
Discussion 5
RISC-V Calling Convention
Kunchang Guo

Calling and Returning Functions

main:
…
li a0, 0
call fun
…

fun:
…
ret

- What does call fun mean? (usually translated to auipc + jalr [1])

ra := pc + 4 # save address as the next instruction to $ra
pc := address of fun # jump to fun

- What does ret mean? (translated to jalr [1])

pc := ra # jump back

[1]: RISC-V User Level ISA
2025/3/17 2

What’s wrong with this code snippet?Consider a buggy example [2]:

[2]: 6.1810 RISC-V Calling Convention

Calling and Returning Functions

main:
1 li a0, 10
2 li a1, 11
3 call sum_then_double
4 #...

sum_then_double:
5 call sum
6 slli a0, a0, 1
7 ret

sum:
8 add a0, a0, a1
9 ret

2025/3/17 3

What’s wrong with this code snippet?

Line number pointed by $ra and $pc:
call call ret

main -> sum_then_double -> sum -> sum_then_double …
$ra 4 6 6
$pc 5 8 6

$ra would have been overwritten between function calls.
When executing line 7 (ret), $pc will be set to line 6 ($ra) again.
-> This program never returns back to main!

How can functions interoperate properly?

Consider a buggy example [2]:

[2]: 6.1810 RISC-V Calling Convention

Calling and Returning Functions

main:
1 li a0, 10
2 li a1, 11
3 call sum_then_double
4 #...

sum_then_double:
5 call sum
6 slli a0, a0, 1
7 ret

sum:
8 add a0, a0, a1
9 ret

2025/3/17 4

Fixing the bug:

Calling and Returning Functions

sum_then_double:
save $ra onto the stack
addi sp, sp, -4
sw ra, 0(sp)

call sum
slli a0, a0, 1

restore $ra
lw ra, 0(sp)
addi sp, sp, 4

ret

sum:
add a0, a0, a1
ret

main:
li a0, 10
li a1, 11
call sum_then_double
#...

2025/3/17 5

Fixing the bug:

Calling and Returning Functions

sum_then_double:
save $ra onto the stack
addi sp, sp, -4
sw ra, 0(sp)

call sum
slli a0, a0, 1

restore $ra
lw ra, 0(sp)
addi sp, sp, 4

ret

sum:
add a0, a0, a1
ret

main:
li a0, 10
li a1, 11
call sum_then_double
#...

We need a contract that governs
- How to transfer function arguments
- How to return values back
- Who saves which registers
- How to manage the stack
- …

2025/3/17 6

RISC-V Calling Convention Register Usage

Register ABI Name Saver Description

x0 zero - Hard-wired zero

x1 ra Caller Return address

x2 sp Callee Stack pointer

x3 gp - Global pointer

x4 tp - Thread pointer

x5-7 t0-2 Caller Temporaries

x8 s0/fp Callee Saved register/frame pointer

x9 s1 Callee Saved register

x10-11 a0-1 Caller Function arguments/return values

x12-17 a2-7 Caller Function arguments

x18-27 s2-11 Callee Saved registers

x28-31 t3-6 Caller Temporaries

Who saves what?

Caller-Saved:
- Temporary (t0-t6)
- Argument/Return (a0-a7,ra)

Callee-Saved:
- Saved registers (s0-s11)
- Stack pointer (sp)

2025/3/17 7

Unconditional Jumps

JAL (jump and link):
- jal rd offset

- rd := pc+4
- pc := pc+sign_ext(offset)

- imm: 21-bit signed (multiple of 2 bytes)
- targets ranges +/- 1MiB

JALR (jump and link register)
- jalr rd rs offset

- rd := pc+4
- pc := rs+sign_ext(offset)

(with least-significant bit set to 0)
- imm: 12-bit signed
- lui+jalr / auipc+jalr can target 4GiB space

2025/3/17 8

Unconditional Jumps

JAL (jump and link):
- jal rd offset

- rd := pc+4
- pc := pc+sign_ext(offset)

