DIscussion /
Datapath

Yutong Wang

<wangyt32023@>
3/30/2025

Datapath Components

oP
Carryln Select
| | NN
> > 32
3 3 § 32,, > Y 33 Result
,’ "/ » CarryOut B
32
Adder Multiplexer ALU
Write Enable RW RA RB _
Write Enable 5+ 5* 5* Write Enable Address
Data In |l| Data Out busA |
N N busW |32 x32.bit | 32 Dataln | pataOut
32 Registers |pusB 32 32
clk Clk 3 Clk —}>

register register file memory

5 Stages of Datapath

—

e |F: Instruction Fetch
: 0
* |ID: Instruction Decode o S > r%» g — .
+ O e
 EX: Execute SER D P ALU o
« MEM: Memory gE q -
e WB: Write Back ‘mm >
<
. b o > e > ¢ >
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Register
Fetch Register Write

Read

R—format: add

PC

PC + 4 Reg[rd] = Reg[rsl] + Reg[rs2]

o |[F

° ID Inst[11:7]

« EX: alu = R[rs1] + R[rs2] —
 MEM

 WB: R[rd] = alu wesia | clk

° PC — PC + 4 RegWriteEnable (RegWEn)

Control logic

1 25 24 20 1 1514 12 11 76
i 0000000 | rs2 | rsl i|- 000 | rd opcode QI
add 5 5 a

dd 5 Reg-Reg OP

2. :
ITlme Flagram

time —>

Clock 7* \ ;:(\ A
PC 1X 1000 | X 1004)¢
PC+4 X 1004 I X 1008 — X
inst[31:0] | X add x1,x2,x3 [X add x6 x7 . x9 ! X
Reg[rs1] I X Reg[2]] X Reg[7] : X
Reg[rs2] : X Reg[3] : X Reg[9]] X
alu : X . Reg[2]+Reg[3] X Reg[i]+Reg[9]
Reg[1] i ??7?] Reg[2]+Reg[3] |X

.)

Attention! WB actually finishes after the next rising edge of Clock.

I—format: add]

e |F

D

EX: alu = R[rs1] + imm
« MEM

WB: R[rd] = alu
PC=PC+4

Inst[11:7]

Reg[rs1]

Imm[31:0]

Inst[31:0] |mmSel RegWEn=1 BSel ALUSel=
- (rs2=0/ add

Control logic Imm=1)

@
Il—format: lw

. IF
- ID

DataD

inst[11:7] wh
) EX alu j— R[rsl] + |mm Inst[19:15] ij:rz Datanl Reg[rs1] aderataR -
« MEM: mem = M[alu] e .
Reg [1, DMEM ,
« WB: R[rd] = mem e
e PC=PC+4
Inst[31:0] ImmSel RegWEn Bsel ALUSel MemRW WBSel
=| =1 = =Add =Read =

Control logic

@
IS—format: SW

- IF

e ID Inst[11:7] —l_,lgk .
: pe+4
e EX: alu = R[rs1] + imm me
« MEM: MJalu] = R[rs2]
[J WB
Imm[31:0]
e PC=PC+4
Inst[31:0] ImmSel RegWEn E:EI :kg:m rv‘:":i'gw :!BSEI
Control logic = =0 *=Don’t care)

B—format

IF
ID

EX: alu = PC + imm et

MEM
WB
PC = PCSel ? alu : PC + 4

CSel=
a

ken/not taken

Control logic

=B =0

BrEq

=1 Asel =Add
=1

=Read

DataD Reg|rs1] »|1
Inst[11:7]
nst(19:15] | o0 _rIB "
i DSl DataR
‘ inst ' AddrA DataAFig, o heh b addr mem
st2d: 4
Com
clk Add'® DataB "Jr DataW
IMEM Reg [1, 1 I h;gl DMEM ,
Inst ck Re [rs2 I
[31:7] 9 il clk
Imm[31:0] | I
Inst[31:0] ImmSel RegWEn Brun BrLT Bsel ALUSel MemRW WBSel

