
CS 110
Computer Architecture
Everything is a Number

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao

Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html

School of Information Science and Technology (SIST)
ShanghaiTech University

2025/2/20

Administrative

2

• HW1 is available, Due Feb. 25th!
• Lab1 will be available today, keep an eye on Piazza/course website. It

will be checked in the lab sessions next week.
• Discussion 2 next week on Linux installation, git, gdb, etc.

Mon. or Fri. 19:50-21:30, teaching center 301 by TA Guanghui Hu.

Outline

3

• Binary system
• Everything is a number
• Signed and Unsigned integers
• 2’s-complement representation

• Floating-point numbers

• 0 and 1 (binary digit or bit, unit of information entropy)

• Decided by the characteristic of semiconductor devices (bi-stable states)

• Resilient to noise (threshold)

• Supported by Boolean algebra theory (George Boole, 1854)

• Basic operations: ^, |, ~

Binary System

4

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Represent a number in binary system

• Analogy to decimal (to represent values)

• Positionally weighted coding

• Binary-decimal conversion

• Extend to Hexadecimal (Base 16)/Octal (Base 8)

Binary System

5

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Binary Arithmetic

6

0011
0010

1100
1010

1101
1110

10101111

+ -

X
110

Can be implemented by logic operations

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Inside computers, everything is a number
• But numbers usually stored with a fixed size

• 4-bit nibbles (rarely used), 8-bit bytes, 16-bit half words, 32-bit
words, 64-bit double words, …

Everything is a Number

7

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Everything is a Number

8 from Audacity

Soundtrack sampled at 44.1 kHz

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Inside computers, everything is a number

• But numbers usually stored with a fixed size

• 4-bit nibbles (rarely used), 8-bit bytes, 16-bit half words, 32-bit
words, 64-bit double words, …

Everything is a Number

9

A 640*640 pixel color image A 20*20 slice of the color image

HEX: #d5d2c9
RGB(213, 210, 201)

HEX: #c6c3ba
RGB(198, 195, 186)

HEX: #292023
RGB(41, 32, 35)

Around 60 KB on disk
https://www.graphicsmill.com/blog/2014/11/06/Compre

ssion-ratio-for-different-JPEG-quality-values

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Inside computers, everything is a number
• BUT NOT NECESSARY THE BINARY VALUE

• Identity, bank account, profile, …
• ID number, DoB (date of birth), criminal record, mobile, etc.
• Bank account numbers, balance, loan, transaction records, etc.

• Game account, coins, equipments, …

Everything is a Number

10

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Inside computers, everything is a number (but not necessary the value)

• Instructions: e.g., move directions: forward, backward, left, right; use
(00)2, (01)2, (10)2 and (11)2

Everything is a Number

11

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Assembler
0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Anything can be represented as a number, i.e., data or instructions
ISA, defined by human, decides the meaning

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

Stored program

• It is how you interpret the numbers decides the meaning

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Inside computers, everything is a number

• But numbers usually stored with a fixed size

• 4-bit nibbles (rarely used), 8-bit bytes, 16-bit half words, 32-bit
words, 64-bit double words, …

• Integer and floating-point operations can lead to results too big/small
to store within their representations: overflow

• To avoid overflow, use more bits or extend the range by interpreting a
number differently

Everything is a Number

12

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Signed and Unsigned Integers
• Commonly used in computers to represent integers

• C, C++ have signed integers, e.g., 7, -255:
• int x, y, z;

• x = 7;

• C, C++ also have unsigned integers, e.g. for addresses

• Unsigned integers use their values to represent numbers directly
• Unsigned integers in 32 bit word represent 0 to 232-1

(4,294,967,295) (4 Gibi)

13

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Unsigned Integers
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

0000 0000 0000 0000 0000 0000 0000 0010two = 2ten

0111 1111 1111 1111 1111 1111 1111 1101two = 2,147,483,645ten

0111 1111 1111 1111 1111 1111 1111 1110two = 2,147,483,646ten

0111 1111 1111 1111 1111 1111 1111 1111two = 2,147,483,647ten

1000 0000 0000 0000 0000 0000 0000 0000two = 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = 2,147,483,649ten

1000 0000 0000 0000 0000 0000 0000 0010two = 2,147,483,650ten

1111 1111 1111 1111 1111 1111 1111 1101two = 4,294,967,293ten

1111 1111 1111 1111 1111 1111 1111 1110two = 4,294,967,294ten

1111 1111 1111 1111 1111 1111 1111 1111two = 4,294,967,295ten

14

(𝑎!𝑎!"#…𝑎#𝑎$)% = 𝑎! ⋅ 2!+ 𝑎!"# ⋅ 2!"#+⋯+ 𝑎# ⋅ 2#+ 𝑎$ ⋅ 2$

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

7

Signed Integers
• A straight-forward method: add a sign bit (sign-magnitude)

