
CS211
Advanced Computer Architecture

L20 Summary

Chundong Wang

December 6th, 2024

CS211@ShanghaiTech 1

Spectre:
Speculation

• Speculative execution
• Example: branch prediction

4

// x is controlled by attacker.

1. if (x < array1_size)

2. y = array2[array1[x] * 4096]

Prerequisites:

i. array1[x], with an out-of-bound x larger than array1_size,

resolves to a secret byte 𝑘 that is cached;

ii. array1_size and array2 uncached.

iii. Previous x values have been valid.

 cache miss, so run next line due to prediction history

 array1[x] cache hit, as 𝑘 is cached, so load

array2[𝑘 * 4096]

Regarding a misprediction with an illegal x,

array2[𝑘 * 4096] will not be used, but has been

loaded into CPU cache.

We can use Flush+Reload to guess 𝑘 with array2.

The aim of Spectre:
to read out a victim’s sensitive

information

array1

array1_size

Last x array2previous x

𝑘

Source: https://spectreattack.com/spectre.pdf

CS211@ShanghaiTech

https://spectreattack.com/spectre.pdf

RIDL: Rogue In-Flight Data Load

• Not data in cache, but in line fill buffer (LFB)

5

An overview of the Intel Skylake microarchitecture from RIDL: Rogue In-Flight Data Load, S&P ’19

CS211@ShanghaiTech

Line Fill Buffers (LFBs) are
internal buffers that the
CPU uses to keep track of
outstanding memory
requests and perform a
number of optimizations
such as merging multiple
in-flight stores.

Speculative load (L05)

6

The eight-stage pipeline structure of the MIPS R4000 (1991) uses pipelined instruction and data caches.

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped I-cache allows use of
instruction before tag check completes

1st half of
fetching
inst.

2nd half of
fetching inst.

Inst decode and
reg fetch

Execution 1st half of access
to data cache

2nd half of
access to data
cache

Tag check Writeback

What if tag check
fails, i.e., cache miss?

RIDL: an example

7

An overview of the RIDL attack from RIDL: Rogue In-Flight Data Load, S&P ’19

Any problems with RIDL?

CS211@ShanghaiTech

when executing Line 6, the CPU speculatively loads a
value from memory in the hope it is from our newly
allocated page, while really it is in-flight data from the
LFBs belonging to an arbitrarily different security
domain

More MDS attacks

• Microarchitectural data sampling (MDS)

• Fallout
• Fallout: Leaking Data on Meltdown-resistant CPUs, CCS ’19

• ZombieLoad
• ZombieLoad: Cross-Privilege-Boundary Data Sampling, CCS ’19

• Medusa
• Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis,

USENIX Security ’20

• CacheOut
• CacheOut: Leaking Data on Intel CPUs via Cache Evictions, S&P ’21

8CS211@ShanghaiTech

LVI: Value Injection

9

1 void call_victim(size_t untrusted_arg)

{

2 *arg_copy = untrusted_arg;

3 array[**trusted_ptr * 4096];

4 }

CPU

CPU cache

Memory Bus

Memory

Stor
e

buff
er

CPU may use data in the store buffer upon a
cache miss of memory load, although the

two are completely unrelated.

Dereference: but at
1st level, page fault.

CPU thinks this one in
store buffer seems to be

the one it needs.

An attacker-controlled value is fed,

and some micro-architectural

state change happens.

LVI - Hijacking Transient Execution with Load Value Injection, S&P ’20

CS211@ShanghaiTech

Let’s start refreshing.

CS211@ShanghaiTech 10

ISA: instruction set architecture

11

instruction set

software

hardware

ISA is the actual programmer-visible instruction set, a critical
interface/boundary/contract between software and hardware

An instruction is a single operation, with an opcode and zero or more operands, of
a processor, defined by the processor instruction set.

CS211@ShanghaiTech

From architecture to microarchitecture

• Instructions are visible to programmers

• Two processors may have the same ISA but different microarchitectures
• e.g., AMD Opteron and Intel Core i7, with the same 80x86 ISA, have very

different pipelines and cache organizations

• Stack and accumulator

• CISC and RISC

• An instruction is partitioned into multiple stages

• Five classic stages of executing an instruction
• Instruction fetch
• Instruction decode/register fetch
• Execute
• Memory access
• Write back

CS211@ShanghaiTech 12

Microcode vs. Hardwired

• Data path and control

• Microcoded control
• Implemented using ROMs/RAMs

• Indirect next_state function: “here’s how to compute next state”

• Slower … but can do complex instructions

• Multi-cycle execution (of control)

• Hardwired control
• Implemented using logic (“hardwired” can’t re-program)

• Direct next_state function: “here is the next state”

• Faster … for simple instructions (speed is function of complexity)

• Single-cycle execution (of control)

CS211@ShanghaiTech 13

Single-Bus Datapath for Microcoded RISC-V

14

Datapath unchanged for complex instructions!