=*

*=Don’t care)

2l
jalr

IF
ID —
EX: alu = R[rs1] + imm
MEM

WB: R[rd] = PC + 4

PC = alu

pc+4 5
DataD Reg[rs1] »{1
Inst[11:7]
E - addr Inst19:15) | > h "
c i Ll Ll DataR
N inst ———— AddrA DataAfg, o nch # alu addr mem
: Com
clk AddrB Datab P P DataW
IMEM Reg [] k;gl r DMEM
Inst ok Re [rs2] '
[31:7] 9 clk
Imm([31:0]
Yv
PCSel Inst[31:0] ImmSel RegWEn BrUn B,._Tfsel ALUSel MemRW wBsel
=taken =| =1 =* = =1 asel =Add =Read =

Control logic BrEq=* =0

2 .
Jal

+4
Add
pc+4
o IF DataD Reg[rs1] »11
Inst[11:7]
e |ID "lec addr AddrD 7 0/ wb
0 . Inst[19:15] DataR
pc+4 inst AddrA DataA Branch 0 + alu addr mem
. — . Inst[24:20
o EX alu — PC + |mm clk AddrB p,taphr{COMP 0 ALU Datal
~
 MEM - Reg [1, ; [Lomew
] _ '[gft.,] ek Reg|[rs2] ' olk
« WB: R[rd] = PC + 4 71| jmm.
Gen Imm[31:0]
e« PC = alu
Yv
PCSel Inst[31:0] ImmSel RegWEn BrUn BrLTBSe=1 ALUSel MemRW WBSel
=taken =J =1 =* =* Asel=1 ~add =Read =
Control logic BrEq=*

U—format: auipc

+4
Add
pc pc+4
° |F wb 2
DataD Reg[rs1]
Inst[11:7
o ID e dd AddrD 3 0/ wb
— 0 addr - Inst[19:15] AddrA DataA 0 + alu DataR
. —_ : . . Branch addr mem
® EX. alu - PC + Imm Inst[24:20 AddrB DataBh COmp 0 ALU
clk . DataW
Inst I 1 !
. — . clk Reg[rs2] clk
o WB R[rd] — alu 3971 | jmm.
_ Gen Imm[31:0]
e PC=PC +4
Yv

PCSel Inst[31:0] ImmSel RegWEn BrUn BrLTBsel=1 ALUSel = MemRW WBSel
=pc+4 =U =1 =% =* Asel=1 =Add = =
Control logic BrEq=*

Example from CA 2022 final

For instruction jalr ra, select the correct value for the control logic.

1. PCSel:

A. alu +4
B. pC + 4 - wh pe pc+4
p— >|DataD Reg(rs1] e
alu j1 Inst[11:7] |
C > addr Ll Ader
. > Inst[19:15

2 . ASG' . pc+4 B; A inst nstl] »IAddrA DataA Branch + 2] addr DataR
A O 1 cII! mE— AddrB pataplp Comp B ALY DataW

. —T" A —>

IMEM Reg [1, y { DMEM ,

B 1 A | A I

) clk Reg[rs2] clk

Imm[31:0]

. WBsel: |

A Yv

Asel

a | u Control logic BrEq

A. pC + 4 PCSel Inst[31:0] ImmSel RegWEn BrUn BrLT BSel ALUSel MemRW WBSel

Example from CA 2022 final

For instruction jalr ra, select the correct value for the control logic.

1. PCSel:

A. alu +4
B.pc +4
wb
— »|DataD Reg[rs1]
alu Ny Inst[11:7] ‘
N I"|I c Maddr Py Al

2. Asel pc+d ’% A inst 20 laddra Dataa Branch
A O c“! .M’ AddrB DataBh cOmp

. T |
B 1 IMEM Reg []A 'y

Y |
. I clk Reg[rs2]

Imm[31:0]

. WBsel: |

A Yv

A. pC + 4 PCSel Inst[31:0] ImmSel RegWEn Brun BrLT Bsel ALUSel MemRW WBSel

Asel

a | u Control logic BrEq

Example from CA 2022 final

(True or False)

1. () For instruction add, the value Is written back to Reg as soon as it is
computed by ALU.

