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Security breaches at hardware

e Cyber-attacks

* In computers and computer networks an attack is any attempt to expose,
alter, disable, destroy, steal or gain unauthorized access to or make
unauthorized use of an asset. (I1SO)

User application

L]

Host OS/Hypervisor

Hardware
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Side Channel Attacks
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Side channels are everywhere

* Example 1
* In August 2012, an undergraduate student, Mr Liu Jingkang, from Nanjing

University, figured out Mr Zhou Hongyi’s cell phone number according to
acoustic sounds of keystrokes captured in an unanswered phone-interview

between a journalist and Mr Zhou.
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Side channels are everywhere

* Example 2

* The visual content displayed on
user's LCD screens leaks onto the
faint sound emitted by the screens

victim

attacker

B
duttio

* Synesthesia: Detecting Screen
Content via Remote Acoustic Side “ ~ A
ChGﬂ”EIS, S&P’19 webcam

microphone

CS211@ShanghaiTech 7
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Physical, timing, microarchitectural channels

* What can an adversary observe?

/ Physical channels \
. Power, sound, etc.

Processor

/ Microarchitectural
channels

Microarch events (e.g.,
timing, perf. counters, etc.)

Processor Processor

Attacker requires measurement Attacker may be remote (e.g., Attacker may be remote, or be
equipment = physical access over an internet connection) co-located

CS211@ShanghaiTech 8
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* Squar

e-and-multiply based exponentiation

(@

Input: base b, modulo m, exponent e = (e,_; ...€p)>
Output: b€ mod m
r =1
for 1 = n-1 down to 0 do

r = (r * r) mod m

if ¢, == 1 then

r = (r * b) mod ml®
[end if :J .".

Assume that we measure
time or power, can we
figure out e,?

end for
return r

A
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Benigh usage: non-intrusive software
monitoring

* How to efficiently monitor
application for anomaly detection?

* “Repetitive program activity (e.g. a | ] s
loop) causes the unintentional EM A | s |
signals to exhibit periodicity, i.e. | ssSmmeear
the spectrum of these EM signals Traling Pisss I

Antenna

will have ‘spikes’ at frequencies
that correspond to the time spent

. A Antenna of ' ]

in each repetition of the program 4 (IR =5 5\'~-“«‘vl§‘w/"‘w

activity.” O
m Real-time behavior

» Spectral Profiling: Observer-Effect- | o |
Free Profiling by Monitoring EM e sonltorlog Fhese
Emanations, Micro '16

CS211@ShanghaiTech 10
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Recap: virtual memory for isolation

Physical memory space
Page table per process (limited by DRAM size)

Process 1

Page v (4KB)

Process 2
Page b (4KB) \
Virtual
memory How to communicate
space between processes?

CS211@ShanghaiTech 11
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Normal cross-process communication

(@

)

#include <socket.h>

void send (bit msg) {
socket.send (msqg) ;

}

bit recv () {
return socket.recv (msqg);

}

J

CS211@ShanghaiTech

How to communicate
without letting OS
know?

12
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Solution 1: through the page fault

Physical memory space

(limited by DRAM size)

Page v (4KB)

Process 1
(sender)

it

if (send ‘1')

<
Pagex (KBl

access many pages
else
; // 1dle

CS211@ShanghaiTech

Process 2

(receiver)

tl = rdtsc () ;

access many pages

t2 = rdtsc();

if ((t2 - tl) > Threshold)
read ‘1’

else

read ‘0’
13
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Solution 2: through the cache

Process 1
(sender)

i

if (send ‘17) # of sets

fill up cache

else
; // 1dle

Cache
Process 2
L (receiver)
\\ .
tl = rdtsc();
Fill up the cache
t2 = rdtsc() ;
# of ways if ((t2 - tl) > Threshold)

CS211@ShanghaiTech

read ‘1’
else

read ‘0’
14
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Solution 3: through a part of cache

Cache
Process 1 Frocgss 2)
ﬁ recelver
sender)
N
tl = rdtsc();
| # of sets Fill set x
if (send ‘17) t2 = rdtsc();
fill set x # of ways if ((t2 - tl) > Threshold)
else | read ‘1’
; // idle else
read ‘0O’

