L -

! * !

Qmﬁrﬂ%”-e

i

shan

‘ﬂ 1

Ne-Tololo[@

| P

l

5
11

“#¢) ShanghaiTech University

1. Big Endian vs. Little Endian
2. Label and Assembler Directives
3. Enviroment calls

4. RISC-V Practices

5. Venus Q&A

W R RT : : : :
ShanghaiTech University Blg Endian vs. Little Endian

Big Endian vs. Little Endian
Big-endian and little-endian from Jonathan Swift's Gulliver's Travels
* The order in which BYTES are stored in memory
* Bits always stored as usual. (E.g., 0xC2=0b 1100 0010)

Consider the number 1025 as we normally write it:
BYTE3 BYTE2 BYTE1 BYTEO
00000000 00000000 00000100 00000001

Big Endian | Little Endian

ADDR3 ADDR2 ADDR1 ADDRO ADDR3 ADDR2 ADDR1 ADDRO

BYTEO BYTE1 BYTE2 BYTES3 BYTE3 BYTEZ BYTE] BYIEQ
00000001 00000100 00000000 0OOOOOOO 00000000 00000000 00000100 00000001

) B R B

/TECH V'

ShanghaiTech University

(E.g., 1025 = 0x401 = Ob 0100 0000 0001)
ADDR3 ADDR2 ADDR1 ADDRO

BYTES BYITEZ BYTE1 BYTED
00000000 00000000 00000100 00000001

Little Endian
Least significant byte in a word
(numbers are addresses) ,l,

« Hexadecimal number: IR W UL EELAL M-
OXFD34AB88 (4,248,087,432,1) => 15]14113]12
— Byte 0: 0x88 (136,) 17)110]9 |8
— Byte 1: 0XAB (171,,) A
— Byte2:0x34 (52,.) 7161o 17
— Byte 3: OxFD (293::) 3121110

bit: 31 24 23 1615 87 0

Address: | 64 address of word (e.g. int)
Address:| 67 66 65 64

A Data: |OxFD | 0x34 _ OxAB| 0x88

ﬁ « Little Endian: Starts with the little end of a word:
A — It starts with the smallest (least significant) Byte

A

Al L |} e 11 7 4 A 1" B\

I3 E PN : :
Shen e ey Label and Assembler Directives

Label : Hold the address of data or instructions.
(Will be placed by the actual address during assembly or link.)

Some directives :

Directive Effect

.data Store subsequent items in the static segment at the next available address.
.text Store subsequent instructions in the text segment at the next available address.
-byte Store listed values as 8-bit bytes.

.asciiz Store subsequent string in the data segment and add null-terminator.

word Store listed values as unaligned 32-bit words.

.globl Makes the given label global.

.float Reserved.

.double Reserved.

.align Reserved.

. data
2 course:

sciiz "ecsl110”

Output :

isciiz "sp21”

.word 2021

ecall 4 — print string

ecall

addi al, =x0, £ ASCII 10 — "o
addi a0, =x0, ecall 11 — print character
ecall

addi a0, x0, £ ecall 4 — print string

ecall

addi al,
ecall

EHwM KR

ShanghaiTech University

To use an environmental call, load the ID into register ae , and load any arguments into a1 - a7 . Any return values will be
stored in argument registers.

The following environmental calls are currently supported.

1D
MName Description
(a0)
1 print_int prints integer in at
4 print_string prints the null-terminated string whose address is in a1
9 sbrk allocates a1 bytes on the heap, retums pointer to start in a8
10 exit ends the program
11 print_character = prints ASClHl character in a1
13 openfile Opens the file in the VFS where a pointer to the path isin a1 and the permission bits are in
o a2 . Returns to a0 an integer representing the file descriptor.
Takes in: a1 = FileDescriptor, a2 = Where to store the data (an array), a3 = the amount
A s you want to read from the file. Returns a8 = Number of items which were read and put to
1
the given array. If it is less than a3 it is either an error or EOF. You will have to use another
ecall to determine what was the cause.
Takes in: a1 = FileDescriptor, a2 = Buffer to read data from, a3 = amount of the buffer you
e want to read, a4 = Size of each item. Returns a8 = Number of items written. If it is less than
15 writeFile

a3 it is either an error or EOF. You will have to use another ecall to determine what was the
cause, Also, you need to flush or close the file for the changes to be written to the VFS.

