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Data versioning

• Goal 
• Manage uncommitted (new) and committed (old) versions of data for 

concurrent transactions

• Eager versioning (undo-log based)
• Update memory location directly on write

• Maintain undo information in a log (incurs per-store overhead)

• Good: faster commit (data is already in memory)

• Bad: slower aborts, fault tolerance issues (consider crash in middle of 
transaction)

• Lazy versioning (write-buffer based)
• Buffer data in a write buffer until commit

• Update actual memory location on commit

• Good: faster abort (just clear log), no fault tolerance issues

• Bad: slower commits
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Eager versioning philosophy: write to memory 
immediately, hoping transaction won’t abort 
(but deal with aborts when you have to)

Lazy versioning philosophy: only write to 
memory when you have to



Conflict detection

• Must detect and handle conflicts between transactions
• Read-write conflict: transaction A reads address X, which was written to by 

pending (but not yet committed) transaction B

• Write-write conflict: transactions A and B are both pending, and both write 
to address X

• System must track a transaction’s read set and write set 
• Read-set: addresses read during the transaction

• Write-set: addresses written during the transaction
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Pessimistic detection

• Check for conflicts (immediately) during loads or stores
• Philosophy: “I suspect conflicts might happen, so let’s always check to 

see if one has occurred after each memory operation… if I’m going to 
have to roll back, might as well do it now to avoid wasted work.”

• “Contention manager” decides to stall or abort transaction when a 
conflict is detected
• Various policies to handle common case fast
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Pessimistic detection examples
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Optimistic detection

• Detect conflicts when a transaction attempts to commit
• Intuition: “Let’s hope for the best and sort out all the conflicts only when the 

transaction tries to commit”

• On a conflict, give priority to committing transaction
• Other transactions may abort later on
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Optimistic detection examples
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Conflict detection trade-offs

• Pessimistic conflict detection (a.k.a. “eager”)
• Good: detect conflicts early (undo less work, turn some aborts to stalls)

• Bad: no forward progress guarantees, more aborts in some cases

• Bad: fine-grained communication (check on each load/store)

• Bad: detection on critical path

• Optimistic conflict detection (a.k.a.“lazy” or “commit”)
• Good: forward progress guarantees

• Good: bulk communication and conflict detection

• Bad: detects conflicts late, can still have fairness problems
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TM implementation space (examples)

• Hardware TM systems
• Lazy + optimistic: Stanford TCC
• Lazy + pessimistic: MIT LTM, Intel VTM
• Eager + pessimistic: Wisconsin LogTM
• Eager + optimistic: not practical

• Software TM systems
• Lazy + optimistic (rd/wr): Sun TL2
• Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
• Eager + optimistic (rd)/pessimistic (wr): Intel STM
• Eager + pessimistic (rd/wr): Intel STM

• Optimal design remains an open question 
• May be different for HW, SW, and hybrid
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Virtual Machines Are Everywhere

• Example: Consider a Python program running on a Linux Virtual 
Machine
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Python program

Python interpreter (CPython)

Linux OS kernel

Oracle VirtualBox

OS kernel (Win/Linux/Mac/…)

Hardware (e.g., desktop/laptop/server…)

Python language
Implements a Python VM

Linux ABI
Implements a Linux-x86 VM

x86 ISA
Implements an x86 system VM

Win/Linux/Mac/… ABI
Implements an OS-x86 VM

x86 ISA

Implements an x86 physical machine



Types of Virtual Machine (VM)

• User Virtual Machines run a single application according to some 
standard application binary interface (ABI).
• Example user ABIs include Win32 for Windows and Java Virtual Machine 

(JVM)

• “(Operating) System Virtual Machines” provide a complete system 
level environment at binary ISA
• E.g., IBM VM/370, VMware ESX Server, and Xen

• Single computer runs multiple VMs, and can support multiple, different OSes 
• On conventional platform, single OS “owns” all HW resources 

• With a VM, multiple OSes all share HW resources

• Underlying HW platform is called the host, where its resources used 
to run guest VMs (user and/or system)
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Software Applications

•How is a software application encoded?
• What are you getting when you buy a software application?

• What machines will it work on?

• Who do you blame if it doesn’t work
• i.e., what contract(s) were violated?
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User Virtual Machine = ISA + Environment

ISA alone not sufficient to write useful programs, need I/O too!

