
Computer Architecture I Mid-Term I April 10, 2025

Computer Architecture I Mid-Term I

Chinese Name:

Pinyin Name:

Student ID:

E-Mail ... @shanghaitech.edu.cn:

Question Points Score

1 1

2 18

3 11

4 11

5 12

6 6

7 17

8 10

9 14

Total: 100

• This test contains 22 numbered pages, in-
cluding the cover page, printed on both
sides of the sheet.

• We will use gradescope for grading, so
only answers filled in at the obvious
places will be used.

• Use the provided blank paper for calcula-
tions and then copy your answer here.

• Please turn off all cell phones, smart-
watches, and other mobile devices. Re-
move all hats and headphones. Put every-
thing in your backpack. Place your back-
packs, laptops and jackets out of reach.

• The total estimated time is 105 minutes.

• You have 120 minutes to complete this exam. The exam is closed book; no computers,
phones, or calculators are allowed. You may use one A4 page (front and back) of handwritten
notes in addition to the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you
can. We will deduct points if your solution is far more complicated than necessary. When
we provide a blank, please fit your answer within the space provided.

• Do NOT start reading the questions/ open the exam until we tell you so!

Email: Midterm I, Page 2 of 22 Computer Architecture I 2025

1.1 First Task (worth one point): Fill in you name [1 point]
Fill in your name and email on the front page and your ShanghaiTech email on top of every
page (without @shanghaitech.edu.cn) (so write your email in total 22 times).

2. MISC [18 points]
(a)2 (____) The assembler takes two passes over a piece of code to resolve all addresses. True

or False?

Solution: F

(b)2 (____) An RV32I CPU can load 8-bit values from memory, but it can only store the 32-bit
word to memory as the smallest unit. True or False?

Solution: F

(c)2 (____) An RV32I CPU requires all memory stores to be 32-bit aligned, making 8-bit
aligned stores impossible. True or False?

Solution: F

(d)2 In C programming, which of the following statements about memory management is
correct? (____)

A. Variables allocated on the stack stay throughout the program’s execution.
B. Memory allocated on the heap should be manually freed to prevent memory

leaks.
C. Heap memory is used for function call frames.
D. The code segment contains uninitialized global variables.

Solution: B

(e)2 Which of the following statements correctly describes an instruction in RV32I? (____)
A. sw rs2, offset(rs1) stores a value from the register rs2 to memory

and requires offset to be a 4-byte aligned value.
B. beq rs1, rs2, offset means that if x[rs1] equals x[rs2], the PC

is set to sext(offset).
C. slli rd, rs1, shamt performs a zero-filled left shift on the value in

rs1 and stores the result in rd.
D. lw rd, offset(rs1) loads a 16-bit value from the address offset +

x[rs1] into rd; in RV64I, the value is sign-extended to 32 bits.

Solution: C

(f)2 In the RV32I instruction set, about instruction jalr ra, a0, 0x10, which of the fol-
lowing statement(s) is (are) false? (____)

Email: Midterm I, Page 3 of 22 Computer Architecture I 2025

A. The next instruction to be executed is located in memory at address (0x10 +
x[a0])& 0xFFFFFFFE.

B. After executed, the value of register ra is the PC of this jalr instruction.
C. In RV32I, jalr can be used to implement the operation of returning from a

function.
D. In RV32I, jalr can be used to implement the operation of calling a function.

Solution: B

(g)2 What will the following C code print? (____)

1 #include <stdio.h>
2 int func(int* p) {p = p + 1;}
3 void main() {
4 int ar[2] = {4, 6};
5 func(&ar[0]);
6 printf("%d", *ar);
7 return 0;
8 }

A. 4
B. 5
C. 6
D. 7

Solution: A

(h)2 (________) Regarding static linking, which of the following statement(s) is/are correct?
A. Static linking requires recompilation to incorporate library updates.
B. Static linking typically results in smaller executable files compared to dynamic

linking.
C. Static linking allows sharing of library code between running programs.
D. Static linking includes the entire library in the executable file even if only a

portion is used.
E. Static linking resolves all references at runtime.

Solution: A and D. (0 for all the other cases)

(i)2 (____) In the RISC-V instruction set, the following are conditional branch (B-type) and
unconditional jump (J-type) instructions. Choose all instructions that will definitely
change the content of the ra (return address) register.