Condition?

Main
Memory

P
C

R
eg

is
te

rs

A
LU

3
2

(P
C

)

rdrs
1

rs
2

R
eg

is
te

r
R

A
M

Address

InData OutIn
st

ru
ct

io
n

 R
eg

.

M
em

. A
d

d
re

ssB
A

Im
m

e
d

ia
te

ImmEn RegEn ALUEn MemEn
A

LU
O

p

M
em

W

Im
m

Se
l

R
eg

W

B
LdIn

st
Ld

M
A

Ld

A
Ld

RegSel

Busy?Opcode

CS211@ShanghaiTech

Stages of Execution on Datapath

in
s
tr

u
c
ti
o
n

m
e
m

o
ry

+4

rs2

rs1

rd

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory 5. Write
Back

P
C

15CS211@ShanghaiTech

Hazards

• Structural Hazard
• A required hardware resource is busy

• Data hazard
• An instruction depends on the result(s) of a previous instruction

• Control Hazard
• Branches, jumps, etc.

• Exception
• Exception handling

CS211@ShanghaiTech 16

MemoryEXecuteDecodeFetch

Pipeline with Fully Bypassed Data Path

17

R
eg

is
te

rs

A
LU

B
A

Data
Cache

P
C

Instruction
Cache

St
o

re

Im
m

In
st

. R
eg

is
te

r

Writeback

F D X M W

F D X M W

F D X M W

F D X M W
[Assumes data written to registers
in a W cycle is readable in parallel
D cycle (dotted line). Extra write
data register and bypass paths
required if this is not possible.]

CS211@ShanghaiTech

Types of Data Hazards

18

Consider executing a sequence of register-register
instructions of type:

rk ← ri op rj

Data-dependence
r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW) hazard

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

CS211@ShanghaiTech

Exception Handling 5-Stage Pipeline

19

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

CS211@ShanghaiTech

Pipeline scheduling

• Loop unrolling
• Long latency loads and floating-point operations limit parallelism within a

single loop iteration

• Loop unrolled to expose more parallelism
• Available registers, code generation, etc. to be considered

• With an unrolling factor

• Decoupling access and execute
• Separate control and memory access operations from data computations

+ Execute stream can run ahead of the access stream and vice versa

+ Limited out-of-order execution without wakeup/select complexity

- Compiler support to partition the program and manage queues

- Branch instructions require synchronization between A and E

CS211@ShanghaiTech 20

More Complex Pipeline: Scoreboard
• When is it safe to issue an instruction?

• Use a data structure to keep track of all the instructions in all the functional units

• The following checks need to be made before the Issue stage can
dispatch an instruction

• Is the required function unit (FU) available?

• Is the input data available? (RAW?)

• Is it safe to write the destination? (WAR? WAW?)

• Is there a structural conflict at the WB stage?

• Scoreboard for In-order Issues
• Issue checks the instruction (opcode dest src1 src2) against the scoreboard

(Busy & WP) to dispatch

CS211@ShanghaiTech 21

FU available?
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

an instruction is not
dispatched by the Issue stage
if a RAW hazard exists or the
required functional unit (FU)
is busy, and that operands are
latched by FU on issue

NO: Operands read at issue

YES: Out-of-order completion

Scoreboard Dynamics

22

I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3)
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

t0 I1 f6 f6

t1 I2 f2 f6 f6, f2

t2 f6 f2 f6, f2 I2

t3 I3 f0 f6 f6, f0

t4 f0 f6 f6, f0 I1

t5 I4 f0 f8 f0, f8

t6 f8 f0 f0, f8 I3

t7 I5 f10 f8 f8, f10

t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

In-order issue

Register renaming and ROB

23

• Decode does register renaming and adds instructions to the issue-stage
instruction reorder buffer (ROB)

➔ renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been satisfied can be
dispatched

➔ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

CS211@ShanghaiTech

Renaming Structures

24

Renaming
table &
regfile

Reorder
buffer

Load
Unit

FU FU Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1

t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the Decode
stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

CS211@ShanghaiTech

Reorder Buffer Management

25

Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1

t2

.

.

.

tn

ptr2

next to
deallocate

ptr1

next
available

Ins# use exec op p1 src1 p2 src2

Destination registers
are renamed to the
instruction’s slot tag

Is it obvious where an architectural register value is?
No CS211@ShanghaiTech

Renaming & Out-of-order Issue
An example

26

• When are tags in sources
replaced by data?

• When can a name be reused?