CS211@ShanghaiTech 15



SRR

FumWany
Wi FAAER G
EX 'II,.mI '"Iu.,_ J z
AN "I B

o 2013 A&,

&4/‘\\4

TECH V'

MR ATF

ShanghaiTech University

Prime+Probe sends and receives ‘1’

Cache ‘1’ received == 4 accesses with 1 cache miss
# of sets
# of ways

CS211@ShanghaiTech 16



SRR

FumWany
Wi FAAER G
EX 'II,.mI '"Iu.,_ J z
AN "I B

o 2013 A&,

&4/‘\\4

TECH V'

MR ATF

ShanghaiTech University

Prime+Probe sends and receives ‘0’

# of sets

Cache

# of ways

‘O’ received == 4 accesses without cache miss

CS211@ShanghaiTech 17
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A Complete Protocol -- Synchronization

Sample Window
A

Sender _
| time
| >
Prime Wait Probe Prime Wait Probe
Receiver Receiver

 Window size agreed on by sender and receiver
* Each window transmits some bits € bandwidth matters!

 Calibration
e Both sides need to perform a window alignment at the start

CS211@ShanghaiTech 18
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Solution 4: through a smaller part of cache

Cache

Process 1 Process 2

(sender) \» L (receiver)
NN

"] el |

tl = rdtsc () ;

# of sets Access cache line X
if (send ‘1') t2 = rdtsc();
clflush (x) # of ways if ((t2 - tl) > Threshold)
else read ‘1’
; // idle else
read ‘0’

CS211@ShanghaiTech 19
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Flush+Reload

Victim . .
® e — — (A) No Victim Access
® — (B) With Victim Access
Avacker S .
Victim D -
R — . = (C) Victim Access Overlap
ctim S i
o e (D) Partial Overlap
Avacker SN .
vieim  { [ | || | : .
I — — (E) Multiple Victim Accesses
Attacker Victim
M rush O wair [ Reload B Access [] Something else

CS211@ShanghaiTech 20



SR L D R ‘
& 4¢/ ShanghaiTech University

Jirech oS

Flush+Reload

* To build a side channel through c1flush

* Manually share memory pages between process 1 and process
2

* Process 1 forcefully flushes and reloads shared cache line

* Process 2 accesses the cache line to get cache miss/hit
=» to speculate a ‘1’ or ‘0’

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: a high resolution, low noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX conference on Security
Symposium (SEC'14). USENIX Association, USA, 719—-732.
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Sender/victim Shared hardware <
resource

Receiver/attacker

tl = rdtsc();

do sth with the resource

t2 = rdtsc();

if (t2 - tl1 > Threshold)
read ‘1’

if (send ‘1’) // or secret
do sth with the resource
else

idle, or do sth else with the resource
else

read ‘0’

CS211@ShanghaiTech 22
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Solution 5: through directories, not cach

* |Inclusive vs non-inclusive cache

* Although cache is non-inclusive, some other structure is shared
* For cache coherence, we studied “directory”

—
Directory
Cache P )
Process 1 . rocess
(sender) (receiver)

Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World, S&P 19
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Solution 6: through cache coherence protocol

e Cache coherence is also a viable resource
* Remember E and S states of MESI protocol?

Processor Socket é Processor Socket
Q SO ‘ . .)\.

Local Cache Local Cache || Local Cache || Local Cache Local Cache Local Cache || Local Cache || Local Cache
H ' ]!
[ i On-chip Interconnect E ] [ i : On-chip Interconnect ]
| | -
------------------------ =l * :
T T 1 T T
Exclusive cache block (maybe stale) 10101110 Shared cache block (clean) 0101111
- . - _ _____ T
Shared Cache Core valid bits Shared Cache Core valid bits

Are coherence protocol states vulnerable to information leakage? HPCA’18 5911 @ShanghaiTech 24



AR I .
SRS N
R LT
‘" MR E
©
Are

EA h, g - . -
O mu“\j’ ShanghaiTech University

Different states, different latencies

* Two considerations

e Shared memory, read-only, between two sender and receiver
e Synchronization prior to transmission

* An encoding contract of ‘1" or ‘0’
e To transmit every ‘1’, cache block put in a coherence state for x times;
* To transmit every ‘0’, cache block put in a coherence state for y times;

* In-between every bit transmission, sender places the cache block in another
coherence state for z times.

