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Boosting performance without tuning the frequency or rewriting the program.
ILP Is to executing multiple instructions in parallel by:

* having multiple datapathes running simultaneously

* utilizing datapath components that are free

* reducing stall incurred data dependencies and controls



§ILP 1: Pipelining

Five stages of RISC-V datapath:

1. IF: instruction fetch (Read InstMem )

2. ID: instruction decode (Read RegFile )

3. EX: execution (Computation ALU )

4. MEM: memory access (Read/Write DataMem )
5. WB: write back (Write RegFile )

Time for executing one Instruction cannot be shortened because of the
dependencies between stages.

However, we can use Inactive components to execute the next/previous
Instruction.



§ILP 1: Pipelining
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1. Starting: Fill pipeline stages with instructions (parallelism
Increase)

2. Interim: All stages are running simultaneously
(maximum parallelism)

3. Stopping: Stages becomes free (parallelism decrease)
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Pipeline Hazards

Unable to execute a stage of an instruction due to:
e Structural Hazard:

* The required hardware resources Is occupled by other instructions
* Data Hazard:

* Dependent data not computed and stored yet

* Control Hazard:
* Jump/Branch about to happen, unable to fetch correct instruction.

Hazard cause pipeline to stall, resulting in CPI > 1.



Structural Hazards

* On RegFile: instruction decode and register writeback

* On Mem: instruction fetch and memory read/write

* On ALU / FPU: certain computations requires more than
one cycle to complete

Solving structural hazards
For RegFile : W/R on rise/fall edges respectively.

* For Mem : Separation of data memory and instruction memory.

* For ALU/ FPU :
* Re-ordering the instructions (in compile time | in runtime)
* Adding more computation resources...
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Data Hazards

add x1, x2, x3

add x4, x5, x6
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Mitigation: Reorder the code, inserting an
Independent instruction after Iw .
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IControI Hazards

Time (in clock cycles)
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instruction to fetch in cycle 2, 3, 4.

* Idea: continue execution, undo the
wrong actions if necessary
eager execution: executing both if
branch and else branch
* branch prediction: guess the result of
branch comparison
* Nothing wrong on correct
prediction
* Flush pipeline on wrong
prediction
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JILP 2: Multi-issue

What if we pack multiple ALUs, FPUs and Load/Store units into
the processor?
* Single Issue: fetching and start executing a single instruction
per cycle. Not utilizing the extra computation power.
* |deal performance: CPI =1
* Multiple Issue: fetching and starting executing multiple
instructions per cycle. Exploiting the additional hardware
resources.
* |deal performance: CPI < 1
Typically paired with the following techniques:
* Qut of order execution: help mitigating data dependencies
(RAW, WAR, WAW)
* Speculative execution: help reduce impact of branches
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Appendix

Common Issue Hazard Distinguishing
name structure  detection Scheduling characteristic Examples
Superscalar Dynamic Hardware  Static In-order execution Mostly in the embedded
(static) space: MIPS and ARM,
including the Cortex-AS53
Superscalar Dynamic  Hardware  Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic ~ Hardware  Dynamic with  Out-of-order execution Intel Core 13, 15, 17; AMD
(speculative) speculation with speculation Phenom; IBM Power 7
VLIW/LIW  Static Primarily  Static All hazards determined Most examples are in signal
software and indicated by compiler  processing, such as the TI
(often implicitly) Céx
EPIC Primarily ~ Primarily Mostly static All hazards determined [tanium
static software and indicated explicitly

by the compiler

Figure 3.19 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. Appendix H focuses on compiler-based approaches. The EPIC approach, as embodied in the 1A-64
architecture, extends many of the concepts of the early VLIW approaches, providing a blend of static and dynamic
approaches.
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The given code is executed on the processor:

ADD R1,
SUB R4,
AND R6,
OR RS,

R2,
R1,
R1,
R6,

R3
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R7
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