Z A BT 138 w5

Eiw R EATF

ShanghaiTech University

Takes in: a1 = FileDescriptor. Returns 0 on success and EOF (-1) otherwise. Will flush the data

16 closeFile
as well.
17 exit2 ends the program with retum code in a1
18 fflush Takes in: a1 = FileDescriptor. Will return 0 on success otherwise EOF on an error.
19 o Takes in: a1 = FileDescriptor. Returns a nonzero value when the end of file is reached
otherwise, it returns 0.
Takes in: a1 = FileDescriptor. Returns Nnnzero value if the file stream has errors occurred, 0
20 ferror :
otherwise.
34 printHex prints hexin a1
| 0x3CC vlib Please check out the vlib page to see what functions you can use!

The environmental calls are intended to be somewhat backwards compatible with SPIM’s syscalls.

As an example, the following code prints the integer 42 to the console:

addi a& x@ 1 # print_int ecall
addi al xe 42 # integer 42

EHwM KR

ShanghaiTech University

2K)
EAWER
i ”“"h

| have been working on adding a vlib which will hold most of the functionality of some standard clib functions except that they
will be optimized (written in kotlin instead of risc-v while still only using the memory) so that the ops can operate faster. This
also allows for me to separate ecall to actually act more of an environment call. To use any of the following functions, you will
put ex3cC in the where register (currently ae though will eventually be a7). Then you will put in aé the following to run
each vlib function:

ID o
Name Description

(a6)

1 malloc Allocates exactly a1 bytes to the heap. Returns the pointer to that block in ae

2 I Takes in a1l nitems and a2 size of each item. Zeros out the allocated memory. Returns a

calloc : :

pointer to that block in ae
Takes in a pointer to the block to realloc in a1 and the new size you want to reallocate to

3 realloc in a2 . Returns a pointer in a@ to the newly allocated data. Note if you request a size
smaller than the pointer, it will create a new block and copy only size bytes to the new
location.

3 i frees the pointer given in a1 . It will merge other free blocks around it if any exist. Does not

ee

return anything.
returns to a@ the number of not free blocks or -1 if an error occurred. Errors may involve a

g num_alloc_blocks

modification of the backend structure so a link was not able to be read properly.

EdHBERF

ShanghaiTech University

I RISC-V Practices

4. RISC-V

(a) Consider the following code snippet written in RISC-V. The function Factorial is
to calculate the factorial of a given number. (ie. n!l=n-(n—1)---2-1)

1|Factorial:

2 addi sp, sp, -8
3 SW ra, 0(sp)
4 1i 9, 1

5 beq ab, te, last_sit
6 Sw ab, 4(sp)
7

8

9 lw t0, 4(sp)
10

11 j fact_done
12 last_sit:

13

14| fact_done:

15 lw ra, 0(sp)
16 addi sp, sp, 8
17 mv ab, al

18 jr ra

Fill in the missing code below.

line 7:

line 8- _Jal Factorial

line 10:-

line 13:

I RISC-V Practices

4. RISC-V

(a) Consider the following code snippet written in RISC-V. The function Factorial is
to calculate the factorial of a given number. (ie. n!l=n-(n—1)---2-1)

Factorial:
addi sp, sp, -8
SW ra, 0(sp)
1i e, 1
beq ab, te, last_sit
SW ad, 4(sp)
lw t0, 4(sp)
j fact_done
last_sit:
fact_done:
lw ra, 0(sp)
addi sp, sp, 8
mv ab, al
jr ra

Fill in the missing code below.

line 7:

line &:

line 10:-

line 13:

EdHBERF

ShanghaiTech University

Solution:

line 7: addi a®, a@, -1,

line 8 jal Factorial,

line 10: mul al, te@, al,

line 13: 1i al, 1 or addi al,

x0,

0 E iR B A

ShanghaiTech University

I RISC-V Practices

Singly-linked list is a common and useful data structure. In this problem, you are going
to implement a linked list operation in RISC-V assembly. Assume the assembly is

for a 32-bit machine. Also, by convention, consecutive fields occupy consecutive bytes
within the structure by their declaration order, and the first field takes the lowest address.
The node in a singly-linked list is defined as a struct type as follows.