2. () Except Write Enable, all the input and output buses of register file are
32-Dit.

3. () For register file and memory, CLK is a factor ONLY during write
operation.

4. () Register file holds all the registers needed for instruction execution.

Example from CA 2022 final

(True or False)

1.

(F) For instruction add, the value is written back to Reg as soon as it is
computed by ALU.

(F) Except Write Enable, all the input and output buses of register file are
32-bit.

(T) For register file and memory, CLK is a factor ONLY during write
operation.

(F) Register file holds all the registers needed for instruction execution.

Midterm | 2024

Datapath Below is a possible implementation of an ALU in a CPU that supports RV32I arith-
metic and logic instructions. Assume that the rectangles are logic blocks that implement the
corresponding functions described by the text. Please indicate the selection signals (in binary)
of the multiplexer array so that the output of the corresponding logic block is selected when
certain instructions are executed. Tips: An “X” can be used to represent that I do not care what
this bit is. For example, “X100” means that it can either be “0100” or “1100™.

— _——-_——-
adder ——10@
1
— | b=
subtractor cello] B
--_‘_‘—
11 XOR gates ——1@
1 sel[1]
— L b=
Operand 1 - AND gates sel[0]
[— [
OR gates (——1° sel[2]
1 Output
Left shifterj— —T 0 P
Operand 2 sello] 1
P Rightshifter] —{g — -
('Loqic) 1 se [] SEI[B]
$—[Rightshifter| | =7
(arithmetic) sel[o]
Compare | o
(unsigned) 1
— Compare _I “T-@__ Note that all the signals expect
An ALU (signed) sel[o] the selection signals are 32-bit.

addi x2,
sub x2,
sra x2,

sltu x2,

x2,
x2,
x2,

x2,

-1

x0

x1

x0

sel[3:0]=

sel[3:0]=

sel[3:0]=

sel[3:0]=

Midterm | 2024

Datapath Below is a possible implementation of an ALU in a CPU that supports RV32I arith-
metic and logic instructions. Assume that the rectangles are logic blocks that implement the
corresponding functions described by the text. Please indicate the selection signals (in binary)
of the multiplexer array so that the output of the corresponding logic block is selected when
certain instructions are executed. Tips: An “X” can be used to represent that I do not care what
this bit is. For example, “X100” means that it can either be “0100” or “1100™.

addi x2, x2, -1 sel[3:0]=_ _0000___
— adder F——0 sub x2, x2, x0 sel[3:0]=_0001_
1
subtractor—
Subtractor ?E}_[_i] B sra x2, x2, x1 sel[3:0]=_ 0111
11 XOR gates ——1@ cel[1]
1
+— | sltu x2, x2, x0 sel[3:0]=__1xx0__
Operand 1 - AND gates sel[0] !
T orR gates ——° : : : : : :
g sel[2] It 1s fine if ”x” 1s replaced with O or 1 for the s1tu instruction.
| - I g Output
Left shifter| 110]
Operand 2 RIohtehift S_f______
19(1.osqilc) N _'_2 selll] sel[3]
$—[Rightshifter| | =7
(arithmetic) sello]
Compare _,—T“‘
(unsigned) 1
— Compare _I — T Note that all the signals expect
An ALU (signed) sel[o] the selection signals are 32-bit.

 Midterm | 2023

Clk —

1
— we . xlrsi] P 32 ALU
PC [11 7] 5 7 ‘ Sub/ ya
J)rd 7
Instruction 32 x[rs2] ~ Adder 32
memory[19:15] rs1 > o Madd/sub —d | 32
~ | Register file))
[2 4!20] rs2 5’ - D e
Ed +
32 7 Sel[1:0]
D] OR
_:L XOR

We will estimate the maximum clock frequency step by step. By “delay”, we refer to prop-
agation delays, unless stated otherwise. The delay of each element is shown in the table

below.
Circuit 2-input AND 2-input OR | 2-input XOR DFF clk-to-Q
Delay (ps) 10 15 50 20