- imm: 21-bit signed (multiple of 2 bytes)
- targets ranges +/- 1MiB

JALR (jump and link register)
- jalr rd rs offset

- rd := pc+4
- pc := rs+sign_ext(offset)

(with least-significant bit set to 0)
- imm: 12-bit signed
- lui+jalr / auipc+jalr can target 4GiB space

Pseudo Instructions [1]:

j offset – jal zero, offset
jal offset – jal ra, offset

jr rs – jalr zero, rs, 0
jalr rs – jalr ra, rs, 0

call offset –
- auipc t1, %hi(offset)
- jalr ra, t1, %lo(offset)

ret – jalr zero, ra, 0

[1]: RISC-V User Level ISA
2025/3/17 9

The Stack

Parameter passing
- a0-a7
- additional parameters on stack

Register saving:
- Caller-saved: t0-t6, a0-a7, ra
- Callee-saved: s0-s11, sp

Alignment:
- must be 16-byte aligned
- ensures efficient memory access

Frame pointer:
- stable reference point to access stack-allocated variables
- maintains the linked chain of stack frames

The stack grows
downwards

…
+------------------+ <-------+
return address	
previous fp	
saved registers	
local variables	
+------------------+ <- fp	
return address	
previous fp	---------+
saved registers	
local variables	
+------------------+  sp

2025/3/17 10

High

Low

Caller frame

Callee frame

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Epilogue

Body

Caller –
Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed

…
+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 11

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Body

Caller –
Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed
- prepares arguments (a0-a7)

with additional parameters on stack

…
+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 12

Epilogue

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Body

Caller –
Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed
- prepares arguments (a0-a7)

with additional parameters on stack
- sets return address (ra)

and jumps to function

…
+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 13

Epilogue

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Body

Caller –
Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed
- prepares arguments (a0-a7)

with additional parameters on stack
- sets return address (ra)

and jumps to function
- restore caller-saved registers

after callee returned
…

+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 14

Epilogue

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Body

Callee –
Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers

…
+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 15

Epilogue

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Body

Callee –
Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers
- executes function logic

…
+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 16

Epilogue

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Body

Callee –
Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers
- executes function logic
- restores callee-saved registers

…
+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 17

Epilogue

Caller & Callee
sum_then_double:
addi sp,sp,-32 # reserve stack space
sw ra,28(sp) # save return address
sw s0,24(sp) # save frame pointer
addi s0,sp,32 # change frame pointer
sw a0,-20(s0) # save parameter 1
sw a1,-24(s0) # save parameter 2
lw a1,-24(s0)
lw a0,-20(s0)
call sum
mv a5,a0 # a5 := return value of sum
slli a5,a5,1
mv a0,a5
lw ra,28(sp) # restore return address
lw s0,24(sp) # restore frame pointer
addi sp,sp,32 # release stack space
jr ra

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer

Prologue

Body

Callee –
Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers
- executes function logic
- restores callee-saved registers
- returns by jumping to ra

…
+------------------+
| Caller frame |
+------------------+ <- fp
| return address |
| previous fp |
| saved registers |
| local variables |
+------------------+ <- sp

2025/3/17 18

Epilogue

For more details, see riscv-spec.pdf
- Arguments on stack
- Passing/returning complex values

- Aggregated structure
- Soft-float calling convention
…

- Calling conventions are contracts enabling interoperability
- Register responsibilities are clearly defined:

- a0-a7: Arguments and return values
- ra: Return address (caller-saved)
- sp: Stack pointer (callee-saved)
- t0-t6: Temporaries (caller-saved)
- s0-s11: Saved registers (callee-saved)

- Stack management rules for reliable function nesting
- Unconditional jumps details

Takeaways

2025/3/17 19

Exam Examples

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
prologue. Tips: the minimum stack space

required for saving registers, disregard
stack alignment requirements, i.e., the
stack can be of any size (2 points, 1 for
correct number (consistent with your next
question’s choice, e.g. if you select "EF"
in the next question and fill-8 in this
blank, you are correct!), 1 for
positive/negative)
addi sp,sp,___
please select below all the registers

that must be saved here in the stack before
function call. (2 points, 0.25 for each
option A-G)
sw ____

