Memory Management in C

Yizhou Wang
<wangyzh2024>

Recall: Memory Layout

* Stack growing downward
* Function arguments
* Return addresses
* Local variables

* Heap growing upward
* For dynamic demands

* .bss for global/static initially being zero
* .data for global/static with initial values
* .text for machine code

Stack
Address
Space

Heap
Address
Space

i

Stack

free space

free space

Heap

Uninitialized Data
Segment (.bss)

Initialized Data
Segment (.data)

Code Segment (.text)

l Growth
T Growth

Why Bother?

* Different lifespans of variable
* global/static: entire execution period
* local/args/RA: within the function
* dynamic: undeterminable

* Smaller program size

* Many global/static start as zero,
wasteful if stored explicitly

* Portable to non-von Neumann
* e.g., separate devices for code, var, const

Stack
Address
Space

Heap
Address
Space

i

Y

']

L)

Stack

free space

free space

Heap

Uninitialized Data
Segment (.bss)

Initialized Data
Segment (.data)

Code Segment (.text)

l Growth
T Growth

An Example: .bss vs .data

yitro@RM-server ~/tmp/disc3 07:58
[526] % cat layout.c
inta=1, b =08, c;
int main{) {
int d;
static int e =1, f =0, g;
return @;
¥
yitro@M-server ~/tmp/disc3 07:58
[527] % objdump --syms a.out | grep '\.bss\|\.data’

poooooooeenod4o24 1 0 .bss ogeoboeooooono0o4 g.2
poooeoooeenod4028 1 0 .bss ogeoboeooooono0o4 f.1
poceeeoeeeRe4014 1 0 .data 0©OOEEEERAEEOOOO4 e.0
000B00R000RR4000 w .data ©OOEEEEEEEEEE0G0 data start
ogeeooReERRR401c g 0 .bss Elefelelefeqeleleleqeqelelele b b

0oeeEoREo0RR4018 g .data ©OOEEEEEEEEEEEE0 _edata
000B00R000AL4000 g .data ©OOOEEEAAEEOEEAA __data start
00EBR00RE0BRR400E g 0 .data ©OEOOOEOO0000000O .hidden dso_handle
00EBE0EREOBRR40830 g .bss 0eeeOEEROBERE0OBA _end
000E0000000R4020 (g 0 .bss 0000000R000RE004 c

ggeeEEREERRR40810 g 0 .data 0©0O00OOOEREEOO00O4 a

0oeEEEREE0RR4018 g .bss Elelelelelelalelelelelalelelene] __bss_start
0oeREEEREE0RR4018 g 0 .data 0©O0O0OOOEEEEE000GA .hidden _ TMC_END

Out-of-range!

* Bad in global/static
* Secretly corrupt nearby variables

* Worse in heap
* Secretly corrupt who-knows-where vars

* May corrupt heap management
* |f allocation records are keptin heap

e Worst in stack!

* Secretly corrupt nearby variables,
arguments, callers’ arguments,
and even return addresses

yitro@M-server ~/tmp/disc3 08:54
[558] $ cat global-overrun.c
#1include =stdio.h=>
int a[1] = {5}, b = 6;
int mawn() {

all] = 0;

printf("&d\n", b);

return @;
s
yitro@RM-server ~/tmp/disc3 08:54
[559] % gco global-overrun.c &% . /a.out
]

yitro@RM-server ~/tmp/disc3 08:49

[553] 4 cat stack-overrun.c

#include <stdio.h=

#include <stdlib.h>

void g{) { puts{"Surprise!"); exit(1); }
void () { void(*a[1])(); a[3] = qg; }
int main() { f(); return 0; }
yitro@RM-server ~/tmp/disc3 08:49

[554] $ gcec stack-overrun.c && ./a.out
Surprise!

Side Note: Undefined Behaviors

* “Out-of-range array subscripting is an undefined behavior.”
* What is UB?

* Myth: Programs with UB always die ugly.

* Consequence of undefined behaviors is undefined
* Might just work as if there are no UB.
* Might start/stop working because of one added/removed printf()

* Might work on Windows, fail on Linux and fail differently on Mac OS
* Windows is much more tolerant to memory-related UB than Linux

Management: .bss and .data

* Allocated and associated at compile-time
* Die with the process
* Not freed/reclaimed at all

Management: Stack

* Managed implicitly by compiler
* Allocated on demand and reclaimed on leaving scope
* Allocations are calculated at compile-time

* Generally, in a consistent manner, except:

* Variadic functions, e.g., scanf() and printf()
* |Indefinite number of arguments
* Callers explicitly provide hints, e.g. format strings
 Goeswrong on incorrect hints

* Variable Length Array (VLA) “int a[n];”
* Hard to use safely! Starting from C11, only optionally supported.

Related Issues: Stack

* Local variables are uninitialized by default

* Their values depend on the trashes left in stack
* May from other processes or even OS
« Some OS intentionally fills stack with special values to aid debugging

* Mitigation: Always initialize at definition
* Local variables are reclaimed on leaving scope

* Using them outside (e.g., returned as pointer) is UB
* Mitigation: Don’t do it. Enforce with warning options.