• Most-significant bit (MSB, leftmost) is the sign bit, 0 means positive, 1
means negative; the other bits remain unchanged

15

0000 0000 0000 0000 0000 0000 0000 0011two = 3ten
1000 0000 0000 0000 0000 0000 0000 0011two = -3ten

Sign
bit

• Range:

• Positive: 0 ~ 2(n-1)-1

• Negative: -0 ~ -(2(n-1)-1)

• Arithmetically unfriendly

-7 ±0−1 +1

(0000)2
or

(1000)2(1010)2
(0001)2(1111)2

(1110)2
(0111)2

(0110)2(0010)2

-6

(1101)2

-5

(1100)2

-4 -3 -2

(1011)2 (1001)2

2 3 4 5 6

(0011)2
(0100)2

(0101)2

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Range:
• Positive: 0 ~ 2(n-1)-1
• Negative: -0 ~ -(2(n-1)-1)

• Arithmetically unfriendly

Signed Integers
One’s- & Two’s-Complement Representation

• One’s-complement representation
• Positive numbers, stay unchanged; Negative numbers, toggle all bits

16

0000 0000 0000 0000 0000 0000 0000 0011two = 3ten
1111 1111 1111 1111 1111 1111 1111 1100two = -3ten

Sign
bit (0000)2

or
(1111)2(1101)2

(0001)2(1000)2
(1001)2

(0111)2
(0110)2(0010)2

(1010)2
(1011)2

(1100)2 (1110)2 (0011)2
(0100)2

(0101)2

7-7 ±0−1 +1-6 -5 -4 -3 -2 2 3 4 5 6

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

(0000)2
or

Two’s-Complement Representation
(Signed Integer)

17

0000 0000 0000 0000 0000 0000 0000 0011two = 3ten
1111 1111 1111 1111 1111 1111 1111 1101two = -3ten

Sign
bit

+0

• Two’s-complement representation:
• Positive numbers, stay unchanged; Negative numbers, apply two’s

complement (for an n-bit number A, complement to 2n is 2n-A, or toggling all
bits and adding 1)

• Easy for arithmetics

(0001)2 (0111)2
(0110)2(0010)2(1101)2

(1000)2
(1001)2

(1010)2
(1011)2

(1100)2 (1110)2 (0011)2
(0100)2

(0101)2

-8 7-7 ±0−1 +1-6 -5 -4 -3 -2 2 3 4 5 6

(1111)2

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Two’s-Complement Representation
(Signed Integer)

18

(0000)2(1111)2

0
−1

(1110)2
−2 (0001)2

+1

(0010)2
+2

(0111)2

(0110)2

(1000)2

(0101)2

(1001)2

(𝑎!𝑎!"#…𝑎#𝑎$)% = −𝑎! ⋅ 2! + 𝑎!"# ⋅ 2!"#+⋯+ 𝑎# ⋅ 2#+ 𝑎$ ⋅ 2$

• 2’complement number (𝑎𝑛𝑎𝑛−1 …𝑎1𝑎0)2
represents

• Sign extension

(0000)2

-7 ±0−1 +1

(0001)2 (0111)2
(0110)2(0010)2

-6 -5 -4 -3 -2

(1101)2
(1000)2

(1001)2
(1010)2

(1011)2
(1100)2 (1110)2

2 3 4 5 6 7

(0011)2
(0100)2

(0101)2

-8

(1111)2

(0011)2

(0100)2

+7

+6

−8
−7

(1010)2
−6

(1011)2−5

(1100)2−4

(1101)2
−3

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Two’s-Complement Arithmetic
(Addition & Subtraction)

19

0011
0010

3
+2

0011
1110

3
 + (-2)

0111
0001

7
+1

1101
1110

-3
 + (-2)

1000
1111

-8
+ (-1)

• Overflow check!

