
CS211
Advanced Computer Architecture

L16 Memory Consistency

Chundong Wang
November 21st, 2025

CS211@ShanghaiTech 1

Previously in CS211

• Cache coherence, making sure every store to memory is eventually
visible to any load to the same memory address
• Cache line states: {M, S , I} or {M, E, S, I}, or even more
• Cache miss if tag not present, or line has wrong state
• Write to a shared line is handled as a miss

• Snoopy coherence:
• Broadcast updates and probe all cache tags on any miss of any processor,

used to be bus connection, now often broadcast over point-to-point links
• Lower latency, but consumes lots of bandwidth on both the communication

bus and for probing the cache tags
• Directory coherence:
• Structure keeps track of which caches can have copies of data, and only send

messages/probes to those caches
• Complicated to get right with all the possible overlapping cache transactions

3

Synchronization

The need for synchronization arises
whenever there are concurrent processes
in a system (even in a uniprocessor
system).

Two classes of synchronization:
• Producer-Consumer: A consumer process

must wait until the producer process has
produced data

•Mutual Exclusion: Ensure that only one
process uses a resource at a given time

4

producer

consumer

Shared
Resource

P1 P2

Shared Memory

Simple Producer-Consumer Example

sw (data), 10
sw (flag), 0x01

spin: lw x1, (flag)
beqz x1, spin

lw x2, (data)

5

data
flag

• Is this correct?
• What value does x2 hold after both processors finish running this code?

Initially flag=0, data=0

Producer
processor

Consumer
processor

Memory Consistency Model

• Sequential ISA only specifies that each processor sees its own memory
operations in program order
• Memory consistency model describes what values can be returned by load

instructions across multiple hardware threads

• Coherence describes the legal values a single memory address should return
• Consistency describes properties across all memory addresses

• Order in which memory operations performed by one thread become visible to
other threads

• Coherence only guarantees that writes to address X will eventually propagate to
other processors

• Consistency deals with when writes to X propagate to other processors, relative
to reads and writes to other addresses

• Memory consistency defines the allowed behavior of loads and stores to different
addresses in a parallel system

6

Memory Consistency

• Trailer:
• Multiprocessors reorder memory operations in unintuitive and strange ways

• This behavior is required for performance

• Application programmers rarely see this behavior

• Systems (OS and compiler) developers see it all the time

CS211@ShanghaiTech 7

A memory consistency model is a contract between the hardware and
software. The hardware promises to only reorder operations in ways
allowed by the model, and in return, the software acknowledges that

all such reorderings are possible and that is needs to account for them.

Memory operation ordering

• A program defines a sequence of loads and stores
• The “program order” of the loads and stores

• Four types of memory operation orderings
• 𝑊! → 𝑅": write to x must commit before subsequent read from y
• 𝑅! → 𝑅": read from x must commit before subsequent read from y
• 𝑅! → 𝑊": read to x must commit before subsequent write to y
• 𝑊! → 𝑊": write to x must commit before subsequent write to y

CS211@ShanghaiTech 8

“write must commit before subsequent read” means:
When a write comes before a read in program order, the
write must commit (its results are visible) by the time the
read occurs.

Simple Producer-Consumer Example

sw (data), 10
sw (flag), 0x01

spin: lw x1, (flag)
beqz x1, spin

lw x2, (data)

9

data
flag

Producer Consumer

Can consumer read flag=1 before data
written by producer visible to consumer?

Initially flag=0, data=0

CS211@ShanghaiTech

Sequential Consistency (SC)
A Memory Model

10

“A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program”

Leslie Lamport (Turing Award, 2013)

Sequential Consistency = arbitrary order-preserving
interleaving of memory references of sequential programs
over a single shared memory

M

P P P P P P

CS211@ShanghaiTech

Simple Producer-Consumer Example

11

data
flag

Producer Consumer

Dependencies from sequential ISA

Dependencies added by sequentially
consistent memory model

sw (data), 10
sw (flag), 0x01

spin: lw x1, (flag)
beqz x1, spin
lw x2, (data)

Initially flag=0, data=0

SC
• Each thread’s operations happened in program order (happened-before)
• All operations were manipulating a single shared memory

CS211@ShanghaiTech

Sequential consistency (switch metaphor)

• All processors issue loads and stores in program order
• Memory chooses a processor at random, performs a memory

operation to completion, then chooses another processor, …

CS211@ShanghaiTech 12

Processor
0

Memory

Processor
1

Processor
2

Processor
3

% A == 0
(1) A = 1
(2) x1 = B

% B == 0
(3)B = 1
(4)x2 = A

• (1)(2)(3)(4)
• (1)(3)(2)(4)
• (3)(1)(4)(2)
• …

Can we eventually have x1 == 0 &&
x2 == 0 w.r.t SC?

