
<wangyt32023@>
4/14/2025

Yutong Wang

Discussion 9
Instruction level parallelism



Iron law

Boosting performance without tuning the frequency or rewriting the program.
ILP is to executing multiple instructions in parallel by:
• having multiple datapathes running simultaneously 
• utilizing datapath components that are free 
• reducing stall incurred data dependencies and controls



ILP 1: Pipelining

Five stages of RISC-V datapath:
1. IF: instruction fetch (Read InstMem ) 
2. ID: instruction decode (Read RegFile ) 
3. EX: execution (Computation ALU ) 
4. MEM: memory access (Read/Write DataMem )
5. WB: write back (Write RegFile )

Time for executing one instruction cannot be shortened because of the 
dependencies between stages. 
However, we can use inactive components to execute the next/previous 
instruction.



ILP 1: Pipelining

• registers between stages: prevent interference with 
previous/next instruction. 

• Pipelining allows higher clock frequency, but typically 
increases the latency.

1. Starting: Fill pipeline stages with instructions (parallelism 
increase) 

2. Interim: All stages are running simultaneously 
(maximum parallelism) 

3. Stopping: Stages becomes free (parallelism decrease)



Pipeline Hazards

Unable to execute a stage of an instruction due to: 
• Structural Hazard: 

• The required hardware resources is occupied by other instructions 
• Data Hazard: 

• Dependent data not computed and stored yet 
• Control Hazard: 

• Jump/Branch about to happen, unable to fetch correct instruction.
Hazard cause pipeline to stall, resulting in CPI > 1.



Structural Hazards

• On RegFile: instruction decode and register writeback 
• On Mem: instruction fetch and memory read/write 
• On ALU / FPU: certain computations requires more than 

one cycle to complete

Solving structural hazards
For RegFile : W/R on rise/fall edges respectively. 
• For Mem : Separation of data memory and instruction memory. 
• For ALU / FPU : 

• Re-ordering the instructions (in compile time | in runtime)
• Adding more computation resources...



Data Hazards

Forwarding or bypass

Unavoidable stall 

• lw x1, 0(x2) : result of lw ready in cycle 4 
• sub x4, x1, x5 : value of x1 used in cycle 4 

Mitigation: Reorder the code, inserting an 
independent instruction after lw .



Control Hazards

• PC changes on rising edge of cycle 5, 
if branch taken. 

• Unable to determine the correct 
instruction to fetch in cycle 2, 3, 4.

• Idea: continue execution, undo the 
wrong actions if necessary 
eager execution: executing both if 
branch and else branch 

• branch prediction: guess the result of 
branch comparison 
• Nothing wrong on correct 

prediction 
• Flush pipeline on wrong 

prediction



ILP 2: Multi-issue

What if we pack multiple ALUs, FPUs and Load/Store units into 
the processor?
• Single Issue: fetching and start executing a single instruction 

per cycle. Not utilizing the extra computation power. 
• Ideal performance: CPI = 1

• Multiple Issue: fetching and starting executing multiple 
instructions per cycle. Exploiting the additional hardware 
resources. 
• Ideal performance: CPI < 1

Typically paired with the following techniques: 
• Out of order execution: help mitigating data dependencies 

(RAW, WAR, WAW) 
• Speculative execution: help reduce impact of branches



Appendix



Exercise


