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Spectre:
Speculation

• Speculative execution
• Example: branch prediction
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// x is controlled by attacker.

1. if (x < array1_size)

2. y = array2[array1[x] * 4096]

Prerequisites:

i. array1[x], with an out-of-bound x larger than array1_size, 

resolves to a secret byte 𝑘 that is cached;

ii. array1_size and array2 uncached.

iii. Previous x values have been valid.

 cache miss, so run next line due to prediction history

 array1[x] cache hit, as 𝑘 is cached, so load 

array2[𝑘 * 4096]

Regarding a misprediction with an illegal x, 

array2[𝑘 * 4096] will not be used, but has been 

loaded into CPU cache.

We can use Flush+Reload to guess 𝑘 with array2.

The aim of Spectre: 
to read out a victim’s sensitive 

information

array1

array1_size

Last x array2previous x

𝑘

Source: https://spectreattack.com/spectre.pdf
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RIDL: Rogue In-Flight Data Load

• Not data in cache, but in line fill buffer (LFB)
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An overview of the Intel Skylake microarchitecture from RIDL: Rogue In-Flight Data Load, S&P ’19
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Line Fill Buffers (LFBs) are 
internal buffers that the 
CPU uses to keep track of 
outstanding memory 
requests and perform a 
number of optimizations 
such as merging multiple 
in-flight stores.



Speculative load (L05)
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The eight-stage pipeline structure of the MIPS R4000 (1991) uses pipelined instruction and data caches. 

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped I-cache allows use of 
instruction before tag check completes

1st half of 
fetching 
inst.

2nd half of 
fetching inst.

Inst decode and 
reg fetch

Execution 1st half of access 
to data cache 

2nd half of 
access to data 
cache 

Tag check Writeback

What if tag check 
fails, i.e., cache miss? 



RIDL: an example
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An overview of the RIDL attack from RIDL: Rogue In-Flight Data Load, S&P ’19

Any problems with RIDL?

CS211@ShanghaiTech

when executing Line 6, the CPU speculatively loads a 
value from memory in the hope it is from our newly 
allocated page, while really it is in-flight data from the 
LFBs belonging to an arbitrarily different security 
domain



More MDS attacks

• Microarchitectural data sampling (MDS)

• Fallout
• Fallout: Leaking Data on Meltdown-resistant CPUs, CCS ’19

• ZombieLoad
• ZombieLoad: Cross-Privilege-Boundary Data Sampling, CCS ’19

• Medusa
• Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis, 

USENIX Security ’20

• CacheOut
• CacheOut: Leaking Data on Intel CPUs via Cache Evictions, S&P ’21
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LVI: Value Injection
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1  void call_victim(size_t untrusted_arg) 

{ 

2 *arg_copy = untrusted_arg; 

3 array[**trusted_ptr * 4096]; 

4  }

CPU

CPU cache

Memory Bus

Memory

Stor
e 

buff
er

CPU may use data in the store buffer upon a 
cache miss of memory load, although the 

two are completely unrelated.

Dereference: but at 
1st level, page fault.

CPU thinks this one in 
store buffer seems to be 

the one it needs.

An attacker-controlled value is fed, 

and some micro-architectural 

state change happens.

LVI - Hijacking Transient Execution with Load Value Injection, S&P ’20
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Let’s start refreshing.
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ISA: instruction set architecture
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instruction set

software

hardware

ISA is the actual programmer-visible instruction set, a critical 
interface/boundary/contract between software and hardware

An instruction is a single operation, with an opcode and zero or more operands, of 
a processor, defined by the processor instruction set.
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From architecture to microarchitecture

• Instructions are visible to programmers

• Two processors may have the same ISA but different microarchitectures
• e.g., AMD Opteron and Intel Core i7, with the same 80x86 ISA, have very 

different pipelines and cache organizations

• Stack and accumulator 

• CISC and RISC

• An instruction is partitioned into multiple stages

• Five classic stages of executing an instruction
• Instruction fetch
• Instruction decode/register fetch
• Execute
• Memory access
• Write back
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Microcode vs. Hardwired