A. beq t0, t1, label

B. beqz t0, label

C. j label

Email: Midterm I, Page 4 of 22 Computer Architecture I 2025

D. jal label

E. jr ra

Solution: D

• beq t0, t1, label and beqz t0, label are conditional branch in-
structions. They only affect the PC (program counter) and do not modify the
ra register.

• j label (which is equivalent to jal x0, label) is an unconditional jump,
but it does not store a return address, so it does not change ra.

• jal label (Jump and Link) stores the address of the next instruction in ra
before jumping, so it always modifies ra.

• jr ra: This is a jump to the address in ra, but it does not modify ra itself. It
only changes the PC.

Email: Midterm I, Page 5 of 22 Computer Architecture I 2025

3. Number Rrepresentation [11 points]

(a) Bfloat16 (BF16) is a new floating-point number representation. It is commonly used in
deep learning to boost the training and inference efficiency, especially in fused multiply-
and-add operations (e.g., A × B + C). Compared to the standard IEEE 754 single-
precision (FP32) representation, it reduces mantissa from 23 bits to 7 bits, while the other
parts remain unchanged. It can be seen as a short version of FP32, skipping the least
significant 16 bits of mantissa, including the special cases such as nan, ±inf, zero and
denormalized numbers.
Given the bits in hexadecimal, what do these bits represent in BF16? Write down your
answer in decimal form.

i.2 In BF16, 0xC2C8 represents ____________.

ii.2 In BF16, 0x7FC0 represents ____________.

(b)3 Consider a BF16 addition. Assume the result is still a BF16 number, compute 6.0+1024.0
in BF16 and write down the result in hexadecimal. Throughout the calculation, round-to-
nearest-ties-to-even is used if rounding is required.

In hexadecimal, _______________.
What is the value in decimal then?

In decimal, _______________.
Hint: 6.0 is 0x40C0 and 1024.0 is 0x4480 in BF16 representation.

(c)2 Write down the smallest positive number that can be represented in BF16 representation
in 2’s power.

The smallest positive number in BF16 is 2().

(d)2 True or False If a number is representable in n-bit 2’s complement, its absolute value is
also representable in n-bit 2’s complement format. Note that this question is not related
to BF16. (________)
If you choose “False”, write down the number(s) whose absolute value cannot be repre-
sented in n-bit 2’s complement format using a expression with n.

_______________.

_______________.

Solution:

a. 1. −100.

Email: Midterm I, Page 6 of 22 Computer Architecture I 2025

2. NaN.

b. 1. 0x4481.

2. 1032.

c. −133.

d. F; −2n−1.

Email: Midterm I, Page 7 of 22 Computer Architecture I 2025

4. C Basics [11 points]
(a)2 Finish the add two function, where we want to add 2 to an int variable passed by the

user, and return its previous value. For example, if x is 0, after calling add two, the
return value is 0 and x is 2. Only one statement is allowed for each line, and comma (,)
is not allowed.

int add_two(___________________ x) {

}

Solution: One possible answer

1 int add_two(int *x) {
2 *x += 2;
3 return *x - 2;
4 }

(b)3 #define MUL(a, b) a * b

The above macro calculates the product of a and b. What is the value of
16 / MUL(1 + 1, 3 - 1)? Is the result the same as 16÷ ((1 + 1)× (3− 1))?
If not, please fix the macro to get the same result.

Solution: 18, No. #define MUL(a, b) ((a) * (b))

(c)1 Write a macro that returns the minimum value between a and b. You should use ternary
conditional operator, i.e., cond ? x : y returns x when cond is true, y otherwise.

#define MIN(a, b)

Solution: #define MIN(a, b) ((a) < (b) ? (a) : (b)) or
#define MIN(a, b) ((a) > (b) ? (b) : (a))

(d)3 Based on your add two function in (a) and MIN macro in (c), if a = 15, b = 10,
what is the value of a after the execution of MIN(add two(&a), b)? What if a =
10, b = 15? Why?

Email: Midterm I, Page 8 of 22 Computer Architecture I 2025

Solution: 17 and 14, respectively. Because when a< b, add two is executed twice.

(e)2 Recall in Lab 1, you are required to write a C program to print the sizes of different types.
Please write a C macro PS that can print the size of the required type, i.e., PS(long
long) will print the following (Hint: the format specifier for size t is %zu):
Size of long long: 8

#define PS(type) printf()

Solution: Two possible answers:
#define PS(type) printf("Size of "#type": %zu",
sizeof(type))

#define PS(type) printf("Size of %s: %zu", #type,
sizeof(type))

Email: Midterm I, Page 9 of 22 Computer Architecture I 2025

5. CALL [12 points]

Consider a 32-bit C program solving a LeetCode problem. The code with keyword
leetcode is declared by leetcode.h and is linked as a dynamic library, while code
with keyword hash declared in hash.h is statically linked. The compilation of the
program does not record debugging information. Please answer the questions based on
the provided code and file structure.
Note: Here are some details about the code: the hash map is an integer-to-integer
mapping with a default value of 0 if a key does not exist. However, it’s irrelevant to the
questions.