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Comparison

20

0101
1101

5
 + (-3)

0010

0101
1100

5
 + (-3)

0001

0101
1011

5
 + (-3)

0000

One’s-complement Two’s-complementSign-magnitude

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Two’s-Complement Representation
(Signed Integer)

• Two’s complement treats 0 as positive, so 32-bit word represents 232

integers from -231 (–2,147,483,648) to 231-1 (2,147,483,647)

• Note: one negative number with no positive version

• Every computer uses two’s complement today

• Most-significant bit (MSB) (leftmost) is the sign bit, since 0 means
positive (including 0), 1 means negative

• Bit 31 is most significant (MSB), bit 0 is least significant (LSB)

21

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Fractional

22

• “Binary Point” like decimal point signifies boundary between integer
and fractional parts:

xxxx.yyyy
21 20 2-1 2-2 2-3 2-4

0010.1010two = 1x21 + 1x2-1 + 1x2-3 = 2.625ten

• Fixed-point: 1234.5678; 1234.0

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Fixed-Point Numbers

23

Addition is
straightforward

01.100 1.5ten
+ 00.100 0.5ten
 10.000 2.0ten

Multiplication a bit more complex

01.100 1.5ten
 00.100 0.5ten
 00 000
 000 00
 0110 0
 00000
 00000
0000110000

(Need to remember where point is)

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Scientific Notation (in Decimal)

• Normalized form: no leadings 0s
(exactly one digit to left of decimal point)

• Alternatives to representing 1/1,000,000,000

• Normalized: 1.0 x 10-9

• Not normalized: 0.1 x 10-8,10.0 x 10-10

6.02ten x 1023

radix (base)decimal point

mantissa exponent

24

(Significand)

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Scientific Notation (in Binary)

• Computer arithmetic that supports it called floating point, because it
represents numbers where the binary point is not fixed

• Declare such variables in C as float (32b); double for double
precision (64b).

• How to represent in computer? Everything is a number.

1.01two x 2-1

radix (base)binary point

exponentmantissa

25

(Significand)

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Single-Precision 32-bit floating point (IEEE 754)

0 00 0 0 0 0 0 0 0
Sign Exponent

(biased)
Mantissa (without leading 1)

1-bit 8-bit 23-bit

𝑀 = (1.Mantissa),𝐸 = Exponent,− 127-.𝑆 = (−1)Sign

Value = 𝑆×𝑀×2/

• Biased exponent: It can represent numbers in [-127, 128], and allows
comparing two floating point number easier (bit by bit) than the other
representations.

26

https://ieeexplore.ieee.org/document/8766229

Play with: https://www.h-schmidt.net/FloatConverter/IEEE754.html

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

1.01two x 2-1
radix (base)

binary point

EM
(Significand)

Example

How do we read a FP32 number?

0 0 1 1 1 1 0 1 1 1 1 0

• Step 1: determine the sign

• 𝑆 = (−1)Sign = (−1)$ = 1 (positive)

• Step 2: determine the unbiased exponent

• 𝐸 = Exponent% − 127#$ = 01111011% − 127#$ = 123 − 127 = −4

• Step 3: determine the Mantissa

• 𝑀 = 1.Mantissa% = 1.11% = 1.75#$

• Step 4: determine the converted decimal by using 𝑆, 𝐸 and 𝑀

• decimal = 𝑆×𝑀×2/ = 1×1.75×2"0 = 0.109375
27

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Example: 0.09375 into single precision floating point

0 0 1 1 1 1 0 1 1 1 0

• Step 1: determine the sign

• Positive => Sign bit = 0

• Step 2: Convert the magnitude 0.09375 to binary

• 0.09375!" = 0.00011#

• Step 3: Convert to scientific/normalized notation to obtain mantissa and
unbiased exponent

• 0.00011# = 1.1#×2$%

• Step 4: determine the biased exponent and remove the leading 1 from 1.1

• Exponent = −4!" + 127!" = 123!" = 01111011#, Mantissa = 1

• Step 5: padding 0s to the end of mantissa to make up to 23 bits/truncate if
more than 23 bits

28

Conversion—Store a FP32 number
Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Overflow vs. Underflow
• What if number too large/small? (> 2.0x2128 , < -2.0x2128)

• Overflow! => Exponent larger than represented in 8-bit Exponent
field

• What would help reduce chances of overflow?

• Double-precision (FP64): 1 (sign)- 11(exponent, bias 1023)-
52(mantissa) in IEEE 754 standard

0 1.0x2-127 2.0x21281-1 -1.0x2-127-2.0x2128

underflow overflowoverflow

29

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

±∞

30

• All exponent = 1s & All Mantissa = 0s

• Sign defined by the sign bit

• Valid Arithmetic

• (+ - /) with finite numbers
• Multiplication with finite/infinite non-zero numbers
• Square root of +∞

• Conversion (e.g. fp32 ∞ to fp64 ∞)

• remainder(x,∞) for finite normal x
• Can be produced by

• division (x/0, x≠0), log(0), etc. along with divideByZero exception
• Overflow with overflow exception

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Overflow vs. Underflow
• What if result too small? (>0 & < 1.0x2-127 , <0 & > -1.0x2-127)

• Underflow! => Negative exponent larger than represented in 8-bit
Exponent field (have method solving it partially later)

• What would help reduce chances of underflow?