• Data path and control

• Microcoded control
• Implemented using ROMs/RAMs

• Indirect next_state function: “here’s how to compute next state”

• Slower … but can do complex instructions

• Multi-cycle execution (of control)

• Hardwired control
• Implemented using logic (“hardwired” can’t re-program)

• Direct next_state function: “here is the next state”

• Faster … for simple instructions (speed is function of complexity)

• Single-cycle execution (of control)
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Single-Bus Datapath for Microcoded RISC-V
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Datapath unchanged for complex instructions!
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Stages of Execution on Datapath
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Hazards

• Structural Hazard
• A required hardware resource is busy

• Data hazard
• An instruction depends on the result(s) of a previous instruction

• Control Hazard
• Branches, jumps, etc.

• Exception
• Exception handling
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MemoryEXecuteDecodeFetch

Pipeline with Fully Bypassed Data Path
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[ Assumes data written to registers 
in a W cycle is readable in parallel 
D cycle (dotted line). Extra write 
data register and bypass paths 
required if this is not possible. ]
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Types of Data Hazards 
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Consider executing a sequence of register-register 
instructions of type: 

rk ← ri op  rj

Data-dependence
r3 ←  r1 op r2 Read-after-Write  
r5 ←  r3 op r4 (RAW) hazard

Anti-dependence
r3 ←  r1 op r2 Write-after-Read 
r1 ←  r4 op r5 (WAR) hazard

Output-dependence
r3 ←  r1 op r2 Write-after-Write 
r3 ←  r6 op r7 (WAW) hazard
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Exception Handling 5-Stage Pipeline
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Pipeline scheduling

• Loop unrolling
• Long latency loads and floating-point operations limit parallelism within a 

single loop iteration

• Loop unrolled to expose more parallelism
• Available registers, code generation, etc. to be considered

• With an unrolling factor

• Decoupling access and execute
• Separate control and memory access operations from data computations

+ Execute stream can run ahead of the access stream and vice versa

+ Limited out-of-order execution without wakeup/select complexity

- Compiler support to partition the program and manage queues

- Branch instructions require synchronization between A and E

CS211@ShanghaiTech 20



More Complex Pipeline: Scoreboard
• When is it safe to issue an instruction?

• Use a data structure to keep track of all the instructions in all the functional units

• The following checks need to be made before the Issue stage can 
dispatch an instruction

• Is the required function unit (FU) available?

• Is the input data available?   (RAW?)

• Is it safe to write the destination? (WAR? WAW?)

• Is there a structural conflict at the WB stage?

• Scoreboard for In-order Issues
• Issue checks the instruction (opcode dest src1 src2) against the scoreboard 

(Busy & WP) to dispatch
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FU available? 
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

an instruction is not 
dispatched by the Issue stage 
if a RAW hazard exists or the 
required functional unit (FU) 
is busy, and that operands are 
latched by FU on issue

NO: Operands read at issue

YES: Out-of-order completion



Scoreboard Dynamics
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I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3) 
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved 
Int(1) Add(1)  Mult(3)   Div(4)    WB for Writes

t0  I1 f6 f6

t1  I2 f2 f6 f6, f2

t2 f6 f2 f6, f2 I2

t3  I3 f0 f6 f6, f0

t4 f0 f6 f6, f0 I1

t5  I4 f0 f8 f0, f8

t6 f8 f0 f0, f8 I3

t7  I5 f10 f8 f8, f10

t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

In-order issue



Register renaming and ROB
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• Decode does register renaming and adds instructions to the issue-stage 
instruction reorder buffer (ROB)

➔ renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been satisfied can be 
dispatched

➔ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue
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Renaming Structures
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Renaming 
table &
regfile

Reorder 
buffer

Load
Unit

FU FU Store
Unit

< t, result >

Ins#   use  exec   op    p1    src1   p2   src2 t1

t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the Decode 
stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the 
tag by its value
is an expensive 
operation
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Reorder Buffer Management
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Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1

t2

.