Management: Heap

* Managed explicitly by programmer
* Allocate using malloc(), calloc()
* Reclaim using free()
* Reallocate using realloc() to change size

e calloc() fills the allocated space with zero
and catches multiplication overflow in C11

Related Issues: Heap

* Use after freed
* Access the piece of memory already freed

* |[f allocated to others, data will be corrupted
* Random crimes are hard to investigate

* Mitigation: Set a freed pointer to NULL

* Double free
* Free an already freed allocation

* Mitigation: Set a freed pointer to NULL
* Fact: Freeing NULL is well defined as doing nothing.

* Orjustletitdie?

Related Issues: Heap

* Memory leak

* Inaccessible allocated pieces not freed
* Mainly due to address lost
e Carelessly overwritten in an assignment
* Thevariable holding the address reached end-of-life
* Mitigation:
* Think twice when assigning to a pointer
* Do cleanup at every exits of the scope
* Reclaim the associated resources before freeing a heap variable

Side Note: Warning Options

* Controlling for what the compiler should warn you
* E.g., -Wall -Wpedantic -Werror -Wno-unused-result

Side Note: Warning Options

* Pros
* Second chances to notice things stupid.
* Timely remainders of things you might not fully know
* Sincere hints for improvement in coding style

e Cons

* Too wordy and anxious when overly enabled

* Complaining even common daily practices
e Comparingint and size_t
* Unused function results, including printf()’s

Valgrind --..o-memcheck

Detecting

* |llegal memory access
* Overrunning, underrunning, use-after-freed

* Use of uninitialized values

* Double free of heap blocks

* Fishy size parameter to allocation function
* Memory leaks

Illegal Access

int *f(void) { int a; return &a; }

int main() { *f() = 1; return 0; }

==78779== Invalid write of size 4
==78779== at 0x10918C: main (in /home/yitro/tmp/disc3/valgrind/a.out)
==78779== Address 0x0 is not stack'd, malloc'd or (recently) free'd

Use of Uninitialized

int y = 0;
int main() {
int Xx;
if (x == 42) y += 8;

return y; }

==11956== Conditional jump or move depends on uninitialised value(s)
==11956== at 0x109135: main (in /home/yitro/tmp/disc3/valgrind/a.out)

Illegal Free

#include <stdlib.h>
int main() { void *buf = malloc(©); free(buf), free(buf); }

==16354== Invalid free() / delete / delete[] / realloc()

==16354==
==16354==
==16354==
==16354==
==16354==
==16354==
==16354==
==16354==

at 0x484495F: free (vg replace malloc.c:989)

by ©x10919A: main (in /home/yitro/tmp/disc3/valgrind/a.out)
Address 0x4a31040 is © bytes after a block of size 0 free'd

at 0x484495F: free (vg replace malloc.c:989)

by ©x10918E: main (in /home/yitro/tmp/disc3/valgrind/a.out)
Block was alloc'd at

at 0x4841878: malloc (vg replace malloc.c:446)

by ©x10917E: main (in /home/yitro/tmp/disc3/valgrind/a.out)

Fishy Size

#include <stdlib.h>
void main() { malloc(-1); }

==28552== Argument 'size' of function malloc has a fishy (possibly
negative) value: -1

==28552== at 0x4841878: malloc (vg replace malloc.c:446)
==28552== by ©x10915C: main (in /home/yitro/tmp/disc3/valgrind/a.out)

Memory Leaks --leak-check

#include <stdlib.h>
void f(void) {
char *c = malloc(10);
char **b = malloc(9);
*b = C;

char *g(void) {
char *d = malloc(11);
return d + 1;

char **3;

int main() {

(s
a = malloc(8);

*a = g();
return 0;

Memory Leaks --leak-check

==34098== LEAK SUMMARY:

==34098== definitely lost: 9 bytes in 1 blocks
==34098== indirectly lost: 10 bytes in 1 blocks
==34098== possibly lost: 11 bytes in 1 blocks
==34098== still reachable: 8 bytes in 1 blocks

==34098== suppressed: @ bytes in © blocks

Memory Leaks --leak-check=full

==34098== 11
==34098==
==34098==
==34098==
==34098==

==34098== 19
lost in loss

==34098==
==34098==
==34098==

bytes in 1 blocks are possibly lost in loss record 3 of 4
at 0x4841878: malloc (vg replace malloc.c:446)

by 0x109194: g (in /home/yitro/tmp/disc3/valgrind/a.out)

by ©x1091D1: main (in /home/yitro/tmp/disc3/valgrind/a.out)

(9 direct, 10 indirect) bytes in 1 blocks are definitely
record 4 of 4

at 0x4841878: malloc (vg replace malloc.c:446)
by 0x10916C: f (in /home/yitro/tmp/disc3/valgrind/a.out)
by 0x1091B4: main (in /home/yitro/tmp/disc3/valgrind/a.out)

	Memory Management in C
	Recall: Memory Layout
	Why Bother?
	An Example: .bss vs .data
	Out-of-range!
	Side Note: Undefined Behaviors
	Management: .bss and .data
	Management: Stack
	Related Issues: Stack
	Management: Heap
	Related Issues: Heap
	Related Issues: Heap
	Side Note: Warning Options
	Side Note: Warning Options
	Valgrind --tool=memcheck
	Detecting
	Illegal Access
	Use of Uninitialized
	Illegal Free
	Fishy Size
	Memory Leaks --leak-check
	Memory Leaks --leak-check
	Memory Leaks --leak-check=full