1 #include "hash/hash.h"
2 #include "leetcode/leetcode.h"
3

4 #define SUB_ARRAY_SUM 560
5

6 static const char *user = "SAKIKO";
7

8 void solution(int i) {
9 struct { int *nums, size, k, result; } data;

10 data.result = 0;
11

12 leetcode_init(SUB_ARRAY_SUM, i, &data);
13

14 int prefix = 0;
15 struct hash prefix_hash = hash_init();
16 *hash_ref(&prefix_hash, 0) = 1;
17 for (int i = 0; i < data.size; i++) {
18 prefix += data.nums[i];
19 data.result += *hash_ref(&prefix_hash, prefix - data.k);
20 ++*hash_ref(&prefix_hash, prefix);
21 }
22

23 leetcode_submit(SUB_ARRAY_SUM, i, &data, user);
24 }
25

26 int main(int argc, char *argv[]) {
27 int test_cases = leetcode_cases(SUB_ARRAY_SUM);
28 for (int i = 0; i < test_cases; i++)
29 solution(i);
30 return 0;
31 }

(a)5 Lightning Round – Put True or False of the statements in the table provided below:
i. The symbol SUB_ARRAY_SUM exists after compilation.

ii. Separating source files into hash.c and main.c is solely for coding convenience

Email: Midterm I, Page 10 of 22 Computer Architecture I 2025

with no additional benefits.
iii. hash_init exists in the symbol table of hash.o, while user exists in main.o’s.
iv. Data pointed by argv[0] is stored in the .data segment.
v. For the Windows SDK (12 GiB) used by nearly every program on Windows, it is

preferable to statically link it.

i ii iii iv v

Solution: F, F, T, F, F

(b)4 At which stage of the process are all the machine code bits determined for the following
statements:

i. struct hash prefix_hash = hash_init();

ii. prefix += data.nums[i];

iii. leetcode_init(SUB_ARRAY_SUM, i, &data);

iv. ++*hash_ref(&prefix_hash, prefix);

A. After compile B. After assembly C. After linking D. After loading

i ii iii iv

Solution: C, B, C, C

(c) There is a saying: Any problem in computer science can be solved with another layer
of indirection. Let’s dive into the procedure of compiling and executing a dynamically
linked function and answer the following questions.

1 000103c0 <_PROCEDURE_LINKAGE_TABLE_>:
2 103c0: 00002397 auipc t2,0x2
3 103c4: 41c30333 sub t1,t1,t3
4 103c8: c383ae03 lw t3,-968(t2) # 11ff8
5 103cc: fd430313 addi t1,t1,-44
6 103d0: c3838293 addi t0,t2,-968
7 103d4: 00235313 srli t1,t1,0x2
8 103d8: 0042a283 lw t0,4(t0)
9 103dc: 000e0067 jr t3

10 ...
11 00010400 <leetcode_cases@plt>:
12 10400: 00002e17 auipc t3,0x2

Email: Midterm I, Page 11 of 22 Computer Architecture I 2025

13 10404: c08e2e03 lw t3,-1016(t3) # 12008
14 10408: 000e0367 jalr t1,t3
15 1040c: 00000013 nop
16 ...
17 000105f2 <main>:
18 ...
19 105fe: 3509 jal 10400
20 ...
21 00011ff8 <.got.plt>:
22 11ff8: ffffffff
23 11ffc: 00000000
24 12000: 000103c0
25 12004: 000103c0
26 12008: 000103c0

i.1 (____) What is the value in the PC register when the given code ends?

A. 11ff8.
C. ffffffff.

B. 12008.
D. 10400.

Hint: the program begins execution from main(). Please read the assembly code
and try to analyze the calling flow of the dynamically linked functions.

ii.2 (____) When actually running the C program, the value you selected in the last
question is modified to the real address of the function to call to realize dynamic
linking when it ends; which of the following stages does this modification the most
likely happen at?

A. Compiler.
C. Dynamic linker.

B. Assembler.
D. Loader.

Solution: i. C; ii. C or D.

