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Spectre:
Speculation :

arrayl size

- Speculative executiol 22" previous x Lastx areep
« Example: branch prediction

Prerequisites:

i. array1[x], with an out-of-bound x larger than array1_size,
resolves to a secret byte k that is cached;

ii. array1_size and array2 uncached.

ii. Previous x values have been valid.

// x 1s controlled by attacker.

1. if (x < arrayl size) \(— cache miss, so run next line due to prediction history \

2. y = arrayzlarrayl[x] * 4096]€ array1[x] cache hit, as k is cached, so load
array2[k * 4096]

Regarding a misprediction with an illegal x,
array2[k * 4096] will not be used, but has been The aim of Spectre:

s , to read out a victim’s sensitive
We can use Flush+Reload to guess k with array2. T

Source: https://spectreattack.com/spectre.pdf
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RIDL: Rogue In-Flight Data Load

* Not data in cache, but in line fill buffer (LFB)

LTi Se
# ! = L2 Cache
! : W W

Cache

Instruction

—
HOP =y
Cache Tags =

o

Line Fill Buffers (LFBs) are
internal buffers that the
CPU uses to keep track of

| HT | d Buff Physical
: i1 | Prediction | ysiee
OUtStandmg memory i Unit : Store Buffer Re?r'i:::”e Common Data Bus
req ueStS and perform a | _ | m Registers g . !
S | | Re-order Buff vector = | porto [(NTAWL] |
number of optimizations { lrarger Bufter| 1 ‘ o B registers ||| & | Soarrom ) |
: ; | | | Retirement Unit o] r— i
such as merging multiple : 2 & |opona oo |
in-flich Register S @ |vhor7 [T ] |
In-Tlight stores. Al | - y
ias Table e % port6 i
= Q7| ports i
Register g | :
P - Allocation & Renaming g port _m.’ i
i MFrontend | ! @ Out-of-Order Engine _ -xecution Units  :

An overview of the Intel Skylake microarchitecture from RIDL: Rogue In-Flight Data Load, S&P '19
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Speculative load (L05)

DF

DS

1st half ofacces$ 2nd half of

._access to data :

TC
Tag check

‘todata cache

IF IS RF EX
1st half of 2nd half of Inst decode and  Execution
fetching . fetching inst. : reg fetch
inst. : : = ) ;
Instruction memory Reg ? 7

\

. cache :
Data memory

WB
Writeback

Direct-mapped I-cache allows use of ,
instruction before tag check completes

'}

The eight-stage pipeline structure of the MIPS R4000 (1991) uses pipelined instruction and data caches.

What if tag check

fails, i.e., cache miss?

© 2018 Elsevier Inc. All rights reserved.
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RIDL: an example

Any problems with RIDL?

Attacker Process

777777777777777777777777777777777 | ush & reload §
2 for (k = 0; k < 256; ++k)
S 3 flush(buffer + k * 1024);
1 :
FLUSH + RELOAD | | s /* Speculatively load the secret.
Victim Proces Buger 6 [ c/’har’- Yalge ’= *(new_page); ]
Secret Depengent s char *entry_ptr = buffer + (1624 * value) ;
I i} : 10 *(entry_ptr);
! ] 1 12 / % Ta mo +ho e lood of each hba ffer om Tt g
13 see which entry s mn( ' /
An overview of the RIDL attack from RIDL: Rogue In-Flight Data Load, S&P ’19 14 for (k = 0; k < 266; ++k) {
15 t0 = cycles();
. . . 16 x (buffer + 1024 * k);
when executing Line 6, the CPU speculatively loads a at = Eyclsal) - O
value from memory in the hope it is from our newly 1
. ey e . . 9 i <
allocated page, while really it is in-flight data from the § 1152@&2?3{1 _
LFBs belonging to an arbitrarily different security 2n }
domain
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More MDS attacks

* Microarchitectural data sampling (MDS)

* Fallout
* Fallout: Leaking Data on Meltdown-resistant CPUs, CCS '19

e ZombielLoad
» Zombieload: Cross-Privilege-Boundary Data Sampling, CCS’19

* Medusa
* Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis,
USENIX Security '20

e CacheOut
* CacheOut: Leaking Data on Intel CPUs via Cache Evictions, S&P '21
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LVI: Value Injection

CPU thinks this one in
store buffer seems to be
the one it needs.

void call/victim(size t untrusted arg)

11
< Memory Bus >

I I I I I I Dereference: but at An attacker-controlled value is fed,

Memory 1st level, page fault. and some micro-architectural
state change happens.