A. a0.
B. a1.
C. t0.
D. t1.
if c<0, jump to foo_true to return
blt a0,x0,foo_true
…

E. s0.
F. s1.
G. ra.
H. sp.

2025/3/17 21

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
prologue. Tips: the minimum stack space

required for saving registers, disregard
stack alignment requirements, i.e., the
stack can be of any size (2 points, 1 for
correct number (consistent with your next
question’s choice, e.g. if you select "EF"
in the next question and fill-8 in this
blank, you are correct!), 1 for
positive/negative)
addi sp,sp,-12
please select below all the registers

that must be saved here in the stack before
function call. (2 points, 0.25 for each
option A-G)
sw E,F,G

A. a0.
B. a1.
C. t0.
D. t1.
if c<0, jump to foo_true to return
blt a0,x0,foo_true
…

E. s0.
F. s1.
G. ra.
H. sp.

2025/3/17 22

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
addi sp,sp,-12
sw s0,s1 and sp
if c<0, jump to foo_true to return
blt a0,x0,foo_true

foo_false:
mv s0,a0 # put c in s0 for further use
li a0,__ # fill in the blank here to pass

the parameter to the malloc function that
to be called (1 point)
call malloc
…

2025/3/17 23

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
addi sp, sp, -12
sw s0,s1 and sp
if c<0, jump to foo_true to return
blt a0,x0,foo_true

foo_false:
mv s0,a0 # put c in s0 for further use
li a0,8 # fill in the blank here to pass

the parameter to the malloc function that
to be called (1 point)
call malloc
…

2025/3/17 24

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
addi sp,sp,-12
sw s0,s1 and sp
if c<0, jump to foo_true to return
blt a0,x0,foo_true

foo_false:
mv s0,a0 # put c in s0 for further use
li a0,8
call malloc
mv s1,a0 # put n in s1 for further use
calculate c-1 and pass the parameter to

foo function for recursive call (3points)
addi _,_,_
call foo
write the return value into n->next (2

points)
_ _,_
write c into n->c (Tips: c is char

type.) (2points)
_ _,_
…

2025/3/17 25

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
addi sp,sp,-12
sw s0,s1 and sp
if c<0, jump to foo_true to return
blt a0,x0,foo_true

foo_false:
mv s0,a0 # put c in s0 for further use
li a0,8
call malloc
mv s1,a0 # put n in s1 for further use
calculate c-1 and pass the parameter to

foo function for recursive call (3points)
addi a0,s0,-1
call foo
write the return value into n->next (2

points)
sw a0,4(s1)
write c into n->c (Tips: c is char

type.) (2points)
sb s0,0(s1)
…

2025/3/17 26

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
addi sp,sp,-12
sw s0,s1 and sp
blt a0,x0,foo_true

foo_false:
mv s0,a0
li a0,8
call malloc
mv s1,a0
addi a0,s0,-1
call foo
sw a0,4(s1)
sb s0,0(s1)
mv a0,s1
j foo_exit

foo_true:
add a0,x0,x0

foo_exit:
lw …
restore the stack pointer (2points)
addi sp,sp,_
ret

2025/3/17 27

SP2024 Midterm I No. 6
Assume a struct type defined as follows has the following
layout, c at address 0 (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {
struct node *n;
if (c < 0) return 0;
n = malloc(sizeof(struct node));
n->next = foo(c- 1);
n->c = c;
return n; }

Please complete the RV32I assembly implementing the
foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s0 and n
in s1 so that we can still use these values after function call.

foo:
addi sp,sp,-12
sw s0,s1 and sp
blt a0,x0,foo_true

foo_false:
mv s0,a0
li a0,8
call malloc
mv s1,a0
addi a0,s0,-1
call foo
sw a0,4(s1)
sb s0,0(s1)
mv a0,s1
j foo_exit

foo_true:
add a0,x0,x0

foo_exit:
lw …
restore the stack pointer (2points)
addi sp,sp,12
ret

2025/3/17 28

Project 1.1 Questions