Email: Midterm I, Page 12 of 22 Computer Architecture I 2025

6. Logic [6 points]

(a)2 (____) How many input variable combinations does a four-input NOR gate have that result
in an output of 1?

A. 15.
B. 8.
C. 7.
D. 1.

Solution: D.

(b)2 (Multiple Choice) (________) Which of the following statement(s) are(is) true about
boolean algebra? (where ⊕ denotes XOR)

A. X(Y ⊕ Z) = (XY)⊕ (XZ).
B. (X ⊕ Y)⊕ Z = X ⊕ (Y ⊕ Z).
C. X + Y Z = (X + Y)(X + Z)(X + Y + Z).
D. (X + Y)(X + Z)(Y + Z) = (X + Y)(X + Z).

Solution: ABD. 2 for exactly the same with the answer. 0 for all the other cases.

(c)2 (____) Build a logic circuit with only 2-input AND and 2-input OR gates to implement the
function shown in the truth table below. What are the minimal numbers of needed AND
gates and OR gates?

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

A. 3 AND gates and 3 OR gates.
B. 3 AND gates and 2 OR gates.
C. 2 AND gates and 3 OR gates.
D. 2 AND gates and 2 OR gates.
E. 2 AND gates and 1 OR gate.
F. 1 AND gate and 2 OR gates.

Email: Midterm I, Page 13 of 22 Computer Architecture I 2025

Solution: D.

Email: Midterm I, Page 14 of 22 Computer Architecture I 2025

7. Datapath [17 points]
Except the datapath we learned from class, there are also other ways to build a computer. We
will explore a bus-based design as shown in the figure below. It supports RV32I R- and I-type
arithmetic and logic operations, and part of the load and store instructions only. As covered in
the lectures, we assume that the main memory and the register array change their states at the
rising edge of clock, while memory/register array read is purely combinational logic.

x0
x1

... ...
x31

x32 (PC)

M
U

X
1

rs1
rs2
rd
32

0
1
2
3

RegSel

Register array

Bus

Index

RegWr_en

RegEn

A
B

A_en

B_en

A
LU

ALUEn

Ins. R
eg.

Ins_en

Imm. Gen.
ImmEn

A
ddr. R

eg.

Addr_en

Main
memory

MemEn

Clock

Bus

RegEn
ImmEn

ALUEn
MemEn

ALU_op

RegSel 3

x32(PC)

RegWr_en

Addr_en

X

Instru.

Addr. Reg. x32(PC)0

En

In

Out

A transmission gate

Ins_en

Ins. Reg. 0 Instru.

Control signals:

t1 t2 t3 t4 t5

Ins_en RegWr_en A_en ALU_op Addr_en RegSel
ImmEn RegSel RegEn B_en ALUEn MemEn

A_en

B_en

ALU_op X

t6t0 t7 t8

Address
Register

Instruction
Register

You can consider “bus” as a bunch of metal wires. It is used to pass digital signals from one
device to another. In this design, the bus contains 32 wires, which means that it can only pass
1 32-bit digital signal at a time. There are 4 devices that can set value to the bus, namely the
immediate generator (Imm. Gen.), the register array, the ALU and the Main memory. There
are also several 32-bit registers that can read from the bus, such as the instruction register (Ins.
Reg.), the register array, the A and B registers (A and B in the figure) and the address register
(Addr. Reg.), controlled by enable signals Ins_en, RegWr_en, A_en, B_en, Addr_en, re-
spectively. At one time, at most one device can set value or write to the bus (this is achieved
by enable/disable the transmission gates), while all the devices can read from the bus.

To reduce the hardware cost, the PC register is integrated into the register array along with
the 32 general purpose registers in RV32I ISA. It is marked as x32 (PC) in the figure, and
can be indexed by 32. The general purpose registers can still be indexed by its corresponding
numbers. We also assume that when the 4 devices are all disconnected from the bus, arbitrary
signals can be assigned to the bus.

(a)2 To avoid signal conflict, only 1 device is allowed to write to the bus at one time. This
is achieved by using the transmission gates. The MOSFET diagram of a transmission
gate is shown below. When the enable signal (En) is ______, the corresponding device
is connected to the bus and thus can write to the bus; while the enable signal (En) is
______, the corresponding device is disconnected to the bus and thus cannot modify the
signal on the bus.

Solution: __1__; __0__

Email: Midterm I, Page 15 of 22 Computer Architecture I 2025

In Out

En

Figure 1: A transmission gate.