Circuit | 2-to-1 multiplexer | 5-32 decoder | 1-bit full adder | 3-input AND gate
Delay (ps) 15 100 30 15

I Midterm | 2023

(a) Delay of the ALU [6 points]

The ALU consists of functional units such as the adder/subtracter (circuit shown below)
and different types of logic gates, and a 4-to-1 multiplexer built from the 2-to-1 mul-
tiplexer using tree structure. Calculate the delay of the adder/subtracter and then the
maximum delay of the ALU.

d2[31] d2[30] d2[1] d2[0] [0
d1[31] d1[30] d1[1] d1[0]

FA FA
c[31] d[31] c[30] d[30] c[1] d[l] c[0] d[f]]
Solution: Ripple-carry adder/domino adder

add/sub

add/sub delay = X OReiay + 32 * (1-bit bull adder) 4, = 50 + 960 = 1010 ps.

Delay = 2*MUX

Sel2

Sell Tree structure
4-to-1 MUX delay = 2*2-to-1 MUX delay = 30 ps.
ALU max delay = 4-to-2 MUX delay + add/sub delay = 1040 ps.

I Midterm | 2023

(b) Delay of the datapath [9 points]
The detailed circuit of the register file is shown below. Assume all the DFFs has a setup
time of 50 ps. Indicate the elements of which the delay should be included to calculate
the minimum clock cycle and the corresponding delay numbers. After that, calculate the
maximum frequency of this datapath. Again, assume the 32-to-1 multiplexer is built from
2-to-1 multiplexer by the tree structure. Instruction memory delay is 80 ps.

clk

N M - [[; Ao | AU Reg. file delay in total = 32-1 MUX delay — 3-input AND delay
memory{;‘g;;lrslz register fe Tadd/sub 2 d = 5 x 2-1 MUX delay — 3-input AND delay = 60 ps.
l Minus the delay of the 3-input AND gate because it delays the clock signal, resulting
D e] in extra time for DFF setup in the register file.
r Critical path = 20 + 80 + 60 + 1040 + 50 = 1250 ps.
Solution: Max frequency = 1/(Critical path delay) = 800 MHz.

Critical path = clock-to-q (PC) + Imem delay + Reg. file delay + ALU delay
+ setup time (Reg. file).

D31l D[30) Do)
we D |
1k ™ I\:LDFF |’||I':|"DFF HI III:LDFF L| (c) Use the “funct3” field of the R-type instructions to generate the multiplexer select signal
— [| | .
/__en[SJ.] H T L\ for the ALU. Assume the multiplexer selects add/sub, AND, OR and XOR results when
I - IELDFF ﬁin>DFF HI_ .!IIZLDFF ﬁ the select signal is 00, O1, 10, 11, respectively.
g T 8 x[rs
rd - g L 5‘ _’[L 1]
8 | DFF | DFF e e 7 L DFF -
& en[1] -) r -l .g *®[rs2]
II_-LDFF h::LDFF h[L_ -||L_LDFF h %
\— enlo] —_J ' : ' L‘/|/r

Minus delay of 3-input AND gate because it delays the clock signal. *Srsz

I Midterm | 2023

(c) Use the “funct3” field of the R-type instructions to generate the multiplexer select signal
for the ALU. Assume the multiplexer selects add/sub, AND, OR and XOR results when
the select signal 1s 00, 01, 10, 11, respectively.

funct3[2] | funct3[2] | funct3[2] | Sel[1] | Sel[0]
add/sub 0 0 0 0 0
Solution: | AND 1 1 1 0 1
OR 1 1 0 1 0
XOR 1 0 0 1 1

Sel[1] = funct3[2] -funct3[0]
Sel[0] = funct3[2] - (funct3[1]-funct3[0] + funct3[1] - funct3[0])

funct3[2] D_ Sel[1]
funct3[1] {>=

funct3[0]

— _3— Sel[0]

