DISCUSSION 5
RISC-V Calling Convention

Kunchang Guo

Calling and Returning Functions

main: - What does call fun mean? (usually translated to auipc + jalr [1])
..
11 ae, © ra := pc + 4 # save address as the next instruction to $%$ra
;all fun pc := address of fun # jump to fun
fun: - What does ret mean? (translated to jalr [1])
2
ret pc := ra # jump back

[1]: RISC-V User Level ISA
2025/3/17 2

Calling and Returning Functions

Consider a buggy example [2]: What's wrong with this code snippet?

main:
1 1i a0, 10
2 1i a1, 11
3 call sum_then_double
4 #...

sum_then_double:
5 call sum
6 slli a@, a0, 1

7 ret

sum:
8 add a@, a0, al
9 ret

[2]: 6.1810 RISC-V Calling Convention
2025/3/17

Calling and Returning Functions

Consider a buggy example [2]:

main:
1 1i a0, 10
2 1i a1, 11
3 call sum_then_double
4 #...

sum_then_double:
5 call sum
6 slli a@, a0, 1

ret
sum:
8 add a@, a0, al
9 ret

[2]: 6.1810 RISC-V Calling Convention
2025/3/17

What's wrong with this code snippet?

Line number pointed by $ra and $pc:

call call ret

main -> sum_then_double -> sum -> sum_then_double ..
$ra 4 6 6
$pc 5 8 6

$ra would have been overwritten between function calls.
When executing line 7 (ret), $pc will be set to line 6 ($ra) again.
-> This program never returns back to main!

How can functions interoperate properly?

Calling and Returning Functions

Fixing the bug: S s
add a@, a0, al
sum_then _double: ret
save $ra onto the stack
addi sp, sp, -4 main:
sw ra, 0(sp) 1i a0, 10
1i a1, 11
cal} sum call sum_then_double
slli a0, a0, 1 #...

restore $ra
1w ra, 0(sp)
addi sp, sp, 4

ret

2025/3/17

Calling and Returning Functions

Fixing the bug: sum:

add a@, a0, al
sum_then_double:

ret
save $ra onto the stack
addi sp, sp, -4 main:
sw ra, 0(sp) 1i a0, 10
1i a1, 11
cal} sum call sum_then_double
Slll ae, a@, 1 #.--

restore $ra

1w ra, @(sp) We need a contract that governs

addi sp, sp, 4 - How to transfer function arguments
- How to return values back
ret - Who saves which registers

- How to manage the stack

2025/3/17

RISC-V Calling Convention

Register ABI Name Saver Description

X0 zero - Hard-wired zero

x1 ra Caller Return address

X2 sp Callee Stack pointer

X3 ap - Global pointer

x4 tp - Thread pointer

x5-7 t0-2 Caller Temporaries

x8 sO/fp Callee Saved register/frame pointer
X9 sl Callee Saved register

x10-11 a0-1 Caller Function arguments/return values
x12-17 a2-7 Caller Function arguments

x18-27 s2-11 Callee Saved registers

x28-31 t3-6 Caller Temporaries

Register Usage

Who saves what?

Caller-Saved:
- Temporary (t0-t6)
- Argument/Return (a0-a’,ra)

Callee-Saved:
- Saved registers (s0-s11)
- Stack pointer (sp)

Unconditional Jumps

_ _ 31 30 21 20 19 12 11 76 0
JAL (jump and link): | imm[20] | imm[10:1] | imm[11] | imm[19:12] | rd | opcode
- jal rd offset 1 10 1 8 5 7
offset[20:1] dest JAL
-rd = pc+d
- pc := pc+sign_ext(offset)
- imm: 21-bit signed (multiple of 2 bytes)
- targets ranges +/- 1MIB
31 20 19 1514 12 11 76 0
JALR (Jump and link register) imm|11:0] | rsl | funct3 | rd | opcode
. 12 5 3 5 7
B Jalp rd rs offset offset[11:0] base 0 dest JALR
-rd := pc+4
- pc := rs+sign_ext(offset)

(with least-significant bit set to 0)
- imm: 12-bit signed
- lui+jalr /auipc+jalr can target 4GiB space

2025/3/17

Unconditional Jumps

JAL (jump and link):
- jal rd offset
-rd := pc+4
- pc := pc+sign_ext(offset)
- imm: 21-bit signed (multiple of 2 bytes)
- targets ranges +/- 1MIB

JALR (jump and link register)
- jalr rd rs offset
-rd := pc+4
- pc := rs+sign_ext(offset)
(with least-significant bit set to 0)
- imm: 12-bit signed
- lui+jalr /auipc+jalr can target 4GiB space