.

.

tn

ptr2

next to 
deallocate

ptr1

next
available

Ins#     use   exec      op     p1     src1      p2      src2

Destination registers 
are renamed to the 
instruction’s slot tag

Is it obvious where an architectural register value is? 
No CS211@ShanghaiTech



Renaming & Out-of-order Issue
An example
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• When are tags in sources 
replaced by data?

• When can a name be reused?

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec   op  p1   src1   p2  src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p    data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes
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Renaming & Out-of-order Issue
An example
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1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec   op  p1   src1   p2  src2
t1

t2

t3

t4

t5

.

.

Data (vi) / Tag (ti)

p    data
f1
f2
f3
f4
f5
f6
f7
f8

t1

1          1        0        LD     

t2

2          1        0        LD     

5          1        0        DIV       1        v1           0         t4     
4          1        0        SUB     1        v1           1         v1

t4

3          1        0        MUL     0        t2            1         v1

t3

t5

v1

1          1        1        LD     0

4          1        1        SUB     1        v1           1         v14           0

v4

5          1        0        DIV       1        v1           1         v4     

2          1        1        LD     2           0     

3          1        0        MUL     1        v2            1         v1

⚫ Insert instruction in ROB
⚫ Issue instruction from ROB
⚫ Complete instruction
⚫ Empty ROB entry 
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In-order vs. Out-of-order

• In-order issue vs. out-of-order issue
• Dependence, available registers, available FU, etc.

• In-order completion vs. out-of-order completion
• All but the simplest machines have out-of-order completion

• In-order commit vs. out-of-order commit
• In-order commit supports precise traps
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A Modern Memory Hierarchy

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache, 
.....

Main memory (DRAM), 
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand 
paging

Automatic
HW cache
management

Memory
Abstraction
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CPU cache

• Store recently accessed data in automatically managed 
(hardware controlled) fast memory

• Temporal locality
• Recently accessed data will be again accessed in the near future

• Spatial locality
• A program tends to reference a cluster of memory locations at a time

• Cache block/line

• Direct-mapped, set-associative, fully-associative

• Hierarchical multi-level cache
• Cache hit/miss rate, and how to calculate latency accordingly
• Inclusive, exclusive, or non-inclusive
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CPU Cache

• Write-back/write-through

• Write-allocate or not

• Unified cache or separate instruction/data caches

• LRU/NRU/NMRU/… replacement policy

• Address used for caching
• Virtually-Indexed Physically-Tagged (VIPT)
• PIPT and VIVT
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Cache Coherence

• Coherence: What values can a read return?
• Concerns reads/writes to a single memory location

• Write propagation: Writes eventually become visible to all processors

• Write serialization: Writes to the same location are serialized (all processors 
see them in the same order)

• Snoopy Cache-Coherence Protocols
• MSI, MESI, MOESI, etc.

• False sharing
• Coherence miss

• Buses don’t scale, directory cache protocol
• Write miss vs. read miss
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Virtual memory and TLB, NVM

• Virtual to physical page-level mapping

• Translation lookaside table (TLB)
• A cache of frequently used page table entries

• DRAM’s problems

• Non-volatile memory
• Flash memory
• Byte-addressable NVM
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Virtual 

addresses

Physical

addresses

Data reads or writes

TLB

Translation table

In TLB



Memory Consistency

• Consistency describes properties across all memory addresses
• When writes to X propagate to other processors, relative to reads and writes 

to other addresses

• A memory consistency model is a contract between the hardware and 
software

• Sequential Consistency (SC)
• Arbitrary order-preserving interleaving of memory references of sequential 

programs over a single shared memory, in some sequential order

• Relaxed consistency
• TSO: total store ordering 

• Fences (memory barrier), with overheads

• Multi-Copy Atomic, and Non-Multi-Copy Atomic
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Branch Prediction

