢/ ShanghaiTech University

Release Consistency [Garachorloo 1990]

° Obp,,,,,,Le,,, O T T S S F T S

ol Release consistency is essentially the same as weak consistency, but synchronization
accesses must only be processor consistent with respect to each other.
e On Synchronization operations are broken down into acquire and release operations. All
up pending acquires (e.g., a lock operation) must be done before a release (e.g., an
unlock operation) is done. Local dependencies within the same processor must still
* Otl be respected.

dCquire access 10 sridrea adtid

P1 P2
N Acquire
Ensgre critical N Other
section updates Critical Code
visible before < ™
release visible €l€ase NN pp— Ensure acquire
cquire happened before
Other " . .
Critical critical section
Code
Release reads data

36

E#w AR

. 45/ ShanghaiTech University

Release Consistency Adopted

* Only care about inter-processor memory ordering at thread synchronization
points, not in between

* Can treat all synchronization instructions as the only ordering points

* Memory model for C/C++ and Java uses release consistency

* Programmer has to identify synchronization operations, and if all data
accesses are protected by synchronization, appears like SC to programmer

* ARMv8 and RISC-V ISA adopt release consistency semantics on atomic
memory operations (AMOs)

* AMOs, such as compare-and-swap, fetch-and-add, etc. can be used to implement
lock- and wait-free algorithms and data structures

* Lock-free algorithms are supposed to allow an arbitrary number of threads to
share a resource without the need for serial execution on a lock

o) bR ek

ShanghaiTech University

Conclusion

* Sequential Consistency

* Relaxed Consistency

CS211@ShanghaiTech 38

(o)) LIS R R R

¢/ ShanghaiTech University

Acknowledgements

* These slides contain materials developed and copyright by:
 Prof. Krste Asanovic (UC Berkeley)

Prof. Daniel Sanchez (MIT)

Prof. Kayvon Fatahalian (Stanford)

Prof. Kunle Olukotun (Stanford)

Prof. James Bornholt (UT Austin)

