
Memory Management in C
Yizhou Wang

<wangyzh2024>

Recall: Memory Layout

• Stack growing downward
• Function arguments
• Return addresses
• Local variables

• Heap growing upward
• For dynamic demands

• .bss for global/static initially being zero
• .data for global/static with initial values
• .text for machine code

Why Bother?

• Different lifespans of variable
• global/static: entire execution period
• local/args/RA: within the function
• dynamic: undeterminable

• Smaller program size
• Many global/static start as zero,

wasteful if stored explicitly

• Portable to non-von Neumann
• e.g., separate devices for code, var, const

An Example: .bss vs .data

• Bad in global/static
• Secretly corrupt nearby variables

• Worse in heap
• Secretly corrupt who-knows-where vars
• May corrupt heap management

• If allocation records are kept in heap

• Worst in stack!
• Secretly corrupt nearby variables,

arguments, callers’ arguments,
and even return addresses

Out-of-range!

Side Note: Undefined Behaviors

• “Out-of-range array subscripting is an undefined behavior.”
• What is UB?

• Myth: Programs with UB always die ugly.
• Consequence of undefined behaviors is undefined

• Might just work as if there are no UB.
• Might start/stop working because of one added/removed printf()
• Might work on Windows, fail on Linux and fail differently on Mac OS

• Windows is much more tolerant to memory-related UB than Linux

Management: .bss and .data

• Allocated and associated at compile-time
• Die with the process
• Not freed/reclaimed at all

Management: Stack

• Managed implicitly by compiler
• Allocated on demand and reclaimed on leaving scope
• Allocations are calculated at compile-time

• Generally, in a consistent manner, except:
• Variadic functions, e.g., scanf() and printf()

• Indefinite number of arguments
• Callers explicitly provide hints, e.g. format strings
• Goes wrong on incorrect hints

• Variable Length Array (VLA) “int a[n];”
• Hard to use safely! Starting from C11, only optionally supported.

Related Issues: Stack

• Local variables are uninitialized by default
• Their values depend on the trashes left in stack

• May from other processes or even OS
• Some OS intentionally fills stack with special values to aid debugging

• Mitigation: Always initialize at definition

• Local variables are reclaimed on leaving scope
• Using them outside (e.g., returned as pointer) is UB
• Mitigation: Don’t do it. Enforce with warning options.

Management: Heap

• Managed explicitly by programmer
• Allocate using malloc(), calloc()
• Reclaim using free()
• Reallocate using realloc() to change size

• calloc() fills the allocated space with zero
and catches multiplication overflow in C11

Related Issues: Heap

• Use after freed
• Access the piece of memory already freed
• If allocated to others, data will be corrupted

• Random crimes are hard to investigate
• Mitigation: Set a freed pointer to NULL

• Double free
• Free an already freed allocation
• Mitigation: Set a freed pointer to NULL

• Fact: Freeing NULL is well defined as doing nothing.
• Or just let it die?

Related Issues: Heap

• Memory leak
• Inaccessible allocated pieces not freed

• Mainly due to address lost
• Carelessly overwritten in an assignment
• The variable holding the address reached end-of-life

• Mitigation:
• Think twice when assigning to a pointer
• Do cleanup at every exits of the scope
• Reclaim the associated resources before freeing a heap variable

Side Note: Warning Options

• Controlling for what the compiler should warn you
• E.g., -Wall -Wpedantic –Werror -Wno-unused-result

Side Note: Warning Options

• Pros
• Second chances to notice things stupid.
• Timely remainders of things you might not fully know
• Sincere hints for improvement in coding style

• Cons
• Too wordy and anxious when overly enabled

• Complaining even common daily practices
• Comparing int and size_t
• Unused function results, including printf()’s

Valgrind --tool=memcheck

Detecting

• Illegal memory access
• Overrunning, underrunning, use-after-freed

• Use of uninitialized values
• Double free of heap blocks
• Fishy size parameter to allocation function
• Memory leaks
• …