Most real machines are not SC

• Only a few commercial ISAs require SC
• Neither x86 nor ARM nor RISC-V are SC

• Originally, architects developed uniprocessors with optimized
memory systems (e.g., store buffer)
• When uniprocessors were lashed together to make multiprocessors,

resulting machines were not SC
• Requiring SC would make simpler machines slower, or requires

adding complex hardware to retain performance
• Architects/language designers/applications developers work hard to

explain weak memory behavior
• Resulted in “weak” memory models with fewer guarantees

13

Architectural optimizations that are
correct for uniprocessors often violate
sequential consistency and result in a
new memory model for multiprocessors

CS211@ShanghaiTech

Consistency Models

• Sequential Consistency
• All reads and writes in order

• Relaxed Consistency (one or more of the following)
• Loads may be reordered after loads

• e.g., PA-RISC, Power, Alpha
• Loads may be reordered after stores

• e.g., PA-RISC, Power, Alpha
• Stores may be reordered after stores

• e.g., PA-RISC, Power, Alpha, PSO
• Stores may be reordered after loads

• e.g., PA-RISC, Power, Alpha, PSO, TSO, x86
• Other more esoteric characteristics

• e.g., Alpha

CS211@ShanghaiTech 14

Motivation for relaxed consistency

• Issues with sequential consistency
• Too conservative ordering requirements
• Limits the aggressiveness of performance enhancement techniques

CS211@ShanghaiTech 15

% A == 0
(1) A = 1
(2) x1 = B

% B == 0
(3)B = 1
(4)x2 = A

Memory

Writing takes a long time

These two inst don’t conflict:
no need to wait for the first
one to finish

Store Buffers
• CPU can continue execution

while earlier committed stores
are still propagating through
memory system
• Processor can commit other

instructions (including loads and
stores) while first store is
committing to memory
• Committed store buffer can be

combined with speculative store
buffer in an out-of-order CPU

• Load optimizations:
• Local loads can go ahead of

buffered stores if to different
address
• Local loads can bypass value from

earlier buffered store if to same
address

CS211@ShanghaiTech 16

Store Buffers: Who Cares?

• Performance improvement
• Every modern processor uses them
• Intel x86, ARM, SPARC
• Need a weaker memory model
• TSO: Total Store Ordering
• Slightly harder to reason about than SC
• x86 uses an incompletely specified form of TSO

CS211@ShanghaiTech 17

TSO: total store ordering
• TSO is the strongest memory model in common use
• Allows local buffering of stores by processor
• Reads by other processors cannot return new value of A until the write

to A is observed by all processors

19

x1 x2 SC TSO

0 0 N Y

0 1 Y Y

1 0 Y Y

1 1 Y Y

Possible Outcomes

% A == 0
(1) A = 1
(2) x1 = B

% B == 0
(3)B = 1
(4)x2 = A

Allowing reads to move ahead of writes

• Four types of memory operation orderings
• 𝑊! → 𝑅": write to x must commit before subsequent read from y
• 𝑅! → 𝑅": read from x must commit before subsequent read from y
• 𝑅! → 𝑊": read to x must commit before subsequent write to y
• 𝑊! → 𝑊": write to x must commit before subsequent write to y

• In TSO, only 𝑊! → 𝑅" order is relaxed. The 𝑊! → 𝑊" constraint still
exists.
• Writes by the same thread are not reordered (they occur in program order)

CS211@ShanghaiTech 20

Relaxed memory consistency issues arise from the optimization of reordering
memory operations. (Consistency is unrelated to whether or not caches exist in
the system.)