1
3 {
e
S 2 *arg copy = untrusted arg;
3 array[**tgusted ptr * 4096];
4

) Y

CPU may use data in the store buffer upon a

: 600
cache miss of memory load, although the E — {
£v .,
two are completely unrelated. 2 %; 00 WAt Aol Al
S8 200
< 0
0 50 100 150 200 250

Page

LVI - Hjjacking Transient Execution with Load Value Injection, S&P ’20
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ISA: instruction set architecture

An instruction is a single operation, with an opcode and zero or more operands, of
a processor, defined by the processor instruction set.

®/ \@
software /»\/ -/
ol

/\

\

instruction set

hardware A@;/—
/0

I

ISA is the actual programmer-visible instruction set, a critical
interface/boundary/contract between software and hardware
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From architecture to microarchitecture

* Instructions are visible to programmers

* Two processors may have the same ISA but different microarchitectures
* e.g., AMD Opteron and Intel Core i7, with the same 80x86 ISA, have very
different pipelines and cache organizations
* Stack and accumulator
* CISC and RISC
* An instruction is partitioned into multiple stages

* Five classic stages of executing an instruction
* Instruction fetch

Instruction decode/register fetch

Execute

Memory access
Write back



Microcode vs. Hardwired

 Data path and control

* Microcoded control
* Implemented using ROMs/RAMs
* Indirect next_state function: “here’s how to compute next state”
* Slower ... but can do complex instructions
* Multi-cycle execution (of control)

* Hardwired control
* Implemented using logic (“hardwired” can’t re-program)
* Direct next_state function: “here is the next state”
* Faster ... for simple instructions (speed is function of complexity)

* Single-cycle execution (of control)
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Single-Bus Datapath for Microcoded RISC-V

Opcode S Condition? Busy?
DO & =
5 — [ Lgﬁ\fl/) \,%D = E
2 | @ 2 S Z s
ElEregssl ) § 53| = 3
\ 1 Address OJC‘/ i v
9 o <§t ool ) ﬁ
o - (a'ed o
| c . s (O - 2L S Main
21 |2k 5 - ><—':I <M Memory
SUIEN] B < 5
S5 |= T RIE
=N Data Out In éi
| A z,[ [ T
ImmEn l RegEn ALUEni MemEn

Datapath unchanged for complex instructions!

CS211@ShanghaiTech 14
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Stages of Execution on Datapath
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Hazards

e Structural Hazard
* Arequired hardware resource is busy

 Data hazard
* An instruction depends on the result(s) of a previous instruction

e Control Hazard
* Branches, jumps, etc.

* Exception
* Exception handling
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e wi G Lwmsxy
Pipeline with Fully Bypassed Data Path 1 %1527
| |
I Fetch i 4 Decode | EXecute , : Memory 1 Writeback
I I L i :_
| | c o
! ! £ S
1 ol %

3 RLTE = \\ ZI} Data —
= —_—
Instruction | &0 IRNREIIN Cache -
O [ I~ E; > > L
Q- Cache : & 1 -> >’<
g B | o A
A of <=t H
? I 1 E[ 4 '
I | —
l l ‘ l — o
| | . " -
FIl D|| X|| M|| W , .
: [ Assumes data written to registers
FI| D|| X|[\M \ W ina W cycle is readable in parallel
'\ D cycle (dotted line). Extra write
FI| D 4 N\/I W data register and bypass paths
F [‘)\ required if this is not possible. |
CS23 i@ ShanghgiTech 17
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Types of Data Hazards

Consider executing a sequence of register-register
instructions of type:
e <1 op
Data-dependence
rs& rpopr, Read-after-Write
e >‘|'3 opr, (RAW) hazard

Anti-dependence
ry & r,opr, Write-after-Read
rl‘(; op I (WAR) hazard
Output-dependence
r;<& rpopr, Write-after-Write
<r3 & rgopry (WAW) hazard

