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Data versioning

e Goal

* Manage uncommitted (new) and committed (old) versions of data for

concurrent transactions o _ ,
Eager versioning philosophy: write to memory

d Eager versioning (undo-log based) immediately, hoping transaction won’t abort
. . . (but deal with aborts when you have to)
* Update memory location directly on write
* Maintain undo information in a log (incurs per-store overhead)
* Good: faster commit (data is already in memory)

* Bad: slower aborts, fault tolerance issues (consider crash in middle of
transaction)

* Lazy versioning (write-buffer based)
» Buffer data in a write buffer until commit memory when you have to
» Update actual memory location on commit
» Good: faster abort (just clear log), no fault tolerance issues
e Bad: slower commits

Lazy versioning philosophy: only write to

CS211@ShanghaiTech 2
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Conflict detection

 Must detect and handle conflicts between transactions

* Read-write conflict: transaction A reads address X, which was written to by
pending (but not yet committed) transaction B

* Write-write conflict: transactions A and B are both pending, and both write
to address X

e System must track a transaction’s read set and write set
* Read-set: addresses read during the transaction
* Write-set: addresses written during the transaction
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Pessimistic detection

* Check for conflicts (immediately) during loads or stores

* Philosophy: “I suspect conflicts might happen, so let’s always check to
see if one has occurred after each memory operation... if I'm going to
have to roll back, might as well do it now to avoid wasted work.”

* “Contention manager” decides to stall or abort transaction when a
conflict is detected

* Various policies to handle common case fast
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Pessimistic detection examples

Note: diagrams assume “aggressive” contention manager on writes:
writer wins, so other transactions abort
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Optimistic detection

* Detect conflicts when a transaction attempts to commit

* Intuition: “Let’s hope for the best and sort out all the conflicts only when the
transaction tries to commit”

* On a conflict, give priority to committing transaction
* Other transactions may abort later on
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Optimistic detection examples
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Conflict detection trade-offs

* Pessimistic conflict detection (a.k.a. “eager”)
* Good: detect conflicts early (undo less work, turn some aborts to stalls)
* Bad: no forward progress guarantees, more aborts in some cases
* Bad: fine-grained communication (check on each load/store)
* Bad: detection on critical path

e Optimistic conflict detection (a.k.a.“lazy” or “commit”)
* Good: forward progress guarantees
* Good: bulk communication and conflict detection
* Bad: detects conflicts late, can still have fairness problems
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TM implementation space (examples)

 Hardware TM systems
* Lazy + optimistic: Stanford TCC
 Lazy + pessimistic: MIT LTM, Intel VTM
* Eager + pessimistic: Wisconsin LogTM
* Eager + optimistic: not practical

e Software TM systems
* Lazy + optimistic (rd/wr): Sun TL2
* Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
» Eager + optimistic (rd)/pessimistic (wr): Intel STM
» Eager + pessimistic (rd/wr): Intel STM

e Optimal design remains an open question
* May be different for HW, SW, and hybrid



EwBHRZKRT

ShanghaiTech University

* Example: Consider a Python program r

JAMES E. SMITH ¢ RAVI NAIR

Machine o
Python program V | RT U /\ I_
Py
' Impl¢
Python interpreter (CPython) P e
H]|  PLATFORMS
. FOR SYSTEMS
Linux OS kernel Imp | NS
Wele]  PROCESSES
Oracle VirtualBox Impl
Win
OS kernel (Win/Linux/Mac/...) Imp

Hardware (e.g., desktop/laptop/server...)
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Types of Virtual Machine (VM)

e User Virtual Machines run a single application according to some
standard application binary interface (ABI).

* Example user ABIs include Win32 for Windows and Java Virtual Machine
(JVM)
» “(Operating) System Virtual Machines” provide a complete system
level environment at binary ISA
* E.g., IBM VM/370, VMware ESX Server, and Xen

 Single computer runs multiple VMs, and can support multiple, different OSes
* On conventional platform, single OS “owns” all HW resources
* With a VM, multiple OSes all share HW resources

e Underlying HW platform is called the host, where its resources used
to run guest VMs (user and/or system)
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Software Applications

*How is a software application encoded?
* What are you getting when you buy a software application?
* What machines will it work on?

