Discussion 9 |
Instruction level parallelism

Yutong Wang

<wangyt32023@>
4/14/2025

=
Ilron law

Time Instructions Cycles Time

X X
Program Program Instructions Cycle

Boosting performance without tuning the frequency or rewriting the program.
ILP Is to executing multiple instructions in parallel by:

* having multiple datapathes running simultaneously

* utilizing datapath components that are free

* reducing stall incurred data dependencies and controls

§ILP 1: Pipelining

Five stages of RISC-V datapath:

1. IF: instruction fetch (Read InstMem)

2. ID: instruction decode (Read RegFile)

3. EX: execution (Computation ALU)

4. MEM: memory access (Read/Write DataMem)
5. WB: write back (Write RegFile)

Time for executing one Instruction cannot be shortened because of the
dependencies between stages.

However, we can use Inactive components to execute the next/previous
Instruction.

§ILP 1: Pipelining

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7
* registers between stages: prevent interference with I3 D EX MEM we
. . . >
previous/next instruction. Instru. 1 | imem e B omem | (LGS
* Pipelining allows higher clock frequency, but typically F D EX MEM we
Increases the latency. Instru. 2 mem | | Rod pmem | | e
e e
IF ID EX MEM WB
Ideal Performance: n stages — CPI = 1, freq = n X freq,pipelined: .
Instru. 3 Imem ?ﬁg Dmem N
performance|
. IF ID EX MEM
Loomation time Instru. 4 Imem ?ﬁs Dmem

1. Starting: Fill pipeline stages with instructions (parallelism
Increase)

2. Interim: All stages are running simultaneously
(maximum parallelism)

3. Stopping: Stages becomes free (parallelism decrease)

IF/ID reg. ID/EX reg. EX/MEM reg. MEM/WB reg.
IF = ID EX = MEM = WB

1]
Imem [— Reg 4@ Dmem [[Reg

file file

clk

Pipeline Hazards

Unable to execute a stage of an instruction due to:
e Structural Hazard:

* The required hardware resources Is occupled by other instructions
* Data Hazard:

* Dependent data not computed and stored yet

* Control Hazard:
* Jump/Branch about to happen, unable to fetch correct instruction.

Hazard cause pipeline to stall, resulting in CPI > 1.

Structural Hazards

* On RegFile: instruction decode and register writeback

* On Mem: instruction fetch and memory read/write

* On ALU / FPU: certain computations requires more than
one cycle to complete

Solving structural hazards
For RegFile : W/R on rise/fall edges respectively.

* For Mem : Separation of data memory and instruction memory.

* For ALU/ FPU :
* Re-ordering the instructions (in compile time | in runtime)
* Adding more computation resources...

CC 4
MEM

Dmem

EX

ﬂ\(V

CC 5
WB

Reg
file

MEM

Dmem

ID EX
Reg > >
file C

IF ID

o] | o8

Data Hazards

add x1, x2, x3

add x4, x5, x6
add x7, x1, x4 R-type pl srcCC 3 CC 5
1 cc 2 cc 3 cc 4 s 6 cc 7
EX
IF ID X2 MEM WB WB
Reg > Reg x1
Instru. 1 | Imsi file = Dmem fle |updated Reg
x3 file
IF ID EX MEM WB
x5 4
Instru. 2 Imem Reg Dmem Reg X .
" §° }pdated Forwarding or bypass
IF ID EX MEM WB .
ke N Unavoidable stall
Instru. 3 Imem fﬁg Dmem mg
x4 ,
0, * Iwx1, 0(x2) : result of lw ready in cycle 4
Read after write (RAW) * sub x4, x1, x5 : value of x1 used in cycle 4

[*]
~

Mitigation: Reorder the code, inserting an
Independent instruction after Iw .

@
IControI Hazards

Time (in clock cycles)

cC1 CcC2 CC3 CC4 CCS CC6 CCy cCcs CcC9o Lo
* PC changes on rising edge of cycle 5,
Progrem if branch taken. |
proer * Unable to determine the correct

{in instructions)

i
40 beq x1, x0, 16 []—I-”.

44 and x12, x2, x5

instruction to fetch in cycle 2, 3, 4.

* Idea: continue execution, undo the
wrong actions if necessary
eager execution: executing both if
branch and else branch
* branch prediction: guess the result of
branch comparison
* Nothing wrong on correct
prediction
* Flush pipeline on wrong
prediction

48 or x13, x6, x2

52 add x14, x2, x2

—

T2 hw xd, 100({x7)

JILP 2: Multi-issue

What if we pack multiple ALUs, FPUs and Load/Store units into
the processor?
* Single Issue: fetching and start executing a single instruction
per cycle. Not utilizing the extra computation power.
* |deal performance: CPI =1
* Multiple Issue: fetching and starting executing multiple
instructions per cycle. Exploiting the additional hardware
resources.
* |deal performance: CPI < 1
Typically paired with the following techniques:
* Qut of order execution: help mitigating data dependencies
(RAW, WAR, WAW)
* Speculative execution: help reduce impact of branches

Instruction fetch
and decode unit

L

y Y

Reservation
station

Y

In-order issue

Reservation Reservation
station e station

Functional
units

l

Reservation
station

Integer

Integer

Floating
point

Out-of-order execute
store

Y

Commit
unit

In-order commit

Appendix

Common Issue Hazard Distinguishing
name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the embedded
(static) space: MIPS and ARM,
including the Cortex-AS53
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic ~ Hardware Dynamic with Out-of-order execution Intel Core 13, 15, 17; AMD
(speculative) speculation with speculation Phenom; IBM Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in signal
software and indicated by compiler processing, such as the TI
(often implicitly) Céx
EPIC Primarily ~ Primarily Mostly static All hazards determined [tanium
static software and indicated explicitly

by the compiler

Figure 3.19 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. Appendix H focuses on compiler-based approaches. The EPIC approach, as embodied in the 1A-64
architecture, extends many of the concepts of the early VLIW approaches, providing a blend of static and dynamic
approaches.

=l .
I Exercise

PC PCI|IITS PC Zaren
R d I=H H
+4 —rsi1 x[rs‘]]l 1 It_i q :
5 | pec/[T]52 [rs2] Comp. | addr at_a
pcH imemHH cul | Hrd for Br. | A \
Hla : - IO 1 |{[omem
Instruction imm | imm | ﬂ x[rs2] L —
- Gen. | ' result
Ctrl. signalg imm_sel rsil] rdll
rs2u ! N
IF/ID ID/EX EX/MEM MEM/WB

The given code is executed on the processor:

ADD R1,
SUB R4,
AND R6,
OR RS,

R2,
R1,
R1,
R6,

R3
RS
R7
R9

CcC |1

4

10

ADD

SUB

AND

OR