(b)10 Since the signals are transmitted through the bus instead of directly from device to device
as in our lectures, the signals have to be transmitted serially and it takes multiple clock
cycles to complete 1 instruction. For example, “instruction fetch” itself would take 2
clock cycles as shown in the timing diagram below. For ease of read, we list the waveform
of relevant signals only in the diagram. We use X to indicate that we do not care what
the signal is, and it does not affect the function of the circuit. Instru. stands for the
instruction read from the Main memory at address PC.

x0
x1

... ...
x31

x32 (PC)

M
U

X
1

rs1
rs2
rd
32

0
1
2
3

RegSel

Register array

Bus

Index

RegWr_en

RegEn

A
B

A_en

B_en

A
LU

ALUEn

Ins. R
eg.

Ins_en

Imm. Gen.
ImmEn

A
ddr. R

eg.

Addr_en

Main
memory

MemEn

Clock

Bus

RegEn
ImmEn

ALUEn
MemEn

ALU_op

RegSel 3

x32(PC)

RegWr_en

Addr_en

X

Instru.

Addr. Reg. x32(PC)0

En

In

Out

A transmission gate

Ins_en

Ins. Reg. 0 Instru.

Control signals:

t1 t2 t3 t4 t5

Ins_en RegWr_en A_en ALU_op Addr_en RegSel
ImmEn RegSel RegEn B_en ALUEn MemEn

A_en

B_en

ALU_op X

t6t0 t7 t8

Address
Register

Instruction
Register

From time period t0 to t1, RegEN is enabled and RegSel is set to 3 so that x32 (PC)
is read from the register array and the value is sent to the bus. When a clock rising edge
arrives at time t1, since the address register is enabled, it loads data from the bus and
updates its value to x32 (PC). Correspondingly, the instruction is read from the main
memory to the bus at time t2, with RegEN disabled and MemEN enabled. At the next clock
rising edge (t3), the instruction register then fetches the instruction from the bus with
Ins_en enabled. A controller (not shown in the figure) then decodes the instruction and
generates necessary control signals to execute the instruction.

Email: Midterm I, Page 16 of 22 Computer Architecture I 2025

Assume an R-type instruction is fetched, we can load the operands from the register array
to the A and B registers for computation by the ALU. To load rs1 to A register, please fill
in the control signals properly. ImmEn is ________, RegSel is ________, RegWr_en
is ________, RegEn is ________, A_en is ________, B_en is ________, ALUEn is
________ and MemEn is ________.
This R-type instruction takes at least ________ clock cycles to complete. (Hint: count
the total number of rising clock edges in total to complete the instruction fetch, operand
fetch (instruction decode), execution, write-back phases. You should also setup the regis-
ters so that the computer is able to execute the next instruction automatically.)

Solution: 0; 0; 0; 1; 1; 0; 0; 0.
7 clock cycles
Clock cycle 1: A=PC; Addr.Reg.=PC;

Clock cycle 2: Ins.Reg.=instruction;
Clock cycle 3: Bus=4 and B=4;

Clock cycle 4: PC (x32)=PC+4;

Clock cycle 5: A=x[rs1];
Clock cycle 6: B=x[rs2];
Clock cycle 7: x[rd]=R[A,B].

(c)2 The bit width of Index should be ________ to access all the registers in the register
array. Therefore, rs1, rs2 and rd should ________ (A. make no change; B. pad 0 at
the least significant bit; C. pad 0 at the most significant bit; D. pad 1 at the most significant
bit). The bit width of RegSel should be ________.

Solution: 6; C; 2.

(d)3 By inserting pipeline registers between the given components only, is the above datapath
able to pipeline? If yes, please provide a simple example; if no, explain your reason.

Solution: No. The instructions already are processed stage by stage in this imple-
mentation. What is more important, to implement pipeline, the components for each
stage should work in parallel. However, with the current microarchitecture design,
it is not possible to provide enough data to these components simulteneously by the
bus. Therefore, it incurs structural hazard. In an actual computing system, commu-
nication between components is always time-consuming and in many cases becomes
the bottleneck when improving the performance. This question serves as a concrete
example.
No for 1 point. As long as you mention “structural hazard”, you got the other 2 points.

Email: Midterm I, Page 17 of 22 Computer Architecture I 2025

8. Calling Convention [10 points]
Xiao Ming is solving a math problem:

Problem Statement: You are given a rectangular board of size 1 × n. You need to tile this
board using two types of tiles:

• A 1× 1 tile (a small square).