€ to denote bit boundaries.

Are coherence protocol states vulnerable to information leakage? HPCA '18
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Any more solutions?

How to communicate without letting OS know?

CS211@ShanghaiTech 26
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Meltdown and Spectre

CS211@ShanghaiTech 28
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Meltdown and Spectre

* Hardware vulnerability

 Affecting Intel x86 microprocessors,
IBM POWER processors, and some
ARM-based microprocessors &
 All Operating Systems affected!
* They are considered “catastrophic’ SPECTRE
 Allow to read all memory (e.g. from other process or other Virtual

Machines (e.g. other users data on Amazon cloud service!) )

* How Meltdown and Spectre work covers all knowledge of architecture:

 Virtual Memory; Protection Levels; Instruction Pipelining; Out-of-order
Execution; Speculative Execution; CPU Caching.

Transient execution, albeit architectural equivalence, leads to information
leakage that are reflected by microarchitectural state transitions.
CS211@ShanghaiTech 29
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M eltd OWﬂ The aim of Meltdown:
Out of order execution

to leak/dump memory

* Out of order execution

« Some instructions executed in advance secret

secret » 4096
PIPPPTIPPEPPEEIIEEIEY.
0009595559595,

probe array *otr

// secret is one-byte. probe array is an array of char.
1. raise exception();
2. // the line below 18 never reached ; YCX: inaccessible kernel address

3. access (probe array[secret * 4096]) rbx: probe arry.
. XOr rax, rax ; rax € 0

. retry:

mov al, byte [rcx]
shl rax, Oxc ; X4096
Jjz retry

. mov rbx, gword[rbx + rax]

probe array should never be accessed, but accessed at some
location probe_array + secret * 4096.

probe array is fully controlled by attacker who can use
Flush+Reload to see which cache line of probe_array is hit,
so as to figure out the value of secret.

secret can be the value at any memory location, i.e., *ptr 30

O O i W N B~
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The Impact of Meltdown

500
400
300 q Justification:
200

k = s = 5 i Thg researchers put a value of
B 84 in secret and managed to
age
use Flush+Reload to get a
Figure 4: Even if a memory location is only accessed cache hit at the 84th page.
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe_array shows one cache

hit, exactly on the page that was accessed during the out-
of-order execution.

Access time
[cycles]

The researchers developed competent programs to read memory

locations that should be inaccessible to their program. They managed
to dump the entire physical memory, for kernel and users.

Source: https://meltdownattack.com/meltdown. pdf
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Spectre: :

arrayl size

Speculation| .. seeer e ..

* Speculative execution Prerequisites:

« Example: branch prediction i. array1[x], with an out-of-bound x larger than array1_size,
resolves to a secret byte k that is cached,;
ii. array1_size and array2 uncached.
lii. Previous x values have been valid.

// x is controlled by attacker.
1. 1f (% < arrayl size) € cache miss, so run next line due to prediction history

2. y = arrayZlarrayl[x] * 4096] & array1[x] cache hit, as k is cached, so load
array2[k * 4096]

Regarding a misprediction with an illegal x,
array2[k * 4096] will not be used, but has been The aim of Spectre:

g cachcy | to read out a victim’s sensitive
We can use Flush+Reload to guess k with array?2. T -

Source: https://spectreattack.com/spectre.pdf CS211@ShanghaiTech 32
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RIDL: Rogue In-Flight Data Load

* Not data in cache but in line fill buffer (LFB)

........................................................................

d C::;I;e = L2 Cache
! Instruction =
Line Fill Buffers (LFB HoP B Line Fill
! < HIHIE S( F S) are S E TR = | Cache Buffer
Internal bUfferS that the v _'_'_'_'_'_'_'_'_""':'_'_'_'_'_'_'_'_'_'_'_'_'_ """"""""""""""""
CPU uses to keep track of ,
di | Pr‘Beﬁigfign = | | Load Buffer Physical

outstan INng memory Unit : | Store Buffer Re?riizzref“e Common Data Bus
requests and perform a |k || | | EBranch Order Buffer] || Reaisters o B

oAt ! | Branch ]| | [_Re-order Buffer ] Vector port0 [INTAID] | | |
number of optimizations rarom butter|| B B— [ vegisers Rl
such as merging multiple in- Al uC il ports [(TORD ] © |

:port4 STORE | | | !