CS211@ShanghaiTech 18



Exception Handling s-stage pipeline

& |
Inst. \ Data E
Mem Decode > + MemE
C :
PC address lllegal Overflow Data address n
Exception Opcode Exceptions =
: v
> >
. ©
- @
i O
Select > E v
Handler Kill F Kill D Kill E Asynchronous :
PC Stage Stage Stage Interrupts | =

Kill
Writeback

CS211@ShanghaiTech 19
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Pipeline scheduling

* Loop unrolling

* Long latency loads and floating-point operations limit parallelism within a
single loop iteration

* Loop unrolled to expose more parallelism
* Available registers, code generation, etc. to be considered
* With an unrolling factor

* Decoupling access and execute
e Separate control and memory access operations from data computations
+ Execute stream can run ahead of the access stream and vice versa
+ Limited out-of-order execution without wakeup/select complexity
- Compiler support to partition the program and manage queues
- Branch instructions require synchronization between A and E
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More Complex Pipeline: Scoreboard

* When is it safe to issue an instruction?
* Use a data structure to keep track of all the instructions in all the functional units

* The following checks need to be made before the Issue stage can

dispatch an instruction I FSTE e 18 MEh

* Is the required function unit (FU) available? dispatched by the Issue stage
* Is the input data available? (RAW?) if a RAW hazard exists or the
* Is it safe to write the destination? (WAR? WAW?) required functional unit (FU)

is busy, and that operands are

. i ?
Is there a structural conflict at the WB stage? latched by FU on issue

* Scoreboard for In-order Issues

* Issue checks the instruction (opcode dest srcl src2) against the scoreboard
(Busy & WP) to dispatch

FU available? Busy[FU#]

RAW? WP[srcl] or WP[src2]

WAR? cannot arise NO: Operands read at issue
WAW? WP[dest] YES: Out-of-order completion

CS211@ShanghaiTech 21



Scoreboard Dynamics
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Functional Unit Status Registers Reserved
Int(1),Add(1), Mult(3) Div(4) {WB for Writes
to| 7, f6 f6
ti|, f2 f6 f6, f2
t2 f6| |2 f6, f2 I,
315 fo f6 f6, 0
t4 fO f6 F6, fo I
t5 fO fo,
t6 fo fo, I
t7 |1 f10 , f10
t8 f10 ,
t9
t10]7, f6 f6
t1i] f6 f6 Is
I; FDIV.D f6, f6, f4
I FLD f2, 45(x3) In-order issue
I FMULT.D fo, f2, f4
Is FSUB.D f10,  fO, f6
I FADD.D fe, f8, f2 *
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Register renaming and ROB

l ALUT |Mem J
IF || ID —+lssue .

WB
Fadd 7

Fmul

 Decode does register renaming and adds instructions to the issue-stage
instruction reorder buffer (ROB)

=>» renaming makes WAR or WAW hazards impossible

* Any instruction in ROB whose RAW hazards have been satisfied can be
dispatched

=» Qut-of-order or dataflow execution

CS211@ShanghaiTech 23
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Renaming Structures

Renaming .
table &
regfile ) |
Ins# Juse |exec| op |[pl| srcl |p2] src2 t;
Reorder t;
buffer
tn
Replacing the |
tag by its value bov by ! l l
IS an expensive Load FU U Store
operation Unit Unit
l <t, result >

e Instruction template (i.e., tag t) is allocated by the Decode
stage, which also associates tag with register in regfile
e When an instruction completes, its tag is deallocated
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Reorder Buffer Management
Ins# use exec op pl srcl p2 src2
ptr,
next to

—_—
deallocate . _
Destination reglsters

are renamed to the
instruction’s slot tag

ptr,
next

—

available

Instruction slot is candidate for execution when:
e It holds a valid instruction (“use” bit is set)
e |t has not already started execution (“exec” bit is clear)
e Both operands are available (p1 and p2 are set)

Is it obvious where an architectural register value is?