[1]: RISC-V User Level ISA

Pseudo Instructions [1]:

j offset - jal zero, offset
jal offset - jal ra, offset

jrrs — jalr zero, rs, ©
jalr rs — jalr ra, rs, ©

call offset -
- auipc t1, %hi(offset)
- jalr ra, tl1, %lo(offset)

ret — jalr zero, ra, ©

The Stack

Parameter passing
- a0-a7 Ho-mmmmmmm oo + <------- +

- additional parameters on stack return address |

High
previous fp |

| |
Caller fr'ame| . |
. . | saved registers | |
Register saving: | local variables | |
- Caller-saved: t0-t6, a0-a’, ra e F < fp | The stack grows
- Callee-saved: s0-s11, sp | return address | | downwards
. Callee framel Previous fp | --------- +
Alignment: | saved registers |
- must be 16-byte aligned | local variables | v
- ensures efficient memory access Ll + < sp Low

Frame pointer:
- stable reference point to access stack-allocated variables
- maintains the linked chain of stack frames

Caller & Callee

Caller —

Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed Prologue —

Body -

return address |

) Epilogue —
previous fp |

saved registers | -

|
|
|
| local variables |
+

2025/3/17

sum_then_double:

H H H H R H

addi sp,sp,-32
SW ra,28(sp)
SW S0, 24(Sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
Tw al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af, a5

1w ra,28(sp)
1w s0,24(sp)
addi sp,sp,32
jr ra

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 11

Caller & Callee

Caller -

Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed Prologue —
- prepares arguments (a0-a7)

with additional parameters on stack

Body -

return address |

) Epilogue —
previous fp |

saved registers | -

|
|
|
| local variables |
+

2025/3/17

sum_then_double:

H H H H R H

addi sp,sp,-32
SW ra,28(sp)
SW s0,24(sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
1w al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af, a5

1w ra,28(sp)
1w s0,24(sp)
addi sp,sp,32
jr ra

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 12

Caller & Callee

Caller -

Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed Prologue —
- prepares arguments (a0-a7)

with additional parameters on stack
- sets return address (ra)
and jumps to function

Body -

return address |

) Epilogue —
previous fp |

saved registers | -

|
|
|
| local variables |
+

2025/3/17

sum_then_double:

H H H H R H

addi sp,sp,-32
SW ra,28(sp)
SW s0,24(sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
1w al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af, a5

1w ra,28(sp)
1w s0,24(sp)
addi sp,sp,32
jr ra

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 13

Caller & Callee

Caller -

Function that invokes another function
- sum_then_double (caller) -> sum
- saves caller-saved registers if needed Prologue —
- prepares arguments (a0-a7)

with additional parameters on stack
- sets return address (ra)

and jumps to function
- restore caller-saved registers

after callee returned Body —
o mm - +
| Caller frame |
L L + <- fp
return address | Epilogue —

previous fp |

saved registers | -

|
|
|
| local variables |
+

2025/3/17

sum_then_double:

addi sp,sp,-32
SW ra,28(sp)
SW s0,24(sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
1w al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af,ab5

1w ra,28(sp)
1w s0,24(sp)
addi sp,sp,32
jr ra

H H H H R H

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 14

Caller & Callee

Callee -

Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers

| return address |
| previous fp |
| saved registers |
| local variables |
+

2025/3/17

Prologue

Body -

Epilogue —

sum_then_double:

addi sp,sp,-32
SW ra,28(sp)
SW s0,24(sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
1w al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af, a5

1w ra,28(sp)
1w s@,24(sp)
addi sp,sp,32
jr ra

H H H H R H

H

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 15

Caller & Callee

Callee -

Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers
- executes function logic

| return address |
| previous fp |
| saved registers |
| local variables |
+

2025/3/17

Prologue

Body -

Epilogue —

sum_then_double:

H H H H R H

addi sp,sp,-32
SW ra,28(sp)
SW s0,24(sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
1w al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af, a5

1w ra,28(sp)
1w s0,24(sp)
addi sp,sp,32
jr ra

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 16

Caller & Callee

Callee -

Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers
- executes function logic
- restores callee-saved registers

| return address |
| previous fp |
| saved registers |
| local variables |
+

2025/3/17

Prologue

Body -

Epilogue —

sum_then_double:

addi sp,sp,-32
SW ra,28(sp)
SW s0,24(sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
1w al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af, a5