LIOIEIS UONBAISS3Y Paniun
J3|npayas 4o

flight stores. Registen port7 E
Alias Table port6 [INTALU] | ! |
Register ports [INTALU
Allocation & Renaming portt [INTALU E :
@ Front-end @ Out-of-Order Engine Execution Units |

An overview of the Intel Skylake microarchitecture from RIDL: Rogue In-Flight Data Load, S&P "19
CS211@ShanghaiTech 33
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Speculative load (L0S)

IF g IS g RF g EX ; DF g DS g TC g WB
Isthalfof : 2ndhalfof :Instdecodeand: Execution  :1sthalf of access 2nd half of access Tag check | Writeback
fetching inst.. fetchinginst. :regfetch ; to datacache  to data cache 5

? ? . E =3 5 : ? f
Instruction memory Reg |- ? - Pata memory Reg
: / | ' What if tag check

Direct-mapped I-cache allows use of ° fails, i.e., cache miss?
instruction before tag check completes

The eight-stage pipeline structure of the MIPS R4000 (1991) uses pipelined instruction and data caches.

© 2018 Elsevier Inc. All rights reserved.
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Any problems with RIDL?

Attacker Process

Secret

I

FLUSH + RELOAD
Buffer

Victim Process %
7777777777777777777777777777777777 : ﬁ :

Secret Deﬁ’;gie”t (a

| ]

Load/Store ==} Line Fill Buffer = Spef:;zétive 11
S S 12

13

An overview of the RIDL attack from RIDL: Rogue In-Flight Data Load, S&P 19 14
15

when executing Line 6, the CPU speculatively loads a -
value from memory in the hope it is from our newly 18

allocated page, while really it is in-flight data from the 10
LFBs belonging to an arbitrarily different security domain

CS211@ShanghaiTech

/% Flush flush & reload buffer entries. */
for (k = 0; k < 256; ++k)
flush(buffer + k * 1024);

/e Qoo s Yes: 1 7 .15 i +
/X Specutatirvely Loaa the secret. ~/

[char Value = x(new_page) ; ]

/ & - g8 L /
/* Calculate the corresponding entry. *
char *entry_ptr = buffer + (1024 * value)
/* Load that entry 2nto the cache. */

*(entry_ptr) ;

. e ;7 9 9 -
& 3 [ 2 me T he ro |l Nnn T 1To m a1 )
7 e LULInE Lne revoaa ea "\, (y il Y (
J
y
cpp ) =Y ~m ] a2 mpPi ) Y .
QCC L TS Now cacnea. Y4

for (k = O k < 256 ++k) {

t0 = cycles(),
*x (buffer + 1024 * k);
dt = cycles() - tO;

if (dt < 100)
++results k] ;

35
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More MDS attacks

* Microarchitectural data sampling (MDS)

* Fallout
* Fallout: Leaking Data on Meltdown-resistant CPUs, CCS "19

 Zombieload
e Zombieload: Cross-Privilege-Boundary Data Sampling, CCS 19

e Medusa

* Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis,
USENIX Security '20

e CacheOut
e CacheOut: Leaking Data on Intel CPUs via Cache Evictions, S&P 21
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CPU thinks this one in

LVI Val u e I nJ eCtIO n store buffer seems to be

the one it needs.

vold call victim(size t untrusted arg) {
*arg copy = untrusted arg;
array[**trusted ptr * 4096];
S

CPU cache
111

= w N

} o
< Memory Bus > ®

I I I Dereference: but at An attacker-controlled value is fed,
Memory and some micro-architectural state
change happens.

1st level, page fault.

CPU may use data in the store buffer upon a “00
cache miss of memory load, although the two £ _ " l]
are completely unrelated. 25 400 o~
85 200 Y
<
0
0 50 100 150 200 250

Page

LVI - Hijacking Transient Execution with Load Value Injection, S&P ’20  CS211@Shanghailech 37
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Conclusion

« Security is a serious and critical issue
 This lecture only sees the tip of the iceberg

Simple, but not easy
The Prestige

CS211@ShanghaiTech 39
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