
CS211
Advanced Computer Architecture

L19 Hardware Security

Chundong Wang

December 3rd, 2025

Security breaches at hardware

• Cyber-attacks
• In computers and computer networks an attack is any attempt to expose,

alter, disable, destroy, steal or gain unauthorized access to or make
unauthorized use of an asset. (ISO)

3

User application

Host OS/Hypervisor

Hardware

CS211@ShanghaiTech

Side Channel Attacks

5CS211@ShanghaiTech

Side channels are everywhere

• Example 1
• In August 2012, an undergraduate student, Mr Liu Jingkang, from Nanjing

University, figured out Mr Zhou Hongyi’s cell phone number according to
acoustic sounds of keystrokes captured in an unanswered phone-interview
between a journalist and Mr Zhou.

6CS211@ShanghaiTech

From https://tech.qq.com/a/20120901/000028.htm

https://tech.qq.com/a/20120901/000028.htm

Side channels are everywhere

• Example 2
• The visual content displayed on

user's LCD screens leaks onto the
faint sound emitted by the screens

• Synesthesia: Detecting Screen
Content via Remote Acoustic Side
Channels, S&P ’19

7CS211@ShanghaiTech

Physical, timing, microarchitectural channels

• What can an adversary observe?

8

Physical channels Timing channels Microarchitectural
channels

Processor

victim

Processor

victim

Processor

victim

Power, sound, etc. Response time
Microarch events (e.g.,
timing, perf. counters, etc.)

Attacker requires measurement
equipment → physical access

Attacker may be remote (e.g.,
over an internet connection)

Attacker may be remote, or be
co-located

CS211@ShanghaiTech

A typical victim application: RSA

• Square-and-multiply based exponentiation

9

Input: base b, modulo m, exponent e = (en−1 ...e0)2
Output: be mod m

r = 1

for i = n-1 down to 0 do

r = (r * r) mod m

if ei == 1 then

r = (r * b) mod m

end if

end for

return r

Assume that we measure
time or power, can we

figure out ei?

CS211@ShanghaiTech

Benign usage: non-intrusive software
monitoring
• How to efficiently monitor

application for anomaly detection?

• “Repetitive program activity (e.g. a
loop) causes the unintentional EM
signals to exhibit periodicity, i.e.
the spectrum of these EM signals
will have ‘spikes’ at frequencies
that correspond to the time spent
in each repetition of the program
activity.”

• Spectral Profiling: Observer-Effect-
Free Profiling by Monitoring EM
Emanations, Micro ’16

10CS211@ShanghaiTech

Recap: virtual memory for isolation

11

Page a (4KB)

Page b (4KB)

Page y (4KB)

Page x (4KB)

Process 1

Process 2

Virtual
memory
space

Page table per process
Physical memory space
(limited by DRAM size)

How to communicate
between processes?

CS211@ShanghaiTech

Normal cross-process communication

12

#include <socket.h>

void send (bit msg) {

socket.send(msg);

}

bit recv() {

return socket.recv(msg);

}

How to communicate
without letting OS

know?

CS211@ShanghaiTech

Solution 1: through the page fault

13

Process 1
(sender)

Process 2
(receiver)

Page y (4KB)

Page x (4KB)

Physical memory space
(limited by DRAM size)

if (send ‘1’)

access many pages

else

; // idle

t1 = rdtsc();

access many pages

t2 = rdtsc();

if ((t2 – t1) > Threshold)

read ‘1’

else

read ‘0’
CS211@ShanghaiTech

Solution 2: through the cache

14

Process 1
(sender)

Process 2
(receiver)

Cache

if (send ‘1’)

fill up cache

else

; // idle

t1 = rdtsc();

Fill up the cache

t2 = rdtsc();

if ((t2 – t1) > Threshold)

read ‘1’

else

read ‘0’

of ways

of sets

CS211@ShanghaiTech

Solution 3: through a part of cache

15

Process 1
(sender)

Process 2
(receiver)

Cache

if (send ‘1’)

fill set x

else

; // idle

t1 = rdtsc();

Fill set x

t2 = rdtsc();

if ((t2 – t1) > Threshold)

read ‘1’

else

read ‘0’

of ways

of sets

CS211@ShanghaiTech

Prime+Probe

16

Process 1
(sender)

Process 2
(receiver)

Cache

of ways

of sets

Prime

sends and receives ‘1’

time

Wait

Access

Probe

‘1’ received == 4 accesses with 1 cache miss

CS211@ShanghaiTech

Prime+Probe

17

Process 1
(sender)

Process 2
(receiver)

Cache

of ways

of sets

Prime

sends and receives ‘0’

time

Wait

No Access

Probe

‘0’ received == 4 accesses without cache miss

CS211@ShanghaiTech

A Complete Protocol -- Synchronization

• Window size agreed on by sender and receiver
• Each window transmits some bits  bandwidth matters!