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes

CS211@ShanghaiTech

Renaming & Out-of-order Issue
An example

27

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p data
f1
f2
f3
f4
f5
f6
f7
f8

t1

1 1 0 LD

t2

2 1 0 LD

5 1 0 DIV 1 v1 0 t4
4 1 0 SUB 1 v1 1 v1

t4

3 1 0 MUL 0 t2 1 v1

t3

t5

v1

1 1 1 LD 0

4 1 1 SUB 1 v1 1 v14 0

v4

5 1 0 DIV 1 v1 1 v4

2 1 1 LD 2 0

3 1 0 MUL 1 v2 1 v1

⚫ Insert instruction in ROB
⚫ Issue instruction from ROB
⚫ Complete instruction
⚫ Empty ROB entry

CS211@ShanghaiTech

In-order vs. Out-of-order

• In-order issue vs. out-of-order issue
• Dependence, available registers, available FU, etc.

• In-order completion vs. out-of-order completion
• All but the simplest machines have out-of-order completion

• In-order commit vs. out-of-order commit
• In-order commit supports precise traps

CS211@ShanghaiTech 28

A Modern Memory Hierarchy

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

CS211@ShanghaiTech 29

CPU cache

• Store recently accessed data in automatically managed
(hardware controlled) fast memory

• Temporal locality
• Recently accessed data will be again accessed in the near future

• Spatial locality
• A program tends to reference a cluster of memory locations at a time

• Cache block/line

• Direct-mapped, set-associative, fully-associative

• Hierarchical multi-level cache
• Cache hit/miss rate, and how to calculate latency accordingly
• Inclusive, exclusive, or non-inclusive

CS211@ShanghaiTech 30

CPU Cache

• Write-back/write-through

• Write-allocate or not

• Unified cache or separate instruction/data caches

• LRU/NRU/NMRU/… replacement policy

• Address used for caching
• Virtually-Indexed Physically-Tagged (VIPT)
• PIPT and VIVT

CS211@ShanghaiTech 31

Cache Coherence

• Coherence: What values can a read return?
• Concerns reads/writes to a single memory location

• Write propagation: Writes eventually become visible to all processors

• Write serialization: Writes to the same location are serialized (all processors
see them in the same order)

• Snoopy Cache-Coherence Protocols
• MSI, MESI, MOESI, etc.

• False sharing
• Coherence miss

• Buses don’t scale, directory cache protocol
• Write miss vs. read miss

CS211@ShanghaiTech 32

Virtual memory and TLB, NVM

• Virtual to physical page-level mapping

• Translation lookaside table (TLB)
• A cache of frequently used page table entries

• DRAM’s problems

• Non-volatile memory
• Flash memory
• Byte-addressable NVM

CS211@ShanghaiTech 33

Virtual

addresses

Physical

addresses

Data reads or writes

TLB

Translation table

In TLB

Memory Consistency

• Consistency describes properties across all memory addresses
• When writes to X propagate to other processors, relative to reads and writes

to other addresses

• A memory consistency model is a contract between the hardware and
software

• Sequential Consistency (SC)
• Arbitrary order-preserving interleaving of memory references of sequential

programs over a single shared memory, in some sequential order

• Relaxed consistency
• TSO: total store ordering

• Fences (memory barrier), with overheads

• Multi-Copy Atomic, and Non-Multi-Copy Atomic

CS211@ShanghaiTech 34

Branch Prediction

• Usefulness
• Modern branch predictors have high accuracy (>95%) and can reduce

branch penalties significantly in pipeline

• Static and dynamic prediction
•Required hardware support
• Static: profile-, program-, and programmer-based
• Dynamic: 1-bit, 2-bit, BHT, BTB, Spatial Correlation

• Misprediction recovery mechanisms:
• Keep result computation separate from commit

• Kill instructions following branch in pipeline
• Restore state to that following branch

CS211@ShanghaiTech 35

Superscalar and VLIW:
instruction-level parallelism

• Superscalar
• N-wide superscalar → fetch, decode, execute, retire N instructions per cycle
• Hardware performs the dependence checking between concurrently-fetched

instructions

• VLIW
• Very Long Instruction Word
• Multiple operations packed into one instruction
• Compiler

• Schedule operations to maximize parallel execution
• Guarantee intra-instruction parallelism and avoid data hazards in one instruction

• Loop unrolling vs. software pipelining
• Software pipelining pays startup/wind-down costs only once per loop,

not once per iteration

• Trace scheduling
• Trace selection and compaction

• Predicated execution
• Control dependence converted to data dependence

CS211@ShanghaiTech 36

Multithreading:
thread-level parallelism

• Have multiple thread contexts in a single processor
• Latency tolerance, hardware utilization, single-thread performance, etc.