N O CS211@ShanghaiTech 25



Renaming & Out-of-order Issue = V

An example
Renaming table Reorder buffer

p data Ins# use exec op pl srcl p2 src2
f1 t,
f2 t,
f3 l3
f4 Iy
f5 ls
fo :
f7
f8
Data (v;) / Tag (t)

1FLD

2 FLD

3 FMULT.D
4 FSUB.D
5 FDIV.D

6 FADD.D

£, 34(x2)
f4, 45(x3)
6, f4,
8, £2,
f4, 2,

f2
f2
f8
f4

e When are tags in sources
replaced by data?
Whenever an FU produces data

e When can a name be reused?
Whenever an instruction completes

CS211@ShanghaiTech 26



Renaming & Out-of-order Issue

An example
Renaming table

Reorder buffer

AL
& i{
<, )
ELED
EARZE
@ L z
24 i, g
73, i
"'u& o ;‘;5‘
e

EwBHRZKRT
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p data Ins# use exec op pl srcl p2 src2
f1 1 0| 0 | LD t;
f2 v 2 | o] a | t,
f3 3 1|0 |[MuL D] w vl ts
f4 b 4 Do fsuB |1 | w1 vl t,
fo 5 [1]o [ov [1] w 4 ts
f6 t3 ‘
f7
f8 v4
Data (v;) / Tag (t)

1FLD 2, 34(x2)

2 FLD f4, 45(x3) ® |Insert instruction in ROB

3 FMULT.D f6, f4, f2 ® [ssue instruction from ROB

4 FSUB.D f8, f2, f2 ® Complete instruction

5FDIV.D 4, £, f8 ® Empty ROB entry

6 FADD.D f10, fo, f4

CS211@ShanghaiTech
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In-order vs. OQut-of-order

* In-order issue vs. out-of-order issue
* Dependence, available registers, available FU, etc.

* In-order completion vs. out-of-order completion
* All but the simplest machines have out-of-order completion

* In-order commit vs. out-of-order commit
* In-order commit supports precise traps

RN R PN -
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A Modern Memory Hierarchy

Abstraction

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~“nsec

L2 cache
512 KB ~ 1MB, many nsec

-----

register spilling

Automatic
HW cache
management

Main memory (DRAM),
GB, ~100 nsec

automatic

Swap Disk
100 GB, ~10 msec

demand

CS211@ShanghaiTech
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CPU cache

e Store recently accessed data in automatically managed
(hardware controlled) fast memory

* Temporal locality
* Recently accessed data will be again accessed in the near future
e Spatial locality

» A program tends to reference a cluster of memory locations at a time
* Cache block/line

* Direct-mapped, set-associative, fully-associative

* Hierarchical multi-level cache
* Cache hit/miss rate, and how to calculate latency accordingly
* Inclusive, exclusive, or non-inclusive



40 R Bk
5%3'” ”"‘.@5 ShanghaiTech University

e o

EELE
EARZE

BT
wpié’ e
CH

CPU Cache

* Write-back/write-through

* Write-allocate or not

» Unified cache or separate instruction/data caches
* LRU/NRU/NMRUY/... replacement policy

* Address used for caching
* Virtually-Indexed Physically-Tagged (VIPT)
* PIPT and VIVT
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Cache Coherence

* Coherence: What values can aread return?
» Concerns reads/writes to a single memory location
* Write propagation: Writes eventually become visible to all processors
» Write serialization: Writes to the same location are serialized (all processors
see them in the same order)
* Snoopy Cache-Coherence Protocols
* MSI, MESI, MOESI, etc.

* False sharing
* Coherence miss

* Buses don’t scale, directory cache protocol
e Write miss vs. read miss
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Virtual memory and TLB, NVM

In TLB

v

TLB

\ 4

Virtual Translation table Physical
addresses addresses

v

A
\ 4

Data reads or writes

* Virtual to physical page-level mapping
* Translation lookaside table (TLB)
* A cache of frequently used page table entries
 DRAM’s problems
* Non-volatile memory

* Flash memory
* Byte-addressable NVM
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Memory Consistency

» Consistency describes properties across all memory addresses

* When writes to X propagate to other processors, relative to reads and writes
to other addresses

A memory consistency model is a contract between the hardware and
software

e Sequential Consistency (SC)

* Arbitrary order-preserving interleaving of memory references of sequential
programs over a single shared memory, in some sequential order

* Relaxed consistency
e TSO: total store ordering
* Fences (memory barrier), with overheads

e Multi-Copy Atomic, and Non-Multi-Copy Atomic
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Branch Prediction