• Calibration
• Both sides need to perform a window alignment at the start

18

Prime

time

Wait Probe

Receiver Receiver

Sender

Sample Window

Prime Wait Probe

CS211@ShanghaiTech

Solution 4: through a smaller part of cache

19

Process 1
(sender)

Process 2
(receiver)

Cache

if (send ‘1’)

clflush(x)

else

; // idle

t1 = rdtsc();

Access cache line x

t2 = rdtsc();

if ((t2 – t1) > Threshold)

read ‘1’

else

read ‘0’

of ways

of sets

CS211@ShanghaiTech

Flush+Reload

20

(A) No Victim Access

(B) With Victim Access

(C) Victim Access Overlap

(D) Partial Overlap

(E) Multiple Victim Accesses

CS211@ShanghaiTech

Flush+Reload

• To build a side channel through clflush

• Manually share memory pages between process 1 and process
2

• Process 1 forcefully flushes and reloads shared cache line
• Process 2 accesses the cache line to get cache miss/hit

➔ to speculate a ‘1’ or ‘0’

21

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: a high resolution, low noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX conference on Security
Symposium (SEC'14). USENIX Association, USA, 719–732. CS211@ShanghaiTech

Key factor for a successful communication/attack

22

Sender/victim Receiver/attackerShared hardware
resource

if (send ‘1’) // or secret

do sth with the resource

else

idle, or do sth else with the resource

t1 = rdtsc();

do sth with the resource

t2 = rdtsc();

if (t2 – t1 > Threshold)

read ‘1’

else

read ‘0’

CS211@ShanghaiTech

Solution 5: through directories, not cache

• Inclusive vs non-inclusive cache

• Although cache is non-inclusive, some other structure is shared
• For cache coherence, we studied “directory”

23
Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World, S&P ’19

Process 1
(sender)

Process 2
(receiver)

Cache

Directory

CS211@ShanghaiTech

Solution 6: through cache coherence protocol

• Cache coherence is also a viable resource
• Remember E and S states of MESI protocol?

24Are coherence protocol states vulnerable to information leakage? HPCA ’18 CS211@ShanghaiTech

Different states, different latencies

• Two considerations
• Shared memory, read-only, between two sender and receiver

• Synchronization prior to transmission

• An encoding contract of ‘1’ or ‘0’
• To transmit every ‘1’, cache block put in a coherence state for 𝑥 times;

• To transmit every ‘0’, cache block put in a coherence state for 𝑦 times;

• In-between every bit transmission, sender places the cache block in another
coherence state for 𝑧 times.

•  to denote bit boundaries.

25CS211@ShanghaiTechAre coherence protocol states vulnerable to information leakage? HPCA ’18

Any more solutions?
How to communicate without letting OS know?

26CS211@ShanghaiTech

Meltdown and Spectre

28CS211@ShanghaiTech

Meltdown and Spectre

• Hardware vulnerability
• Affecting Intel x86 microprocessors,

IBM POWER processors, and some
ARM-based microprocessors

• All Operating Systems affected!

• They are considered “catastrophic”!

• Allow to read all memory (e.g. from other process or other Virtual
Machines (e.g. other users data on Amazon cloud service!))

• How Meltdown and Spectre work covers all knowledge of architecture:
• Virtual Memory; Protection Levels; Instruction Pipelining; Out-of-order

Execution; Speculative Execution; CPU Caching.

29

Transient execution, albeit architectural equivalence, leads to information
leakage that are reflected by microarchitectural state transitions.

CS211@ShanghaiTech

Meltdown:
Out of order execution

• Out of order execution
• Some instructions executed in advance

30

// secret is one-byte. probe_array is an array of char.

1. raise_exception();

2. // the line below is never reached

3. access(probe_array[secret * 4096])

probe_array should never be accessed, but accessed at some

location probe_array + secret * 4096.

probe_array is fully controlled by attacker who can use

Flush+Reload to see which cache line of probe_array is hit,

so as to figure out the value of secret.

secret can be the value at any memory location, i.e., *ptr

The aim of Meltdown:

to leak/dump memory

probe_array *ptr

secret * 4096

secret

; rcx: inaccessible kernel address

; rbx: probe_arry.

1. xor rax, rax ; rax  0

2. retry:

3. mov al, byte [rcx]

4. shl rax, 0xc ; ×4096
5. jz retry

6. mov rbx, qword[rbx + rax]

The Impact of Meltdown

31

Justification:

The researchers put a value of

84 in secret and managed to

use Flush+Reload to get a

cache hit at the 84th page.

The researchers developed competent programs to read memory

locations that should be inaccessible to their program. They managed

to dump the entire physical memory, for kernel and users.

Source: https://meltdownattack.com/meltdown.pdf
CS211@ShanghaiTech

https://meltdownattack.com/meltdown.pdf

Spectre:
Speculation
• Speculative execution

• Example: branch prediction

32

// x is controlled by attacker.