• Direct access to memory mapped I/O via load/store instructions 
problematic
• time-shared systems

• portability

• Operating system usually responsible for I/O
• sharing devices and managing security

• hiding different types of hardware (e.g., EIDE vs. SCSI disks)

• ISA communicates with operating system through some standard 
mechanism, i.e., ecall instructions on RISC-V
• example RISC-V Linux system call convention:

addi a7, x0, <syscall-num> # syscall number in a7

addi a0, x0, argval # a0-a6 hold arguments

ecall # cause trap into OS

# On return from ecall, a0 holds return value
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Application Binary Interface (ABI)

• Programs are usually distributed in a 
binary format that encodes the 
program text (instructions) and initial 
values of some data segments

• Virtual machine specifications include
• what state is available at process 

creation
• which instructions are available (the ISA)
• what system calls are possible (I/O, or 

the environment)

• The ABI is a specification of the 
binary format used to encode 
programs for a virtual machine

• Operating system implements the 
virtual machine
• at process startup, OS reads the binary 

program, creates an environment for it, 
then begins to execute the code, 
handling traps for I/O calls, emulation, 
etc.
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OS Can Support Multiple User VMs

• Virtual machine features change over time with new versions of 
operating system
• new ISA instructions added

• new types of I/O are added (e.g., asynchronous file I/O)

• Common to provide backwards compatibility so old binaries run on 
new OS
• SunOS 5 (System V Release 4 Unix, Solaris) can run binaries compiled for 

SunOS4 (BSD-style Unix)

• Windows 98 runs MS-DOS programs

• If ABI needs instructions not supported by native hardware, OS can 
provide in software
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ISA Implementations Partly in Software

Often good idea to implement part of ISA in software:

• Expensive but rarely used instructions can cause trap to OS emulation 
routine:
• e.g., decimal arithmetic instructions in MicroVax implementation of VAX ISA

• Infrequent but difficult operand values can cause trap
• e.g., IEEE floating-point denormals cause traps in many floating-point unit 

implementations

• Old machine can trap unused opcodes, allows binaries for new ISA to 
run on old hardware
• e.g., Sun SPARC v8 added integer multiply instructions, older v7 CPUs trap 

and emulate
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numbers for a specific floating-point format.



Supporting Non-Native ISAs

Run programs for one ISA on hardware with different ISA

• Software Interpreter/emulation (OS software interprets instructions at 
runtime)
• E.g., OS 9 for PowerPC Macs had interpreter for 68000 code

• Binary Translation (convert at install and/or load time)
• IBM AS/400 to modified PowerPC cores
• DEC tools for VAX->MIPS->Alpha

• Dynamic Translation (non-native ISA to native ISA at runtime)
• Sun’s HotSpot Java JIT (just-in-time) compiler
• Transmeta Crusoe, x86->VLIW code morphing
• OS X for Intel Macs had dynamic binary translator for PowerPC (Rosetta)

• Removed in OS 10.7 release

• Runtime Hardware Emulation
• IBM 360 had optional IBM 1401 emulator in microcode
• Intel Itanium converts x86 to native VLIW (two software-visible ISAs)
• ARM cores that support 32-bit ARM, 16-bit Thumb, and JVM (three software-

visible ISAs!)
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Software Interpreter
• Fetch and decode one instruction at a time in software
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Software Interpreter

• Easy to code, small code footprint

• Slow, approximately 50-100x slower than native execution for RISC 
ISA hosted on RISC ISA

• Problem is time taken to decode instructions
• fetch instruction from memory

• switch tables to decode opcodes

• extract register specifiers using bit shifts

• access register file data structure

• execute operation

• return to main fetch loop
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Binary Translation

• Each guest ISA instruction translates into some set of host (or native) 
ISA instructions

• Instead of dynamically fetching and decoding instructions at run-
time, translate entire binary program and save result as new native 
ISA executable

• Removes interpretive fetch-decode overhead

• Can do compiler optimizations on translated code to improve 
performance
• register allocation for values flowing between guest ISA instructions

• native instruction scheduling to improve performance

• remove unreachable code

• inline assembly procedures
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Binary Translation, Take 1
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Binary Translation Problems
Branch and Jump targets

• guest code:
j L1

...