* Who do you blame if it doesn’t work
* i.e., what contract(s) were violated?
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User Virtual Machine = ISA + Environment> =

ISA alone not sufficient to write useful programs, need 1/0 too!

* Direct access to memory mapped I/O via load/store instructions
problematic
* time-shared systems
* portability

* Operating system usually responsible for I/0
 sharing devices and managing security
* hiding different types of hardware (e.g., EIDE vs. SCSI disks)

* ISA communicates with operating system through some standard
mechanism, i.e., ecall instructions on RISC-V
* example RISC-V Linux system call convention:
addi a7, x0, <syscall-num> # syscall number in a7
addi a0, x0, argval # a0-a6 hold arguments
ecall # cause trap into OS
# On return from ecall, a0 holds return value
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Application Binary Interface (ABI)

* Programs are usually distributed in a
binary format that encodes the
program text (instructions) and initial
values of some data segments

* Virtual machine specifications include

* what state is available at process
creation

* which instructions are available (the ISA)

* what system calls are possible (1/0, or
the environment)

* The ABI is a specification of the
binary format used to encode
programs for a virtual machine

* Operating system implements the
virtual machine

* at process startup, OS reads the binary
program, creates an environment for it,
then begins to execute the code,
handling traps for 1/0 calls, emulation,
etc.

Application
rograms
(1) ek Software
Libraries
2] API
Operating system ABI
@ - =4

Execution hardware

: Memory | yardware
System interconnect translation
(bus)
/0 devices Main
and memory
networking

James E. Smith and Ravi Nair. 2005. The Architecture of Virtual Machines.
Computer 38, 5 (May 2005), 32—38. DOI:https://doi.org/10.1109/MC.2005.173
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OS Can Support Multiple User VMs

* Virtual machine features change over time with new versions of
operating system
* new ISA instructions added
* new types of I/O are added (e.g., asynchronous file I/O)

* Common to provide backwards compatibility so old binaries run on
new OS

* SunOS 5 (System V Release 4 Unix, Solaris) can run binaries compiled for
Sun0S4 (BSD-style Unix)

* Windows 98 runs MS-DOS programs

* If ABI needs instructions not supported by native hardware, OS can
provide in software
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ISA Implementations Partly in Software

Often good idea to implement part of ISA in software:

* Expensive but rarely used instructions can cause trap to OS emulation

routine:
e e.g., decimal arithmetic instructions in MicroVax implementation of VAX ISA

* Infrequent but difficult operand values can cause trap

* e.g., IEEE floating-point denormals cause traps in many floating-point unit
implementations

* Old machine can trap unused opcodes, allows binaries for new ISA to
run on old hardware

* e.g., Sun SPARC v8 added integer multiply instructions, older v7 CPUs trap
and emulate

denormal (or subnormal) numbers as non-zero
numbers smaller than the smallest possible normalized
numbers for a specific floating-point format.
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Supporting Non-Native ISAs

Run programs for one ISA on hardware with different ISA

. Softwar? Interpreter/emulation (OS software interprets instructions at
runtime

* E.g., OS 9 for PowerPC Macs had interpreter for 68000 code

 Binary Translation (convert at install and/or load time)
* |BM AS/400 to modified PowerPC cores
e DEC tools for VAX->MIPS->Alpha

* Dynamic Translation (non-native ISA to native ISA at runtime)
e Sun’s HotSpot Java JIT (just-in-time) compiler
* Transmeta Crusoe, x86->VLIW code morphing

» OS X for Intel Macs had dynamic binary translator for PowerPC (Rosetta)
* Removed in OS 10.7 release

 Runtime Hardware Emulation
* IBM 360 had optional IBM 1401 emulator in microcode

* Intel Itanium converts x86 to native VLIW (two software-visible ISAs)

* ARM cores that support 32-bit ARM, 16-bit Thumb, and JVM (three software-
visible ISAs!)