1w ra,28(sp)
1w s0,24(sp)
addi sp,sp,32
jr ra

H H H H R H

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 17

Caller & Callee

Callee -

Function that invoked by another function
- main -> sum_then_double (callee)
- saves callee-saved registers
- executes function logic
- restores callee-saved registers
- returns by jumping to ra

| return address |
| previous fp |
| saved registers |
| local variables |
+

2025/3/17

Prologue

Body -

Epilogue —

sum_then_double:

addi sp,sp,-32
SW ra,28(sp)
SW s0,24(sp)
addi s@,sp,32
SW a0, -20(s0)
SW al,-24(s0)
1w al,-24(s0)
1w a0, -20(s0)
call sum

mv a5, a0

slli a5,a5,1
mv af, a5

1w ra,28(sp)
1w s0,24(sp)
addi sp,sp,32
jr ra

H H H H R H

reserve stack space
save return address
save frame pointer
change frame pointer
save parameter 1
save parameter 2

a5 := return value of sum

restore return address
restore frame pointer
release stack space

Compiled by RISC-V(32 bit) gcc 14.2.0 Compiler Explorer 18

Takeaways

- Calling conventions are contracts enabling interoperability
- Register responsibilities are clearly defined:
- a0-a7: Arguments and return values
- ra: Return address (caller-saved)
- sp: Stack pointer (callee-saved)
- t0-t6: Temporaries (caller-saved)
- s0-s11: Saved registers (callee-saved)
- Stack management rules for reliable function nesting
- Unconditional jumps details

For more details, see riscv-spec.pdf

- Arguments on stack

- Passing/returning complex values
- Aggregated structure

- Soft-float calling convention

-Xam

-xamples

. foo:

SP2024 M|dterm | NO 6 # prologue. Tips: the minimum stack space
required for saving registers, disregard
stack alignment requirements, i.e., the
stack can be of any size (2 points, 1 for
correct number (consistent with your next
question’s choice, e.g. if you select "EF"
in the next question and fill-8 in this

struct node {unsigned char c, struct node *next}; blank, you are correct!), 1 for

Assume a struct type defined as follows has the following
layout, ¢ at address O (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node* foo(char c) { positive/negative)
struct node *n; addi sp,sp,__
if (c < @) return 0; # please select below all the registers
n = malloc(sizeof(struct node)); that must be saved here in the stack before
n->next = foo(c- 1); function call. (2 points, ©.25 for each
n->c = C; option A-G)
return n; } SW
A. a0. E. sO.
Please complete the RV32l assembly implementing the B. al. F. sl.
foo function according to the comments and instructions C. to. G. ra.
below following calling conventions. Since we are calling D. tl. H. sp.

other functions, assume local variable c is put in s@ and n # if c<@, jump to foo_true to return

in s1 so that we can still use these values after function call. blt a@,x0,foo_true .

. foo:

SP2024 M|dterm | NO 6 # prologue. Tips: the minimum stack space
required for saving registers, disregard
stack alignment requirements, i.e., the
stack can be of any size (2 points, 1 for
correct number (consistent with your next
question’s choice, e.g. if you select "EF"
in the next question and fill-8 in this

struct node {unsigned char c, struct node *next}; blank, you are correct!), 1 for

Assume a struct type defined as follows has the following
layout, ¢ at address O (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node* foo(char c) { positive/negative)
struct node *n; addi sp,sp,-12
if (c < @) return 0; # please select below all the registers
n = malloc(sizeof(struct node)); that must be saved here in the stack before
n->next = foo(c- 1); function call. (2 points, ©.25 for each
n->c = C; option A-G)
return n; } sw E,F,G
A. a0. E. so.
Please complete the RV32l assembly implementing the B. al. F. s1.
foo function according to the comments and instructions C. te. G. ra.
below following calling conventions. Since we are calling ~ D- tl. H. sp.

other functions, assume local variable ¢ is put in s@ and n # if c<0, jump to foo_true to return

in s1 so that we can still use these values after function call. blt a@,x0,foo_true
—2025/3/17 22

. foo:
SP2024 Midterm | No. 6 addi sp,sp,-12
sw s@,sl1 and sp
if c<@, jump to foo_true to return
blt ao@,x0,foo_true
foo_ false:
mv s@,a@ # put c in s@ for further use
1li a®, # fill in the blank here to pass

struct node {unsigned char ¢, struct node *next}; the parameter to the malloc function that
struct node* foo(char c) { to be called (1 point)

struct node *n; call malloc

if (c < @) return 0;

n = malloc(sizeof(struct node));

n->next = foo(c- 1);

n->c = ¢;

return n; }

Assume a struct type defined as follows has the following
layout, ¢ at address O (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

Please complete the RV32l assembly implementing the

foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s@ and n

In s1 so that we can still use these values after function call.
2025/3/17 23

. foo:

SP2024 Midterm | No. 6 addi sp, sp, -12

sw s@,sl1 and sp

if c<@, jump to foo_true to return

blt ao@,x0,foo_true
foo_ false:

mv s@,a@ # put c in s@ for further use

1i a0,8 # fill in the blank here to pass
struct node {unsigned char c, struct node *next}; the parameter to the malloc function that
struct node* foo(char c) { to be called (1 point)

struct node *n; call malloc

if (c < @) return 0;

n = malloc(sizeof(struct node));

n->next = foo(c- 1);

n->c = C;

return n; }

Assume a struct type defined as follows has the following
layout, ¢ at address O (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