L1: lw r1, (r4)

jr (r1)

• native code
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PC Mapping Table

• Table gives translated PC for each guest PC

• Indirect jumps translated into code that looks in table, to find where 
to jump to
• can optimize well-behaved guest code for subroutine call/return by using 

native PC in return links

• If can branch to any guest PC, then need one table entry for every 
instruction in hosted program ➔ big table

• If can branch to any PC, then either
• limit inter-instruction optimizations
• large code explosion to hold optimizations for each possible entry into 

sequential code sequence

• Only minority of guest instructions are indirect jump targets, want to 
find these
• design a highly structured VM design
• use runtime feedback of target locations
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Binary Translation Problems

• Self-modifying code!
• sw r1, (r2) # r2 points into code space

• Rare in most code, but has to be handled if allowed by guest ISA

• Usually handled by including interpreter and marking modified code 
pages as “interpret only”

• Have to invalidate all native branches into modified code pages
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Binary Translation, Take 2
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Dynamic Translation

• Translate code sequences as needed at runtime, but cache results

• Can optimize code sequences based on dynamic information (e.g., 
branch targets encountered)

• Tradeoff between optimizer runtime and time saved by optimizations 
in translated code

• Technique used in Java JIT (Just-In-Time) compilers, Javascript
engines, and Virtual Machine Monitors (for system VMs)

• Also, Transmeta Crusoe for x86 emulation
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Dynamic Binary Translation Example:
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Chaining
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Runtime -- Execution

Code Cache
Code Cache
Tags

Pre Chained

add %r5, %r6, %r7        

li %next_addr_reg, next_addr #load address

#of next block

j dispatch loop

Chained

add %r5, %r6, %r7        

j physical location of translated

code for next_block

Instead of branching to the emulation manager at the end of every 
translated block, the blocks can be linked directly to each other.
From “Virtual Machines”. James E. Smith and Ravi Nair.



Transmeta Crusoe (2000)

• Converts x86 ISA into internal native VLIW format using software at 
run-time ➔ “Code Morphing”

• Optimizes across x86 instruction boundaries to improve performance

• Translations cached to avoid translator overhead on repeated 
execution

• Completely invisible to operating system – looks like x86 hardware 
processor
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[ Following slides contain examples taken from “The 
Technology Behind Crusoe Processors”, Transmeta
Corporation, 2000 ]

x86 applications

x86 OS (Win/Linux/…)

x86 BIOS

Code morphing

VLIW processor

x86 software

x86 compatible Crusoe processor solution



Transmeta VLIW Engine

• Two VLIW formats, 64-bit and 128-bit, contains 2 or 4 RISC-like 
operations

• VLIW engine optimized for x86 code emulation
• evaluates condition codes the same way as x86

• has 80-bit floating-point unit

• partial register writes (update 8 bits in 32 bit register)

• Support for fast instruction writes
• runtime code generation important

• Initially, two different VLIW implementations, low-end TM3120, high-
end TM5400
• native ISA differences invisible to user, hidden by translation system

• new eight-issue VLIW core planned (TM6000 series)
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Crusoe System
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Transmeta Translation
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addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5      # sub 5 from ecx

x86 code:

ld %r30, [%esp]        # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax, set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5

first step, translate into RISC ops:



Compiler Optimizations
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ld %r30, [%esp]        # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax,set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5

RISC ops:

ld %r30, [%esp]        # load from stack only once

add %eax, %eax, %r30

add %ebx, %ebx, %r30   # reuse data loaded earlier

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5    # only this cond. code needed

Optimize:



Scheduling
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ld %r30, [%esp]        # load from stack only once

add %eax, %eax, %r30

add %ebx, %ebx, %r30   # reuse data loaded earlier

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5    # only this cond. code needed

Optimized RISC ops:

ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Schedule into VLIW code:



Translation Overhead

• Highly optimizing compiler takes considerable time to run, adds 
runtime overhead

• Only worth doing for frequently executed code

• Translation adds instrumentation into translations that counts how 
often code executed, and which way branches usually go

• As count for a block increases, higher optimization levels are invoked 
on that code
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When the Code Morphing software starts to see some VLIW codes repeating, it optimizes the 
routines (in large chunks) into very efficient VLIW code, stored in a special translation cache for 
fast access. The software goes one step farther, though -- it actively watches what goes on in the 
cache. If a particular block from the translation cache is being accessed frequently, the software 
goes back to it and continues to re-optimize it, such that it continues to get faster and faster. It 
also monitors the branches that are most often taken, and will refine its prediction algorithm 
accordingly. 
From http://www.ecs.umass.edu/ece/koren/architecture/VLIW/2/crusoe2.html

http://www.ecs.umass.edu/ece/koren/architecture/VLIW/2/crusoe2.html


Exceptions
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ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Scheduled VLIW code:

addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5      # sub 5 from ecx

Original x86 code:

• x86 instructions now executed out-of-order with respect to 
original program flow
• Need to restore state for precise traps