BT
ECH

Y B A Bk

g4 i, o=
1% “‘:j ShanghaiTech University

Software Interpreter

e Fetch and decode one instruction at a time in software

Interpreter Stack

Memory image of
guest VM lives in
host interpreter

7 data memory

Executable

on Disk Load into
interpreter
process fetch-decode loop
memory — while(!stop)

B {
Interpreter Data

/ PC += 4;
\/ execute(inst);
~ }

Interpreter Code

inst = Code[PC];

18



EwBHRZKRT

ShanghaiTech University

Wof
1B :
Té
e
zagza

0

s
Jirecn

Software Interpreter &

* Easy to code, small code footprint

* Slow, approximately 50-100x slower than native execution for RISC
ISA hosted on RISC ISA

* Problem is time taken to decode instructions
* fetch instruction from memory

switch tables to decode opcodes

extract register specifiers using bit shifts

* access register file data structure

execute operation

return to main fetch loop
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Binary Translation

* Each guest ISA instruction translates into some set of host (or native)
ISA instructions

* Instead of dynamically fetching and decoding instructions at run-
time, translate entire binary program and save result as new native
ISA executable

* Removes interpretive fetch-decode overhead

* Can do compiler optimizations on translated code to improve
performance
* register allocation for values flowing between guest ISA instructions
* native instruction scheduling to improve performance
* remove unreachable code
* inline assembly procedures



Binary Translation, Take 1

Executable
on Disk

Data

M/

Translate to
native ISA code

Executable
on Disk

Native | __
Data

_

P

Native
ISA
Code

g ';é“ ShanghaiTech University
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ative translation
might need extra
data workspace
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Binary Translation Problems

Branch and Jump targets

» guest code:
j L1

Ll: 1w rl, (r4)
jr (rl)

* native code

]
translation

native jump at end of
block jJumps to native

Iw
translation

translation of Iw

jr
translation

— Where should the jump register go?
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PC Mapping Table

 Table gives translated PC for each guest PC

* Indirect jumps translated into code that looks in table, to find where
to jump to
* can optimize well-behaved guest code for subroutine call/return by using
native PCin return links

* If can branch to any guest PC, then need one table entry for every
instruction in hosted program = big table

* If can branch to any PC, then either
* limit inter-instruction optimizations
* large code explosion to hold optimizations for each possible entry into
sequential code sequence
* Only minority of guest instructions are indirect jump targets, want to
find these
» design a highly structured VM design
* use runtime feedback of target locations
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Binary Translation Problems

* Self-modifying code!

esw rl, (r2) # r2 points into code space
* Rare in most code, but has to be handled if allowed by guest ISA

e Usually handled by including interpreter and marking modified code
pages as “interpret only”

* Have to invalidate all native branches into modified code pages



Binary Translation, Take 2

Executable
on Disk

—

Keep copy of
code and
data in
native data
segment
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Executable
on Disk

PC (
Mapping
Table

A .

_

Translate to
native ISA code

(l Native

ISA Code

Native
Interpreter

Mapping table used
for indirect jumps and

o jump from
interpreter back into

native translations

Translation has to
L— check for modified
code pages then jump
to interpeter

Interpreter used for
run-time modified

code, checks for
jumps back into
native code using PC
mapping table
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Dynamic Translation

* Translate code sequences as needed at runtime, but cache results

» Can optimize code sequences based on dynamic information (e.g.,
branch targets encountered)

* Tradeoff between optimizer runtime and time saved by optimizations
in translated code

* Technique used in Java JIT (Just-In-Time) compilers, Javascript
engines, and Virtual Machine Monitors (for system VMs)

* Also, Transmeta Crusoe for x86 emulation
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Dynamic Binary Translation Example:~

4
R —
N -
- Data RAM
Disk Code Cache Code Cache

Tags

Translator Runtime -- Execution

27



Chaining

Code Cache

Code Cache
Tags

Runtime -- Execution
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Instead of branching to the emulation manager at the end of every
translated block, the blocks can be linked directly to each other.
From “Virtual Machines”. James E. Smith and Ravi Nair.