FlR a0 zddress of node &: al: addr¥ess of node B

insert node:

int val:] 1w t0 4(a0)

struct Node *next_node;

ret

Then we define the function:

« insert node : Given a pointer to node A and a pointer to node B, this function will
insert node B into the linked list, making node B the next node of node A. Node A 1s
already 1n the list and assume that it is not the last node (tail) of the list.

Ay bR B RF

ShanghaiTech University

I RISC-V Practices

Singly-linked list is a common and useful data structure. In this problem, you are going

to implement two linked list operations in RISC-V assembly. Assume the assembly is

for a 32-bit machine. Also, by convention, consecutive fields occupy consecutive bytes

within the structure by their declaration order, and the first field takes the lowest address.

The node in a singly-linked list is defined as a struct type as follows. # a0: address of node A al: address of node B

' insert node:
¥ temp = A->next
1w t0 4(a0)
¥ B->next = temp
sw t0 4(al)
¥ A-next = B
zw al 4(al)

ret

int val;

struct Node *next_node;

Then we define some functions:
« insert node : Given a pointer to node A and a pointer to node B, this function will
insert node B into the linked list, making node B the next node of node A. Node A 1s
already 1n the list and assume that it is not the last node (tail) of the list.

I RISC-V Practices

(a) Doubly linked list is a common and useful data structure. In this problem, you are going
to implement two linked list operations in RISC-V assembly. Assume the assembly is
for a 32-bit machine. Also, by convention, consecutive fields occupy consecutive bytes
within the structure by their declaration order, and the first field takes the lowest address.
The node in a double linked list is defined as a struct type as follows.

struct node({
[/ walue of this node
int wval;
// pointer to next node
struct node * next node;
// pointer to previous node
struct node * prev_node;

};

Then we define some functions:

* insert_node : Given a pointer to node A and a pointer to node B, this function will
insert node B into the linked list, making node B the next node of node A. Node A is
already in the list and assume that it is not the last node (tail) of the list.

» switch_node : Given a pointer to node A and a pointer to node B (A and B are
different and they are not adjacent), this function will exchange the location of node
A and node B in the linked list without changing the node values. Assume that nodes
A and B are neither the head nor the tail of the linked list, otherwise, they can be at
any positions in the linked list.

Please fill in the following RISC-V codes to implement these two functions

f/ a0: address of noda A; al: address of node B

insert node:
lw t0 4(ald)

ret

// al0: address of node A;
switch node:

1w t0 4(a0)

lw t1l 4(al)

lw t2 8(al)

lw t3 B(al)

ret

al:

address of

EdHBERF

ShanghaiTech University

node B

EdHBERF

ShanghaiTech University

I RISC-V Practices

(a) Doubly linked list is a common and useful data structure. In this problem, you are going
to implement two linked list operations in RISC-V assembly. Assume the assembly is
for a 32-bit machine. Also, by convention, consecutive fields occupy consecutive bytes
within the structure by their declaration order, and the first field takes the lowest address. node E

The node in a double linked list is defined as a struet type as follows. . a
insert_node

atruct noda(ff £t0 for A->next_node
// walue of this node =
int val; lw t0 4(ai)
// pointer to next node = PP R Y A-s>next node
struct node * next_node; Iy i e
// pointer to previous node sw t D -'l] {al:l
struct node * prev_node; " i g i -

) f A= 2TIEH (1O o

sw al 4(a0)
" B=»prev_node

Then we define some functions:

* insert_node : Given a pointer to node A and a pointer to node B, this function will o B e
insert node B into the linked list, making node B the next node of node A. Node A is sw a0 8(al)
already in the list and assume that it is not the last node (tail) of the list. / B=»next node->p

H
|

» switch_node : Given a pointer to node A and a pointer to node B (A and B are e
different and they are not adjacent), this function will exchange the location of node sw al 8 {t 0)
A and node B in the linked list without changing the node values. Assume that nodes ret
A and B are neither the head nor the tail of the linked list, otherwise, they can be at

any positions in the linked list.