• Fine-grained
• Cycle by cycle
• Simpler to implement, but low single thread performance

• Coarse-grained
• Switch on event (e.g., cache miss)
• Switch on quantum/timeout
• Fairness among threads

• Simultaneous
• Instructions from multiple threads executed concurrently in the same cycle
• Dispatch instructions from multiple threads in the same cycle (to keep multiple

execution units utilized)
• Utilize functional units with independent operations from the same or different threads

• Fetch policies
• Round-robin, ICOUNT, etc.

CS211@ShanghaiTech 37

Vector:
Single instruction operates on multiple data elements (SIMD)

• A vector processor is one whose instructions operate on vectors rather than
scalar (single data) values

• A vector is a one-dimensional array of numbers

• No dependencies within a vector
• Pipelining & parallelization work really well

• Each instruction generates a lot of work
• Reduces instruction fetch bandwidth requirements
• Highly regular memory access pattern

• Memory (bandwidth) can easily become a bottleneck

• Vector instruction parallelism
• Overlapped execution of multiple vector instructions

• Vector Chaining

• Vector Conditional Execution

• Vector Scatter/Gather

CS211@ShanghaiTech 38

Synchronization

• Mutual Exclusion
• Dekker’s algorithm with shared variables for two processes
• ISA Support for Mutual-Exclusion Locks

• Atomic Memory Operations (AMOs)
• Test and set, swap, acquire & release

• Nonblocking Synchronization
• Compare and Swap
• ABA problem
• Load-linked & Store-conditional

• Hardware Transactional Memory (TM)
• Operations in a TM either all succeed or are all squashed
• Data versioning

• Eager (undo-log) vs. lazy (write-buffer)

• Conflict detection
• Pessimistic detection vs. Optimistic detection

CS211@ShanghaiTech 39

Virtual Machines

• User virtual machine = ISA + Environment

• Software interpreter

• Binary translation

• Dynamic translation
• Transmeta Crusoe with “Code Morphing”

• x86 → VLIW

• Handling exception
• Shadow registers and store buffer

• System VMs: Supporting Multiple OSs on Same Hardware
• Hypervisor

CS211@ShanghaiTech 40

Security & Privacy

• ROP attacks

• Side-channel attacks
• Sound, time, power, etc.

• How to communicate between processes (victim/attacker)
• Page faults/cache evictions/cache coherence protocols/…

• Flush+Reload, Prime+Probe

• Meltdown
• Leveraging out-of-order execution to dump memory

• Spectre
• Leveraging speculative execution to leak secrets

CS211@ShanghaiTech 41

Other topics

• I/O
• Memory-mapped vs. I/O channels, DMA

• Polling vs. interrupt

• Different buses

• Disk
• The components and mechanism of hard disk

• ECC
• Hamming distance

• Single-bit correction, double-bit detection

• RAID
• RAID 0, 1, 01, 3, 4, 5, 10

CS211@ShanghaiTech 42

Conclusion

• CA is much more complicated than what we studied in this course

CS211@ShanghaiTech 43

	Slide 1: CS211 Advanced Computer Architecture L20 Summary
	Slide 4: Spectre: Speculation
	Slide 5: RIDL: Rogue In-Flight Data Load
	Slide 6: Speculative load (L05)
	Slide 7: RIDL: an example
	Slide 8: More MDS attacks
	Slide 9: LVI: Value Injection
	Slide 10: Let’s start refreshing.
	Slide 11: ISA: instruction set architecture
	Slide 12: From architecture to microarchitecture
	Slide 13: Microcode vs. Hardwired
	Slide 14: Single-Bus Datapath for Microcoded RISC-V
	Slide 15: Stages of Execution on Datapath
	Slide 16: Hazards
	Slide 17: Pipeline with Fully Bypassed Data Path
	Slide 18: Types of Data Hazards
	Slide 19: Exception Handling 5-Stage Pipeline
	Slide 20: Pipeline scheduling
	Slide 21: More Complex Pipeline: Scoreboard
	Slide 22: Scoreboard Dynamics
	Slide 23: Register renaming and ROB
	Slide 24: Renaming Structures
	Slide 25: Reorder Buffer Management
	Slide 26: Renaming & Out-of-order Issue An example
	Slide 27: Renaming & Out-of-order Issue An example
	Slide 28: In-order vs. Out-of-order
	Slide 29: A Modern Memory Hierarchy
	Slide 30: CPU cache
	Slide 31: CPU Cache
	Slide 32: Cache Coherence
	Slide 33: Virtual memory and TLB, NVM
	Slide 34: Memory Consistency
	Slide 35: Branch Prediction
	Slide 36: Superscalar and VLIW: instruction-level parallelism
	Slide 37: Multithreading: thread-level parallelism
	Slide 38: Vector: Single instruction operates on multiple data elements (SIMD)
	Slide 39: Synchronization
	Slide 40: Virtual Machines
	Slide 41: Security & Privacy
	Slide 42: Other topics
	Slide 43: Conclusion