Pre Chained

add %r5, %$r6, %r7
li %next addr reg, next addr #load address
#of next block

J dispatch loop

Chained

add %r5, %$r6, %r7
jJ physical location of translated
code for next_block

28
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Transmeta Crusoe (2000)

* Converts x86 ISA into internal native VLIW format using software at
run-time =2 “Code Morphing”

* Optimizes across x86 instruction boundaries to improve performance

* Translations cached to avoid translator overhead on repeated
execution

* Completely invisible to operating system — looks like x86 hardware
processor

x86 applications
x86 OS (Win/Linux/...)
x86 BIOS

x86 software

x86 compatible Crusoe processor solution

[ Following slides contain examples taken from “The
Technology Behind Crusoe Processors”, Transmeta
Corporation, 2000 ]
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Transmeta VLIW Engine

* Two VLIW formats, 64-bit and 128-bit, contains 2 or 4 RISC-like
operations

* VLIW engine optimized for x86 code emulation
» evaluates condition codes the same way as x86
* has 80-bit floating-point unit
* partial register writes (update 8 bits in 32 bit register)

e Support for fast instruction writes
* runtime code generation important

* Initially, two different VLIW implementations, low-end TM3120, high-
end TM5400

* native ISA differences invisible to user, hidden by translation system
* new eight-issue VLIW core planned (TM6000 series)



Crusoe System \ P &8
Inst. Cache «—{ Boot
Flash
ROM
VLIW Processor Compressed
compiler held
Portion of system DRAM is in boot ROM
used by Code Morph software Data Cache
and Is invisible to x86 machine
Crusoe CPU
Code Morph
Compiler
Code (VLIW)
Translation
Cache (VLIW)
Workspace S
| Code Morph x86 DRAM s
S?/gém DRAM
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Transmeta Translation
x86 code:

addl %eax, (%esp) # load data from stack, add to eax
addl %ebx, (%esp) # load data from stack, add to ebx
movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

first step, translate into RISC ops:

1d %r30, [%esp] # load from stack into temp
add.c %eax, %eax, %r30 # add to %$eax, set cond.codes
1d %r31, [%espl]

add.c %ebx, %ebx, %r31

1d %esi, [%ebp]

sub.c %ecx, %ecx, 5
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Compiler Optimizations

RISC ops:

1d %r30, [%esp] # load from stack into temp
add.c %eax, %eax, %r30 # add to %eax,set cond.codes
1d %r31, [%esp]

add.c %ebx, %ebx, %r31

1d %esi, [%ebp]

sub.c %ecx, %ecx, 5

Optimize:
1d %r30, [%esp] # load from stack only once
add %eax, %eax, %r30
add %ebx, %$ebx, %r30 # reuse data loaded earlier

1d %esi, [%ebp]
sub.c %ecx, %ecx, 5 # only this cond. code needed



Scheduling

Optimized RISC ops:

1d

r30, [%esp]

add %eax, %eax, %r30
add %ebx, %$ebx, %r30
1d %esi, [%ebp]

sub.c %ecx, %ecx, 5

Schedule into VLIW code:

1d %r30,
1d %esi,

%esp]; sub.c %ecx,

SIS N .
AR Bk
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# load from stack only once

# reuse data loaded earlier

# only this cond. code needed

%Secx, 5

%ebp]; add %eax, %eax, %r30;

add %ebx,

%$ebx,

$r30
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Translation Overhead

* Highly optimizing compiler takes considerable time to run, adds
runtime overhead

* Only worth doing for frequently executed code

* Translation adds instrumentation into translations that counts how
often code executed, and which way branches usually go

* As count for a block increases, higher optimization levels are invoked
on that code

When the Code Morphing software starts to see some VLIW codes repeating, it optimizes the
routines (in large chunks) into very efficient VLIW code, stored in a special translation cache for
fast access. The software goes one step farther, though -- it actively watches what goes on in the
cache. If a particular block from the translation cache is being accessed frequently, the software
goes back to it and continues to re-optimize it, such that it continues to get faster and faster. It
also monitors the branches that are most often taken, and will refine its prediction algorithm
accordingly.

From http://www.ecs.umass.edu/ece/koren/architecture/VLIW/2/crusoe2.html
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Exceptions
Original x86 code:

addl %eax, (%esp) # load data from stack, add to eax
addl %ebx, (%esp) # load data from stack, add to ebx
movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

Scheduled VLIW code:

1d %r30, [%esp]; sub.c %ecx, %ecx, 5
1d %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

e x86 instructions now executed out-of-order with respect to
original program flow
e Need to restore state for precise traps
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Shadow Registers and Store Buffer

* All registers have working copy and shadow copy
* Normal instructions only update the working copy of the register

* Stores held in software controlled store buffer, loads can snoop

* At end of translation block, commit changes by copying values from
working regs to shadow regs, and by releasing stores in store buffer

* On exception, re-execute x86 code using interpreter
* Undo instructions, shadow regs = working regs
 Stores not committed dropped (freed)
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System VMs: Supporting Multiple OSs on
Same Hardware

A
ZREAE
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e Can virtualize the environment that an operating system sees, an OS-
level VM, or system VM

* Hypervisor layer implements sharing of real hardware resources by
multiple OS VMs that each think they have a complete copy of the
machine

* Popular in early days to allow mainframe to be shared by multiple groups
developing OS code

e Used in modern mainframes to allow multiple versions of OS to be running
simultaneously =» OS upgrades with no downtime!