 Midterm Il 2024

6. Datapath. We would like to add supports for more RV32I instructions by modifying the
single-cycle CPU datapath we covered in the lectures. It originally supports R- and I-type
arithmetic and logic operations, 1w, sw and beq instructions. The circuit diagram after modi-
fication 1s shown below. The modified datapath also supports U-type instructions. We first add
a multiplexer to select the input of the ALU between PC and x[rs1] using opl_src signal.
Besides, an extra option is added to the rightmost write-back multiplexer using a select signal
of “2”. This option selects the shifted immediate (upper 20 bits indicated by the 1ui or auipc
instruction, lower 12 bits are 0) as the value written to the register file. Assume that the shifted
immediate is provided by “imm. Gen.” block in the circuit diagram.

“reg_en’ denotes register file write-enable signal; “re” stands for data memory read-enable

signal; “we” represents data memory write-enable signal. We use logic ‘1’ to enable and logic
‘0’ to disable.

instrul11:71 o opl_src
' v, gl_ o, rewe
PC Instruction | 1nstru. rd
| * [|Reg. [pc| memory 1
| N e rsl x[re1] 0 Data
¥ I rs2 Reg. = ALU [E9g{ memory EDGUJ[
instru[19:15] ; file o0 e
instrul24:20]* x [rd] x[rs2] 1 — result 1
@_ 4 | Zero
1 ALU_ctrl
|
[31:7] Gen. - —

imm_ctrl CF_

is_beq

 Midterm Il 2024

instru[11:7] opl_src
v regl_en e we
. ~ d_li
AN PC Instruction | 1Nstru. rd ‘li | |
| LReg. | pc memewy | e rsi x[rg1l] ; Data
¥ el Reg. | [| Ly pigrimemoy |f0
instrul19:15] ; fil 0 alu
instrul24:20]* x[rd] xlry2 1 — result 1
ol— 4 [zgro
1 P> ALU ctry
~ |
pc_src instru | imm. | OpZISI'C Wb_SI"C
[31:7] Gen. T -

imm_ctrl CL
is_beq

(a) Please indicate the values of the control signals in the table below when executing lui,
auipe and add instruction. Use ‘X’ to indicate either ‘0’ or ‘1’ works.

Solution:
reg en | opl_src | op2_src re we wb_src
lui 1 X X 0 0 2
auipc | | 1 0 0 1
add 1 0 0 0 0 1

For re, it is also acceptable to fill in ‘x’, but ‘1’ receives half the mark, since we have
no reason to read explicitly; for 1ui instruction, either ‘0" or ‘1’ receives half the

mark for control signals opl_src and op2_src.

 Midterm Il 2024

instrul11:7] opl_src
. reg_en
_ —— i re we
L M PC Instruction | 1Nstru. rd |
. 1
— >Reg PC | memen e rsl x[rpl 0 Data
¥ ",, rs2 Reg. = ALU addr | memory EDGUJ[
instru[19:15] ; file o0 At
instrul24:20]* x [rd] x[rs2] 1 — result 1
o— 4 [zgro
1 ALU_ctrl
|
— instru _ | imm. wb_src
pe_sre inst i 0p2|src b
[31:7] Gen. | L -
| (b) Use not, and and or logics only to design logics that produce opl_src, wb_src[1]

imm_ctrl C% » (MSB of wb_src) signals. We use #x to represent the kth bit in the instruction, i.e.,
- 131 —instruction[31], %39 —=instruction[30],...,29 —instruction[0]. Note
that we still ensure that R- and I-type arithmetic and logic operations, 1w, sw and beq
work properly. Write down the logic expressions to complete your logic design.

Solution:

Only for 1lui, wb_src[1] is I. Only opcode (0110111) is used to identify lui.
Many of you include the logic to identify beq. However, as per the datapath, PC+imm
is calculated by the leftmost adder instead of the ALU, while the ALU is used to
compare x [rs1] and x [rs2]. So it is not appropriate to include the logic to identify
begq.