• Double-precision (FP64): 1 (sign)- 11(exponent, bias 1023)-
52(mantissa) in IEEE 754 standard

0 1.0x2-127 2.0x21281-1 -1.0x2-127-2.0x2128

underflow overflowoverflow

31

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Denorms.

32

• Denormalized numbers

• Gap between smallest positive/largest negative FP numbers and 0

0 +-
Gaps!

Normalization and hidden 1 is to blame!

• Use exponent all 0s, mantissa ≠ 0

• No implicit leading 1, implicit exponent = -126

• Extend smallest pos./largest neg. single-precision FP to ±2$!%& (non-zero)

• Followed by ±2$!%', ±1.5×2$!%', ±2$!%(, ±2$!%(, ±1.25×2$!%(, … …

• Underflow still exists

0 +-

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

NaN (Not-a-Number)

33

• Resulting from invalid operations (neither overflow nor
underflow)
– e.g. operations with NaN (quiet invalid operations, generally)
– 0×∞, 𝑛(𝑛 < 0), ⁄0 0, ⁄∞ ∞, magnitude subtraction of infinities

(signaling invalid operation exception)
• Exponent all 1s, mantissa non-zero, sign don’t-care
• Why NaN?
• Represent missing values
• Find sources of NaNs using signaling NaNs

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Representations for Special Cases
Exponent Mantissa Represented value

All ones All zeros Inf

All ones Not all zeros Not a number (NaN)

All zeros All zeros Zero

All zeros Not all zeros Sub/denormal

34

±

±

• https://ieeexplore.ieee.org/document/8766229 See sections 3.4, 6&7 for more details.

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

Normal numbers: Exponent 1-254, -126-127 after biasing
Value = 𝑆×𝑀×2/

FP Arithmetic (normal numbers)

35

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Floating-point addition
1.Alignment shift/preshift
2.Add/subtract the significands

3.Normalization shift/postshift
4.Round

5.Repeat 3,4 if not normalized

• (Detect inf and generate exception if necessary)

Rounding Modes

36

• Default to “round-to-nearest-ties-to-even” (avoid systematic biases)

• Other modes:

• Round-to-+∞ (up)

• Round-to-−∞ (down)

• Round-towards-0

• Round-to-nearest-ties-to-max-magnitude (roundTiesToAway,
similar to SiSheWuRu)

• Used for FP arithmetics and FP-integer conversions

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

FP Arithmetic (normal numbers)

37

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

• Floating-point multiplication
1.Calculate the actual exponents (if considering the bias)
2.Add the actual exponents and add the bias (-127)

3.Multiply the significands
4.Normalize if necessary

5.Round

6.Repeat 4,5 if not normalized
7.Calculate the sign bit

• (Detect inf and generate exception if necessary)

IEEE 754 standard

38

Binary system Everything is a number Signed and unsigned integers Floating-point numbers

https://ieeexplore.ieee.org/document/8766229

	CS 110

Computer Architecture

Everything is a Number
	Administrative
	Outline
	Binary System
	Binary System
	Binary Arithmetic
	Everything is a Number
	Everything is a Number
	Everything is a Number
	Everything is a Number
	Everything is a Number
	Everything is a Number
	Signed and Unsigned Integers
	Unsigned Integers
	Signed Integers
	Signed Integers

One’s- & Two’s-Complement Representation
	Two’s-Complement Representation

(Signed Integer)
	Two’s-Complement Representation

(Signed Integer)
	Two’s-Complement Arithmetic

(Addition & Subtraction)
	Comparison
	Two’s-Complement Representation

(Signed Integer)
	Fractional
	Fixed-Point Numbers
	Scientific Notation (in Decimal)
	Scientific Notation (in Binary)
	Bookmark 26
	How do we read a FP32 number?
	Conversion—Store a FP32 number
	Overflow vs. Underflow
	±∞
	Overflow vs. Underflow
	Denorms.
	NaN (Not-a-Number)
	Representations for Special Cases
	FP Arithmetic (normal numbers)
	Rounding Modes
	FP Arithmetic (normal numbers)
	IEEE 754 standard