* Example for PCs: VMware allows Windows OS to run on top of Linux (or vice-
versa)

* Requires trap on access to privileged hardware state
* easier if OS interface to hardware well defined
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Introduction to System Virtual Machines

*\VMs developed in late 1960s

* Remained important in mainframe computing over the years
* Largely ignored in single user computers of 1980s and 1990s

* Recently regained popularity due to

* increasing importance of isolation and security in modern systems,
e failures in security and reliability of standard operating systemes,
* sharing of a single computer among many unrelated users,

* and the dramatic increases in raw speed of processors, which makes
the overhead of VMs more acceptable
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Virtual Machine Monitors (VMMs)

* Virtual machine monitor (VMM) or hypervisor is software that
supports VMs

* VMM determines how to map virtual resources to physical resources

* Physical resource may be time-shared, partitioned, or emulated in
software

* VMM is much smaller than a traditional OS;
* isolation portion of a VMM is ~ 10,000 lines of code
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VMM Overhead?

* Depends on the workload

» User-level processor-bound programs (e.g., SPEC benchmarks) have
zero-virtualization overhead

* Runs at native speeds since OS rarely invoked

* |/O-intensive workloads that are OS-intensive execute many system
calls and privileged instructions, can result in high virtualization
overhead

e For System VMs, goal of architecture and VMM is to run almost all
instructions directly on native hardware
* |If I/O-intensive workload is also |/O-bound, low processor utilization
since waiting for 1/0
e processor virtualization can be hidden, so low virtualization overhead
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Other Uses of VMs

1. Managing Software
* VMs provide an abstraction that can run the complete SW stack, even
including old OSes like DOS

e Typical deployment: some VMs running legacy OSes, many running current
stable OS release, few testing next OS release

2. Managing Hardware
* VMs allow separate SW stacks to run independently yet share HW, thereby
consolidating number of servers

* Some run each application with compatible version of OS on separate computers, as
separation helps dependability

* Migrate running VM to a different computer
* Either to balance load or to evacuate from failing HW
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Requirements of a Virtual Machine Monitor

* AVM Monitor
* Presents a SW interface to guest software,
* |solates state of guests from each other, and
* Protects itself from guest software (including guest OSes)

* Guest software should behave on a VM exactly as if running on the
native HW

* Except for performance-related behavior or limitations of fixed resources
shared by multiple VMs

» Guest software should not be able to change allocation of real system
resources directly

* Hence, VMM must control = everything even though guest VM and
OS currently running is temporarily using them

* Access to privileged state, Address translation, I/O, Exceptions and
Interrupts, ...



#

A

& an

=R A g
CH

AR R AN
f ShanghaiTech University

Farresios

TANE

Requirements of a Virtual Machine Monitor

* VMM must be at higher privilege level than guest VM, which
generally run in user mode

— Execution of privileged instructions handled by VMM

 E.g., Timer interrupt: VMM suspends currently running guest VM,
saves its state, handles interrupt, determine which guest VM to
run next, and then load its state

* Guest VMs that rely on timer interrupt provided with virtual timer and an
emulated timer interrupt by VMM

 Requirements of system virtual machines are
same as paged-virtual memory:

1. At least 2 processor modes, system and user

2. Privileged subset of instructions available only in system mode,
trap if executed in user mode

e All system resources controllable only via these instructions
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VMM

* |SA support
* e.g., the ability of guest OS to use resources

e Virtual memory management

* Virtual memory management in guest OS to physical memory in host
* TLB

*|/0
» Handling 1/O for guest OS
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Conclusion

* User-level virtualization

» System-level virtualization

CS211@ShanghaiTech 46
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