* Usefulness
 Modern branch predictors have high accuracy (>95%) and can reduce
branch penalties significantly in pipeline

e Static and dynamic prediction
eRequired hardware support
e Static: profile-, program-, and programmer-based
e Dynamic: 1-bit, 2-bit, BHT, BTB, Spatial Correlation

e Misprediction recovery mechanisms:

® Keep result computation separate from commit

e Kill instructions following branch in pipeline
e Restore state to that following branch
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Superscalar and VLIW:
instruction-level parallelism

e Superscalar
» N-wide superscalar - fetch, decode, execute, retire N instructions per cycle

* Hardware performs the dependence checking between concurrently-fetched
instructions

* VLIW

* Very Long Instruction Word
Multiple operations packed into one instruction
Compiler
* Schedule operations to maximize parallel execution
* Guarantee intra-instruction parallelism and avoid data hazards in one instruction
Loop unrolling vs. software pipelining

« Software pipelining pays startup/wind-down costs only once per loop,
not once per iteration

Trace scheduling
* Trace selection and compaction
Predicated execution
* Control dependence converted to data dependence



N kAT

ShanghaiTech University

Multithreading:
thread-level parallelism

* Have multiple thread contexts in a single processor
 Latency tolerance, hardware utilization, single-thread performance, etc.

* Fine-grained

* Cycle by cycle

e Simpler to implement, but low single thread performance
* Coarse-grained

» Switch on event (e.g., cache miss)

 Switch on quantum/timeout

* Fairness among threads

e Simultaneous
* Instructions from multiple threads executed concurrently in the same cycle

* Dispatch instructions from multiple threads in the same cycle (to keep multiple
execution units utilized)
 Utilize functional units with independent operations from the same or different threads
* Fetch policies
* Round-robin, ICOUNT, etc.

CS211@ShanghaiTech 37
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Vector:
Single instruction operates on multiple data elements (SIMD)

» A vector processor is one whose instructions operate on vectors rather than
scalar (single data) values

* Avectoris a one-dimensional array of numbers

* No dependencies within a vector
* Pipelining & parallelization work really well

e Each instruction generates a lot of work
e Reduces instruction fetch bandwidth requirements

» Highly regular memory access pattern
* Memory (bandwidth) can easily become a bottleneck

* Vector instruction parallelism
* Overlapped execution of multiple vector instructions

* Vector Chaining
* Vector Conditional Execution
* \Vector Scatter/Gather

CS211@ShanghaiTech 38
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Synchronization

* Mutual Exclusion
* Dekker’s algorithm with shared variables for two processes

* ISA Support for Mutual-Exclusion Locks
* Atomic Memory Operations (AMOs)
* Test and set, swap, acquire & release

* Nonblocking Synchronization
 Compare and Swap
e ABA problem
e Load-linked & Store-conditional

* Hardware Transactional Memory (TM)

e Operations in a TM either all succeed or are all squashed

* Data versioning
* Eager (undo-log) vs. lazy (write-buffer)

e Conflict detection
* Pessimistic detection vs. Optimistic detection
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Virtual Machines

e User virtual machine = ISA + Environment
» Software interpreter
* Binary translation

* Dynamic translation

* Transmeta Crusoe with “Code Morphing”
* x86 2 VLIW

* Handling exception
* Shadow registers and store buffer

* System VMs: Supporting Multiple OSs on Same Hardware
* Hypervisor
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Security & Privacy

 ROP attacks

» Side-channel attacks
* Sound, time, power, etc.

* How to communicate between processes (victim/attacker)
* Page faults/cache evictions/cache coherence protocols/...
* Flush+Reload, Prime+Probe

* Meltdown
* Leveraging out-of-order execution to dump memory

* Spectre
* Leveraging speculative execution to leak secrets
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Other topics

*|/0
* Memory-mapped vs. I/0O channels, DMA
* Polling vs. interrupt
* Different buses

* Disk

* The components and mechanism of hard disk

* ECC

* Hamming distance
* Single-bit correction, double-bit detection

* RAID
* RAIDO, 1,01, 3,4,5,10
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Conclusion

* CA is much more complicated than what we studied in this course

CS211@ShanghaiTech 43
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