• A 1× 2 tile (a domino).

How many distinct ways can you tile the board when n = 9?

Xiao Ming discovered that this problem follows the recurrence relation:

f(n) = f(n− 1) + f(n− 2)

He wrote the following program to solve it:

.data
Store n = 9.
n: .word 9

.text
load n, pass n to f.
la a0, n
lw a0, 0(a0)
jal f

print the result
mv a1, a0
li a0, 1
ecall

exit the program
li a0, 10
ecall

f:
A: Prologue

Termination condition: if (n <= 2) return n;
li t0, 2
ble a0, t0, base_case

Compute f(n-1)

Email: Midterm I, Page 18 of 22 Computer Architecture I 2025

addi a0, a0, -1 # Pass n - 1
call f # Call f(n-1)
mv s0, a0 # Save return value to s0

B: Pass paramters for f(n-2)

call f # call f(n-2)
add a0, a0, s0 # f(n) = f(n-1) + f(n-2)

C: Epilogue (restoring saved registers)

ret

Base case: when n <= 2, return n
base_case:

D: Set the correct return value

E: Epilogue

ret

(a)10 Please complete the RV32I assembly implementation of the function f, following the
comments and the calling conventions. Use the minimal stack space required for sav-
ing registers and ignore stack alignment requirements. Save only the minimal registers
necessary. We may provide more blank lines than you need.

Solution:

// A: prologue
addi sp, sp, -12
sw ra, 8(sp)
sw a0, 4(sp)
sw s0, 0(sp)

// B: Compute f(n-2)
lw a0, 4(sp)

Email: Midterm I, Page 19 of 22 Computer Architecture I 2025

addi a0, a0, -2

// C: Epilogue (restore saved registers)
lw s0, 0(sp)
lw ra, 8(sp)
addi sp, sp, 12

// D: Set the return value
(lw a0, 4(sp)) // Not necessary to have this

// E: Epilogue
(lw ra, 8(sp)) // Not necessary to have this
addi sp, sp, 12

Email: Midterm I, Page 20 of 22 Computer Architecture I 2025

9. RISC-V [14 points]

(a)12 Convolution is a fundamental mathematical operation widely used in signal processing,
image processing, and machine learning. Convolution performs a weighted sum of one
array using the weights defined by another array (the kernel or filter). The 1D convolution
can be mathematically expressed by the following formula:

y[i] =
K−1∑
n=0

x[i+ n] · h[n] (1)

Here, K represent the size of the convolution kernel. The indices i denote the position of
the output element in the output array.
Fill in the following RISC-V codes to implement the 1D convolution operation. As-
sume the assembly is for a 32-bit machine. To simplify, we consider that multiplication
(x[rd]=x[rs1]*x[rs2]) can be implemented with mul rd, rs1, rs2 instruction
and you do not have to consider the overflow.

Input array address: x10
Kernel (filter) address: x11
Output array address: x12
Input array size: x13
Kernel size: x14
main:

addi x5, x0, 0 # Initialize outer loop counter (i)
addi x15, x13, 1
sub x15, x15, x14

outer_loop:
beq x5, x15, end
addi x6, x0, 0 # Initialize inner loop counter (n)
addi x7, x0, 0 # Initialize sum

inner_loop:
beq x6, x14, store_result

addi x6, x6, 1 # Increment inner loop counter

Email: Midterm I, Page 21 of 22 Computer Architecture I 2025

jal x0, inner_loop

store_result:

addi x5, x5, 1 # Increment outer loop counter
jal x0, outer_loop # Jump back to outer_loop

end:
End program

Solution:

inner_loop:
beq x6, x14, store_result
addi x8, x0, 4
mul x9, x8, x6
add x9, x9, x11
lw x9, 0(x9)
add x16, x5, x6
mul x16, x8, x16
add x16, x16, x10
lw x16, 0(x16)
mul x9, x9, x16
add x7, x7, x9
addi x6, x6, 1 # Increment inner loop counter
jal x0, inner_loop

store_result:
mul x9, x8, x5
add x9, x9, x12
sw x7, 0(x9)
addi x5, x5, 1 # Increment outer loop counter
jal x0, outer_loop # Jump back to outer_loop

(b)2 Translate the machine code in hexadecimal below to RV32I instructions.

0x40E787B3 ________________

0x02E30863 ________________

Email: Midterm I, Page 22 of 22 Computer Architecture I 2025

Solution: sub x15, x15, x14;
beq x6, x14, 0x30 or 48.