• Usefulness
• Modern branch predictors have high accuracy (>95%) and can reduce 

branch penalties significantly in pipeline

• Static and dynamic prediction
•Required hardware support
• Static: profile-, program-, and programmer-based
• Dynamic: 1-bit, 2-bit, BHT, BTB, Spatial Correlation

• Misprediction recovery mechanisms:
• Keep result computation separate from commit

• Kill instructions following branch in pipeline
• Restore state to that following branch
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Superscalar and VLIW: 
instruction-level parallelism

• Superscalar
• N-wide superscalar → fetch, decode, execute, retire N instructions per cycle 
• Hardware performs the dependence checking between concurrently-fetched 

instructions

• VLIW
• Very Long Instruction Word
• Multiple operations packed into one instruction
• Compiler

• Schedule operations to maximize parallel execution
• Guarantee intra-instruction parallelism and avoid data hazards in one instruction

• Loop unrolling vs. software pipelining
• Software pipelining pays startup/wind-down costs only once per loop, 

not once per iteration

• Trace scheduling
• Trace selection and compaction

• Predicated execution
• Control dependence converted to data dependence
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Multithreading:
thread-level parallelism

• Have multiple thread contexts in a single processor
• Latency tolerance, hardware utilization, single-thread performance, etc.

• Fine-grained
• Cycle by cycle
• Simpler to implement, but low single thread performance

• Coarse-grained
• Switch on event (e.g., cache miss)
• Switch on quantum/timeout
• Fairness among threads

• Simultaneous
• Instructions from multiple threads executed concurrently in the same cycle
• Dispatch instructions from multiple threads in the same cycle (to keep multiple 

execution units utilized)
• Utilize functional units with independent operations from the same or different threads

• Fetch policies
• Round-robin, ICOUNT, etc.
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Vector:
Single instruction operates on multiple data elements (SIMD)

• A vector processor is one whose instructions operate on vectors rather than 
scalar (single data) values

• A vector is a one-dimensional array of numbers

• No dependencies within a vector 
• Pipelining & parallelization work really well

• Each instruction generates a lot of work
• Reduces instruction fetch bandwidth requirements
• Highly regular memory access pattern

• Memory (bandwidth) can easily become a bottleneck

• Vector instruction parallelism
• Overlapped execution of multiple vector instructions

• Vector Chaining

• Vector Conditional Execution

• Vector Scatter/Gather 
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Synchronization

• Mutual Exclusion
• Dekker’s algorithm with shared variables for two processes
• ISA Support for Mutual-Exclusion Locks

• Atomic Memory Operations (AMOs)
• Test and set, swap, acquire & release

• Nonblocking Synchronization
• Compare and Swap
• ABA problem
• Load-linked & Store-conditional

• Hardware Transactional Memory (TM)
• Operations in a TM either all succeed or are all squashed
• Data versioning

• Eager (undo-log) vs. lazy (write-buffer)

• Conflict detection
• Pessimistic detection vs. Optimistic detection
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Virtual Machines

• User virtual machine = ISA + Environment

• Software interpreter

• Binary translation

• Dynamic translation
• Transmeta Crusoe with “Code Morphing”

• x86 → VLIW

• Handling exception
• Shadow registers and store buffer

• System VMs: Supporting Multiple OSs on Same Hardware
• Hypervisor
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Security & Privacy

• ROP attacks

• Side-channel attacks
• Sound, time, power, etc.

• How to communicate between processes (victim/attacker)
• Page faults/cache evictions/cache coherence protocols/…

• Flush+Reload, Prime+Probe

• Meltdown
• Leveraging out-of-order execution to dump memory

• Spectre
• Leveraging speculative execution to leak secrets
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Other topics

• I/O
• Memory-mapped vs. I/O channels, DMA

• Polling vs. interrupt

• Different buses

• Disk
• The components and mechanism of hard disk

• ECC
• Hamming distance

• Single-bit correction, double-bit detection

• RAID
• RAID 0, 1, 01, 3, 4, 5, 10
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Conclusion

• CA is much more complicated than what we studied in this course
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