Shadow Registers and Store Buffer

• All registers have working copy and shadow copy
• Normal instructions only update the working copy of the register

• Stores held in software controlled store buffer, loads can snoop

• At end of translation block, commit changes by copying values from 
working regs to shadow regs, and by releasing stores in store buffer

• On exception, re-execute x86 code using interpreter
• Undo instructions, shadow regs → working regs

• Stores not committed dropped (freed)
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System VMs: Supporting Multiple OSs on 
Same Hardware

• Can virtualize the environment that an operating system sees, an OS-
level VM, or system VM

• Hypervisor layer implements sharing of real hardware resources by 
multiple OS VMs that each think they have a complete copy of the 
machine
• Popular in early days to allow mainframe to be shared by multiple groups 

developing OS code

• Used in modern mainframes to allow multiple versions of OS to be running 
simultaneously ➔ OS upgrades with no downtime!

• Example for PCs: VMware allows Windows OS to run on top of Linux (or vice-
versa)

• Requires trap on access to privileged hardware state 
• easier if OS interface to hardware well defined
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Introduction to System Virtual Machines

•VMs developed in late 1960s
• Remained important in mainframe computing over the years

• Largely ignored in single user computers of 1980s and 1990s

•Recently regained popularity due to
• increasing importance of isolation and security in modern systems, 

• failures in security and reliability of standard operating systems, 

• sharing of a single computer among many unrelated users,

• and the dramatic increases in raw speed of processors, which makes 
the overhead of VMs more acceptable
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Virtual Machine Monitors (VMMs)

• Virtual machine monitor (VMM) or hypervisor is software that 
supports VMs

• VMM determines how to map virtual resources to physical resources

• Physical resource may be time-shared, partitioned, or emulated in 
software 

• VMM is much smaller than a traditional OS; 
• isolation portion of a VMM is  10,000 lines of code
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VMM Overhead?

• Depends on the workload

• User-level processor-bound programs (e.g., SPEC benchmarks) have 
zero-virtualization overhead 
• Runs at native speeds since OS rarely invoked

• I/O-intensive workloads that are OS-intensive execute many system 
calls and privileged instructions, can result in high virtualization 
overhead 
• For System VMs, goal of architecture and VMM is to run almost all 

instructions directly on native hardware

• If I/O-intensive workload is also I/O-bound, low processor utilization 
since waiting for I/O
• processor virtualization can be hidden, so low virtualization overhead
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Other Uses of VMs

1. Managing Software
• VMs provide an abstraction that can run the complete SW stack, even 

including old OSes like DOS

• Typical deployment: some VMs running legacy OSes, many running current 
stable OS release, few testing next OS release

2. Managing Hardware
• VMs allow separate SW stacks to run independently yet share HW, thereby 

consolidating number of servers
• Some run each application with compatible version of OS on separate computers, as 

separation helps dependability

• Migrate running VM to a different computer 
• Either to balance load or to evacuate from failing HW
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Requirements of a Virtual Machine Monitor

• A VM Monitor 
• Presents a SW interface to guest software, 
• Isolates state of guests from each other, and 
• Protects itself from guest software (including guest OSes)

• Guest software should behave on a VM exactly as if running on the 
native HW 
• Except for performance-related behavior or limitations of fixed resources 

shared by multiple VMs

• Guest software should not be able to change allocation of real system 
resources directly

• Hence, VMM must control  everything even though guest VM and 
OS currently running is temporarily using them
• Access to privileged state, Address translation, I/O, Exceptions and 

Interrupts, …
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Requirements of a Virtual Machine Monitor

• VMM must be at higher privilege level than guest VM, which 
generally run in user mode 
 Execution of privileged instructions handled by VMM

• E.g., Timer interrupt: VMM suspends currently running guest VM, 
saves its state, handles interrupt, determine which guest VM to 
run next, and then load its state 
• Guest VMs that rely on timer interrupt provided with virtual timer and an 

emulated timer interrupt by VMM

• Requirements of system virtual machines are 
same as paged-virtual memory: 

1. At least 2 processor modes, system and user

2. Privileged subset of instructions available only in system mode, 
trap if executed in user mode
• All system resources controllable only via these instructions
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VMM

• ISA support
• e.g., the ability of guest OS to use resources

• Virtual memory management
• Virtual memory management in guest OS to physical memory in host

• TLB

• I/O
• Handling I/O for guest OS
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Conclusion

• User-level virtualization

• System-level virtualization
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