Strong versus Weak
Memory Consistency Models

• Stronger models provide more guarantees on ordering of loads and
stores across different hardware threads
• Easier ISA-level programming model
• Can require more hardware to ensure orderings (e.g., MIPS R10K was SC,

with hardware to speculate on load/stores and squash when ordering
violations detected across cores)

• Weaker models provide fewer guarantees
• Much more complex ISA-level programming model

• Extremely difficult to understand, even for experts
• Simpler to achieve high performance, as weaker models allow many

reorderings to be exposed to software
• Additional instructions (fences) are provided to allow software to specify

which orderings are required

21

Fences in Producer-Consumer Example

sw (data), 10

fence w,w //Write-write fence
sw (flag), 0x01

spin: lw x1, (flag)
beqz x1, spin

fence r,r // Read-read fence
lw x2, (data)

22

data
flag

Producer Consumer

Initially flag=0, data=0

Partial Store Ordering (PSO)
𝑊! → 𝑊": write to x must commit before subsequent write to y
(Consumer may observe change to flag before change to data w/o fence)

Why might it be useful to allow more
aggressive memory operation reorderings?

• 𝑊! → 𝑊": processor might reorder write operations in a write buffer
(e.g., one is a cache miss while the other is a hit)

• 𝑅! → 𝑊" , 𝑅! → 𝑅": processor might reorder independent
instructions in an instruction stream (out-of-order execution)

• Motivation is increased performance
• Overlap multiple reads and writes in the memory system
• Execute reads as early as possible and writes as late as possible to hide

memory latency

CS211@ShanghaiTech 23

Synchronization to the Rescue

• Memory reordering seems like a nightmare (it is!)

• Every architecture provides synchronization primitives to make
memory ordering stricter

• Fence (memory barrier) instructions prevent reorderings, but are
expensive
• All memory operations complete before any memory operation after it can

begin

• Other synchronization primitives (per address):
• read-modify-write/compare-and-swap, transactional memory, …

CS211@ShanghaiTech 24

Range of Memory Consistency Models
• SC “Sequential Consistency”
• MIPS R10K

• TSO “Total Store Ordering”
• processor can see its own writes before others do (store buffer)
• IBM-370 TSO, x86 TSO, SPARC TSO (default), RISC-V RVTSO (optional)

• Weak, multi-copy-atomic memory models
• all processors see writes by another processor in same order
• Revised ARMv8 memory model
• RISC-V RVWMO, baseline weak memory model for RISC-V

• Weak, non-multi-copy-atomic memory models
• processors can see another’s writes in different orders
• ARMv7, original ARMv8
• IBM POWER
• Digital Alpha (extremely weak MCM)
• Recent consensus is that these appear to be too weak for general-purpose

processors

25

Multi-Copy Atomic models

• Each hardware thread must view its own memory operations in program
order, but can buffer these locally and reorder accesses around the
buffer
• But once a local store is made visible to one other hardware thread in

system, all other hardware threads must also be able to observe it (this
is what is meant by “atomic”)

26

CPU

Buffer

Shared Memory

CPU

Buffer
Point of global visibility

Hierarchical Shared Buffering

• Common in large systems to have shared intermediate buffers on path
between CPUs and global memory
• Potential optimization is to allow some CPUs see some writes by a CPU

before other CPUs
• Shared memory stores are not seen to happen atomically by other

threads (non multi-copy atomic)

27

CPU

Intermediate
Buffer

Shared Memory

CPU CPU

Intermediate
Buffer

CPU

Non-Multi-Copy Atomic

• In general, Non-MCA is very difficult to reason about
• Software in one thread cannot assume all data it sees is visible to

other threads, so how to share data structures?
• Adding local fences to require ordering of each thread’s accesses is

insufficient – need a more global memory barrier to ensure all
writes are made visible

28

Initially X == Y == 0

P1:
li x1, 1
sw x1, X

P2:
lw x1, X
sw x1, Y

Can P3.x1 = 1, and P3.x2 = 0 ?

P3:
lw x1, Y
fence r,r
lw x2, X

Conflicting data accesses

• Two memory accesses by different processors conflict if
• They access to the same memory location
• At least one is a write
• Unordered by synchronization operations

• Unsynchronized program
• Conflicting accesses not ordered by synchronization (e.g., a fence, operation

with release/acquire semantics, barrier, etc.)
• Unsynchronized programs contain data races: the output of the program

depends on relative speed of processors (non-deterministic program results)

CS211@ShanghaiTech 29

Synchronized programs

• Synchronized programs yield SC results on non-SC systems
• Synchronized programs are data-race-free