Illegal Access

int *f(void) { int a; return &a; }
int main() { *f() = 1; return 0; }

==78779== Invalid write of size 4
==78779== at 0x10918C: main (in /home/yitro/tmp/disc3/valgrind/a.out)
==78779== Address 0x0 is not stack'd, malloc'd or (recently) free'd

Use of Uninitialized

int y = 0;
int main() {

int x;
if (x == 42) y += 8;
return y; }

==11956== Conditional jump or move depends on uninitialised value(s)
==11956== at 0x109135: main (in /home/yitro/tmp/disc3/valgrind/a.out)

Illegal Free

#include <stdlib.h>
int main() { void *buf = malloc(0); free(buf), free(buf); }

==16354== Invalid free() / delete / delete[] / realloc()
==16354== at 0x484495F: free (vg_replace_malloc.c:989)
==16354== by 0x10919A: main (in /home/yitro/tmp/disc3/valgrind/a.out)
==16354== Address 0x4a31040 is 0 bytes after a block of size 0 free'd
==16354== at 0x484495F: free (vg_replace_malloc.c:989)
==16354== by 0x10918E: main (in /home/yitro/tmp/disc3/valgrind/a.out)
==16354== Block was alloc'd at
==16354== at 0x4841878: malloc (vg_replace_malloc.c:446)
==16354== by 0x10917E: main (in /home/yitro/tmp/disc3/valgrind/a.out)

Fishy Size

#include <stdlib.h>
void main() { malloc(-1); }

==28552== Argument 'size' of function malloc has a fishy (possibly
negative) value: -1
==28552== at 0x4841878: malloc (vg_replace_malloc.c:446)
==28552== by 0x10915C: main (in /home/yitro/tmp/disc3/valgrind/a.out)

Memory Leaks --leak-check
#include <stdlib.h>
void f(void) {

char *c = malloc(10);
char **b = malloc(9);
*b = c;

}

char *g(void) {
char *d = malloc(11);
return d + 1;

}

char **a;

int main() {
f();
a = malloc(8);
*a = g();
return 0;

}

Memory Leaks --leak-check

==34098== LEAK SUMMARY:
==34098== definitely lost: 9 bytes in 1 blocks
==34098== indirectly lost: 10 bytes in 1 blocks
==34098== possibly lost: 11 bytes in 1 blocks
==34098== still reachable: 8 bytes in 1 blocks
==34098== suppressed: 0 bytes in 0 blocks

Memory Leaks --leak-check=full

==34098== 11 bytes in 1 blocks are possibly lost in loss record 3 of 4
==34098== at 0x4841878: malloc (vg_replace_malloc.c:446)
==34098== by 0x109194: g (in /home/yitro/tmp/disc3/valgrind/a.out)
==34098== by 0x1091D1: main (in /home/yitro/tmp/disc3/valgrind/a.out)
==34098==
==34098== 19 (9 direct, 10 indirect) bytes in 1 blocks are definitely
lost in loss record 4 of 4
==34098== at 0x4841878: malloc (vg_replace_malloc.c:446)
==34098== by 0x10916C: f (in /home/yitro/tmp/disc3/valgrind/a.out)
==34098== by 0x1091B4: main (in /home/yitro/tmp/disc3/valgrind/a.out)

	Memory Management in C
	Recall: Memory Layout
	Why Bother?
	An Example: .bss vs .data
	Out-of-range!
	Side Note: Undefined Behaviors
	Management: .bss and .data
	Management: Stack
	Related Issues: Stack
	Management: Heap
	Related Issues: Heap
	Related Issues: Heap
	Side Note: Warning Options
	Side Note: Warning Options
	Valgrind --tool=memcheck
	Detecting
	Illegal Access
	Use of Uninitialized
	Illegal Free
	Fishy Size
	Memory Leaks --leak-check
	Memory Leaks --leak-check
	Memory Leaks --leak-check=full