1. if (x < array1_size)

2. y = array2[array1[x] * 4096]

Prerequisites:

i. array1[x], with an out-of-bound x larger than array1_size,

resolves to a secret byte 𝑘 that is cached;

ii. array1_size and array2 uncached.

iii. Previous x values have been valid.

 cache miss, so run next line due to prediction history

 array1[x] cache hit, as 𝑘 is cached, so load

array2[𝑘 * 4096]

Regarding a misprediction with an illegal x,

array2[𝑘 * 4096] will not be used, but has been

loaded into CPU cache.

We can use Flush+Reload to guess 𝑘 with array2.

The aim of Spectre:

to read out a victim’s sensitive

information

array1

array1_size

Last x array2previous x

𝑘

Source: https://spectreattack.com/spectre.pdf CS211@ShanghaiTech

https://spectreattack.com/spectre.pdf

RIDL: Rogue In-Flight Data Load

• Not data in cache, but in line fill buffer (LFB)

33

An overview of the Intel Skylake microarchitecture from RIDL: Rogue In-Flight Data Load, S&P ’19
CS211@ShanghaiTech

Line Fill Buffers (LFBs) are
internal buffers that the
CPU uses to keep track of
outstanding memory
requests and perform a
number of optimizations
such as merging multiple in-
flight stores.

Speculative load (L05)

34

The eight-stage pipeline structure of the MIPS R4000 (1991) uses pipelined instruction and data caches.

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped I-cache allows use of
instruction before tag check completes

1st half of
fetching inst.

2nd half of
fetching inst.

Inst decode and
reg fetch

Execution 1st half of access
to data cache

2nd half of access
to data cache

Tag check Writeback

What if tag check
fails, i.e., cache miss?

RIDL: an example

35

An overview of the RIDL attack from RIDL: Rogue In-Flight Data Load, S&P ’19

Any problems with RIDL?

CS211@ShanghaiTech

when executing Line 6, the CPU speculatively loads a
value from memory in the hope it is from our newly
allocated page, while really it is in-flight data from the
LFBs belonging to an arbitrarily different security domain

More MDS attacks

• Microarchitectural data sampling (MDS)

• Fallout
• Fallout: Leaking Data on Meltdown-resistant CPUs, CCS ’19

• ZombieLoad
• ZombieLoad: Cross-Privilege-Boundary Data Sampling, CCS ’19

• Medusa
• Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis,

USENIX Security ’20

• CacheOut
• CacheOut: Leaking Data on Intel CPUs via Cache Evictions, S&P ’21

36CS211@ShanghaiTech

LVI: Value Injection

37

1 void call_victim(size_t untrusted_arg) {

2 *arg_copy = untrusted_arg;

3 array[**trusted_ptr * 4096];

4 }

CPU

CPU cache

Memory Bus

Memory

Store
buffer

CPU may use data in the store buffer upon a

cache miss of memory load, although the two

are completely unrelated.

Dereference: but at
1st level, page fault.

CPU thinks this one in

store buffer seems to be

the one it needs.

An attacker-controlled value is fed,

and some micro-architectural state

change happens.

LVI - Hijacking Transient Execution with Load Value Injection, S&P ’20 CS211@ShanghaiTech

Conclusion

• Security is a serious and critical issue

• This lecture only sees the tip of the iceberg

39

Simple, but not easy

The Prestige

CS211@ShanghaiTech

Acknowledgements

• These slides contain materials developed and copyright by:
• Prof. Mengjia Yan (MIT)

• Authors of all mentioned papers

40CS211@ShanghaiTech

	Slide 1: CS211 Advanced Computer Architecture L19 Hardware Security
	Slide 3: Security breaches at hardware
	Slide 5: Side Channel Attacks
	Slide 6: Side channels are everywhere
	Slide 7: Side channels are everywhere
	Slide 8: Physical, timing, microarchitectural channels
	Slide 9: A typical victim application: RSA
	Slide 10: Benign usage: non-intrusive software monitoring
	Slide 11: Recap: virtual memory for isolation
	Slide 12: Normal cross-process communication
	Slide 13: Solution 1: through the page fault
	Slide 14: Solution 2: through the cache
	Slide 15: Solution 3: through a part of cache
	Slide 16: Prime+Probe
	Slide 17: Prime+Probe
	Slide 18: A Complete Protocol -- Synchronization
	Slide 19: Solution 4: through a smaller part of cache
	Slide 20: Flush+Reload
	Slide 21: Flush+Reload
	Slide 22: Key factor for a successful communication/attack
	Slide 23: Solution 5: through directories, not cache
	Slide 24: Solution 6: through cache coherence protocol
	Slide 25: Different states, different latencies
	Slide 26: Any more solutions?
	Slide 28: Meltdown and Spectre
	Slide 29: Meltdown and Spectre
	Slide 30: Meltdown: Out of order execution
	Slide 31: The Impact of Meltdown
	Slide 32: Spectre: Speculation
	Slide 33: RIDL: Rogue In-Flight Data Load
	Slide 34: Speculative load (L05)
	Slide 35: RIDL: an example
	Slide 36: More MDS attacks
	Slide 37: LVI: Value Injection
	Slide 39: Conclusion
	Slide 40: Acknowledgements