• If there are no data races, reordering behavior doesn’t matter
• Accesses are ordered by synchronization, and synchronization forces

sequential consistency

• In practice, most programs you encounter will be synchronized (via
locks, barriers, etc. implemented in synchronization libraries)
• Very few programmers do programming that relies on SC
• Rather than via ad-hoc reads/writes to shared variables like in the example

programs

CS211@ShanghaiTech 30

Relaxed Memory Models

• Motivation
• To obtain higher performance by allowing reordering of memory operations

(reordering is not allowed by sequential consistency)
• Not all dependencies assumed by SC are supported, and software has

to explicitly insert additional dependencies where needed
• Which dependencies are dropped depends on the particular memory

model
• IBM370, TSO, PSO, WO, PC, Alpha, RMO, …
• Some ISAs allow several memory models, some machines have switchable

memory models
• How to introduce needed dependencies varies by system
• Explicit FENCE instructions (sometimes called sync or memory barrier

instructions)
• Implicit effects of atomic memory instructions

32

Do not forget Compiler and Language!

• Compiler can reorder/remove memory operations:
• Instruction scheduling, move loads before stores if to different address
• Register allocation, cache load value in register, don’t check memory

• Prohibiting these optimizations would result in very poor
performance

33

//Thread 1
X = 0
For i in (1:100):

X = 1
Print X

//Thread 1
X = 1
For i in (1:100):

Print X

//Thread 2
X = 0

//Thread 2
X = 0

111111011111…

111111111111… 111111111111…

111111000000…

Language-Level Memory Models

• Programming languages have memory models too
• Hide details of each ISA’s memory model underneath language

standard
• c.f. C function declarations versus ISA-specific subroutine linkage convention

• Language memory models: C/C++, Java
• Modern (C11, C++11) and not-so-modern (Java 5) languages guarantee

sequential consistency for data-race-free programs (“SC for DRF”)
• Compilers will insert the necessary synchronization to cope with the

hardware memory model

• Describe legal behaviors of threaded code in each language and what
optimizations are legal for compiler to make
• E.g., C11/C++11: atomic_load(memory_order_seq_cst)

maps to RISC-V fence rw,rw; lw; fence r,rw

34

Release Consistency [Garachorloo 1990]
• Observation that consistency only matters when processes

communicate data
• Only need to have consistent view when one process shares its

updates to other processes
• Other processes only need to ensure they receive updates after they

acquire access to shared data

35

Release

Acquire

Critical

Release

Acquire

CriticalOther
Code

Other
Code

P1 P2

Ensure critical
section updates
visible before
release visible Ensure acquire

happened before
critical section
reads data

Release Consistency [Garachorloo 1990]
• Observation that consistency only matters when processes

communicate data
• Only need to have consistent view when one process shares its

updates to other processes
• Other processes only need to ensure they receive updates after they

acquire access to shared data

36

Release

Acquire

Critical

Release

Acquire

CriticalOther
Code

Other
Code

P1 P2

Ensure critical
section updates
visible before
release visible Ensure acquire

happened before
critical section
reads data

Release consistency is essentially the same as weak consistency, but synchronization
accesses must only be processor consistent with respect to each other.
Synchronization operations are broken down into acquire and release operations. All
pending acquires (e.g., a lock operation) must be done before a release (e.g., an
unlock operation) is done. Local dependencies within the same processor must still
be respected.

Release Consistency Adopted

• Only care about inter-processor memory ordering at thread synchronization
points, not in between
• Can treat all synchronization instructions as the only ordering points

• Memory model for C/C++ and Java uses release consistency
• Programmer has to identify synchronization operations, and if all data

accesses are protected by synchronization, appears like SC to programmer

• ARMv8 and RISC-V ISA adopt release consistency semantics on atomic
memory operations (AMOs)
• AMOs, such as compare-and-swap, fetch-and-add, etc. can be used to implement

lock- and wait-free algorithms and data structures
• Lock-free algorithms are supposed to allow an arbitrary number of threads to

share a resource without the need for serial execution on a lock

37

Conclusion

• Sequential Consistency

• Relaxed Consistency

CS211@ShanghaiTech 38

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Krste Asanovic (UC Berkeley)
• Prof. Daniel Sanchez (MIT)
• Prof. Kayvon Fatahalian (Stanford)
• Prof. Kunle Olukotun (Stanford)
• Prof. James Bornholt (UT Austin)

CS211@ShanghaiTech 39