Please fill in the following RISC-V codes to implement these two functions

EdHBERF

ShanghaiTech University

I RISC-V Practices

(a) Doubly linked list is a common and useful data structure. In this problem, you are going
to implement two linked list operations in RISC-V assembly. Assume the assembly is
for a 32-bit machine. Also, by convention, consecutive fields occupy consecutive bytes
within the structure by their declaration order, and the first field takes the lowest address.
The node in a double linked list is defined as a struct type as follows.

struct node({
[/ walue of this node
int wval;
// pointer to next node
struct node * next node;

// pointer to previous node :. : ;!;?; ; L::h.
struct node * prev_node; At - AR
};
Then we define some functions: In £D L1k
1w £t1 4{al)
* insert_node : Given a pointer to node A and a pointer to node B, this function will lw £2 8(a0)
insert node B into the linked list, making node B the next node of node A. Node A is 1w £3 8({al)
already in the list and assume that it is not the last node (tail) of the list. sw al 8(td)
» switch_node : Given a pointer to node A and a pointer to node B (A and B are il o
different and they are not adjacent), this function will exchange the location of node ji :3 i Et;:

A and node B in the linked list without changing the node values. Assume that nodes
A and B are neither the head nor the tail of the linked list, otherwise, they can be at
any positions in the linked list.

sw t2 8(al)
sw t0 4({al)
sw t3 8(ald)
Please fill in the following RISC-V codes to implement these two functions sw tl 4(a0)

EdHBERF

ShanghaiTech University

I RISC-V Practices

(a) Doubly linked list is a common and useful data structure. In this problem, you are going
to implement two linked list operations in RISC-V assembly. Assume the assembly is
for a 32-bit machine. Also, by convention, consecutive fields occupy consecutive bytes
within the structure by their declaration order. and the first field takes the lowest address.
The node in a double linked list is defined as a struet type as follows.

Wealk addesss of node & &l address of ‘node:B

struct node({

// wvalue of this node inEEIt_ﬂDdE:
int val;

// pointer to next node s g Q:I:a]_:l
struct node * next node;

// pointer to previous node “ g B{ELD:I

struct node * prev_node;

| 5

ret
Consider another senario for switch node:

* switch node : Given a pointer to node A and a pointer to node B (A and B
are

different and they are adjacent, the next node of A is B), this function
will exchange the location of node

A and node B in the linked list without changing the node values. Assume
that nodes

A and B are neither the head nor the tail of the linked list, otherwise, they
can be at

any positions in the linked list.

I RISC-V Practices

(a) Doubly linked list is a common and useful data structure. In this problem, you are going
to implement two linked list operations in RISC-V assembly. Assume the assembly is
for a 32-bit machine. Also, by convention, consecutive fields occupy consecutive bytes
within the structure by their declaration order. and the first field takes the lowest address.
The node in a double linked list is defined as a struet type as follows.

struct node({
[/ walue of this node
int val;
// pointer to next node
struct node * next node;
// pointer to previous node
struct node * prev_node;

| 5

Consider another senario for switch node:

* switch node : Given a pointer to node A and a pointer to node B (A and B
are

different and they are adjacent, the next node of A is B), this function will
exchange the location of node

A and node B in the linked list without changing the node values. Assume
that nodes

A and B are neither the head nor the tail of the linked list, otherwise, they can
be at

any positions in the linked list.

1 # al: address of node A

2 insert node:

templ = B-rnext
lw t1 4(al)

temp? = A-rprev
1w £2 8(al)

¥ B-rnext-rprev =
sw al 8(t1)

¥ A-rprev-rnext =
sw oal 4(t2)

A-rnext = B-inext
sw t1 4(a0)

¥ A-rprev = B

sw al 8(al)

- B=rnext = &

sw al 4(al)

¥ B-rprev = A->prev
sw t2 8(al)

ret

I
=g

I
jwa}

EdHBERF

ShanghaiTech University

al: address of node B

Holi= R S XN

ShanghaiTech University

1 T —
I sy
T T |

ey B R B KT
O/’TEcHu“‘\\

e #&/ ShanghaiTech University

Thank you for attending the discussion!

Wish you good luck doing homework/projects/exams!