Please complete the RV32l assembly implementing the

foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s@ and n

In s1 so that we can still use these values after function call.
2025/3/17 24

SP2024 Midterm | No. 6

Assume a struct type defined as follows has the following
layout, ¢ at address O (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {

struct node *n;

if (c < @) return 0;

n = malloc(sizeof(struct node));

n->next = foo(c- 1);

n->c = C;

return n; }

Please complete the RV32l assembly implementing the

foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s@ and n

Hwg%g%ﬁpmnNecansUHLBetheaevmuesaﬁerﬂnmﬂoncau

foo:

addi sp,sp,-12

sw s@,sl1 and sp

if c<@, jump to foo_true to return

blt ao@,x0,foo_true
foo false:

mv s@,a@ # put c in s@ for further use

1li 20,8

call malloc

mv sl1,a@ # put n in sl for further use

calculate c-1 and pass the parameter to
foo function for recursive call (3points)

addi , ,

call foo

write the return value into n->next (2
points)

—_ =) -

write c into n->c (Tips: c is char
type.) (2points)

=

25

SP2024 Midterm | No. 6

Assume a struct type defined as follows has the following
layout, ¢ at address O (or address x) and next at 4 (or
address x+4) because of alignment. The size of struct
node is then 8-byte.

struct node {unsigned char c, struct node *next};
struct node* foo(char c) {

struct node *n;

if (c < @) return 0;

n = malloc(sizeof(struct node));

n->next = foo(c- 1);

n->c = C;

return n; }

Please complete the RV32l assembly implementing the

foo function according to the comments and instructions
below following calling conventions. Since we are calling
other functions, assume local variable c is put in s@ and n

Hwg%g%ﬁpmnNecansUHLBetheaevmuesaﬁerﬂnmﬂoncau

foo:

addi sp,sp,-12

sw s@,sl1 and sp

if c<@, jump to foo_true to return

blt ao@,x0,foo_true
foo false:

mv s@,a@ # put c in s@ for further use

1li 20,8

call malloc

mv sl1,a@ # put n in sl for further use

calculate c-1 and pass the parameter to
foo function for recursive call (3points)

addi a0,s0, -1

call foo

write the return value into n->next (2
points)

sw a@,4(s1)

write c into n->c (Tips: c is char
type.) (2points)

sb s0,0(s1)

26

foo:

SP2024 Midterm | No. 6 addi sp,sp,-12

sw s@,sl1 and sp
blt ao@,x0,foo_true

Assume a struct type defined as follows has the following

layout, ¢ at address O (or address x) and next at 4 (or foo_false:
address x+4) because of alignment. The size of struct mv s0,ad
node is then 8-byte. 11 ae,8
call malloc
struct node {unsigned char c, struct node *next}; mv s1,a@
struct node* foo(char c) { addi a@,se0,-1
struct node *n; call foo
if (c < @) return 0; sw a0,4(s1)
n = malloc(sizeof(struct node)); sb s0,0(s1)
n->next = foo(c- 1); mv ao,sl
n->c = C; j foo_exit
return n; } foo_true:
add a0, x0,x0
Please complete the RV32l assembly implementing the foo_exit:
foo function according to the comments and instructions lw ..
below following calling conventions. Since we are calling # restore the stack pointer (2points)
other functions, assume local variable c is put in s@ and n addi sp,sp,_
In s1 so that we can still use these values after function call. ret

2025/3/17 27

foo:

SP2024 Midterm | No. 6 addi sp,sp,-12

sw s@,sl1 and sp
blt ao@,x0,foo_true

Assume a struct type defined as follows has the following

layout, ¢ at address O (or address x) and next at 4 (or foo_false:
address x+4) because of alignment. The size of struct mv s0,ad
node is then 8-byte. 11 ae,8
call malloc
struct node {unsigned char c, struct node *next}; mv s1,a@
struct node* foo(char c) { addi a@,se0,-1
struct node *n; call foo
if (c < @) return 0; sw a0,4(s1)
n = malloc(sizeof(struct node)); sb s0,0(s1)
n->next = foo(c- 1); mv ao,sl
n->c = C; j foo_exit
return n; } foo_true:
add a0, x0,x0
Please complete the RV32l assembly implementing the foo_exit:
foo function according to the comments and instructions lw ..
below following calling conventions. Since we are calling # restore the stack pointer (2points)
other functions, assume local variable c is put in s@ and n addi sp,sp,12
In s1 so that we can still use these values after function call. ret

2025/3/17 28

Project 1.1 Questions