 Midterm Il 2024

(c) Next, we modify the “imm. Gen.” block to support the production of the shifted imme-
diate for 1ui and auipc instructions. Please connect the input signals properly. Note
that it should still support the production of the immediate for I-type arithmetic and logic
operations, 1w, sw and beq instructions. Disregard the selection signals for the multi-
plexers. Hint: You can use inst [m:n] to indicate the mth to nth bits of the instruction.
The signal connections for generating imm[4:1] is given as a reference. Modify it if
you found errors in the connections. Add inputs if the input ports for the multiplexer is
insufficient; or leave it blank if the input ports are more than enough.

Solution:
imm_ctrl -—---__
| M > Decided by
instruction
inst[31:7]——imm. Gen. ——— imm[31:0]
0 inst[31] qé\
1 or 1 imm([31:12]
inst[31:12] inst[31:12] 12~
0 Ny
(1]})
inst[7] 1 imm[11]
inst[31] 12
7] @ rimm[10:5] | 5
inst[30:25] ;] imm_ctri
. [
inst[11:8] Q . .
inst[24:21] 1 imm[4:1]
0 3
: 7
inst[20] imm[0]
inst[7] —?’
To be more precise, the ‘1’ for imm[31:12] should be FFFFF, i.e., 20 ‘1’s.

 Midterm Il 2023

3. Single-cycle CPU datapath [12 points]

Below is the single-cycle CPU datapath we have learnt in the lectures. (2) For an immediate (I-) type arithmetic and logic instruction, what is the total propagation

delay? (The subscript indicates the component/type of the delay.) [2 points]
BrLT pCrSI'C A. tclock-[o-q + tmux + tpc + Linstruction memory + Tdecoder/controller + mHX{ngg‘ files timmediale generation}
pc_sel | BrUn Bregq + tMUX + tdata memory + tMUX + tselup time-+
14 d_src
= d x[r 1] g - B tclock-[o-q + tmstructmn memory + tdecoder!contm]ler + max{tReg‘ files fimmediate genera[ion} + tMUX +
PC :1 - |_ § tALU + tMUX + tseluplime-
Instruc. — Com
> mem lrd Rfelg X[I’S]] Iogic? < z alu_re Data | C. tclock—lo—q + tMUX + tndder + tPC + tse[up time*
. rsiloro —
s e | r| = mem. ¢ D. None of the above.
4
C —Data
: ' —jimnt| S — | s
reg_we @ 3 alu_ctrl 1 <
@ - mem_rw
5 3 /l/ - w
op_src
imm_sel /

Decoder/Controller

(1) Which of the following type(s) of instructions cxpericnce(s) the longest propagation
delay? [2 points]

A. Conditional branch. B. Load.
C. I-type arithmetic and logic. D. Store.

 Midterm Il 2023

3. Single-cycle CPU datapath [12 points]

(3) For an R-type instruction, select from below which piece of data is selected for multi-

Below is the single-cycle CPU datapath we have learnt in the lectures. plexers MUX 1, MUX2, MUX3 and MUX4? What about U-type auipc instruction?
[8 points]
oc_sel BrLT pcrsrc R-type instructions: U-type auipc:

L | Brun , Breq = d_src MUXI_2__ MUXI_ B

= d x[r:|1] - I_ § MUX2 n MUX2_p_

PC [T instruc. rd Reg. |od) ComP L= Lo |alure| pata _\L MUX3_r_ MUX3_F__

- mem. | rs1 1 file logic r-‘; c mem. d MUX4__c__ MUX4__c__

'S4 | |
4 | - >] Datal |_ =z A. Data from the register file.
reg_we e 3 N alu_ctrl mem rw § B. Data from the PC register (value of C).
53 /|/ B @ C. Data from the PC register (value of pc+4).
imm sel Pp_ste D. Data of the immediate.
= / E. Data from the data memory.
Decoder/Controller F. Data from the ALU calculation.

(1) Which of the following type(s) of instructions cxpericnce(s) the longest propagation
delay? [2 points]

A. Conditional branch. B. Load.
C. I-type arithmetic and logic. D. Store.

