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Administrative

HW1 is available, Due Feb. 25th!

Lab1 will be available today, keep an eye on Piazza/course website. It
will be checked in the lab sessions next week.

Discussion 2 next week on Linux installation, git, gdb, etc.
Mon. or Fri. 19:50-21:30, teaching center 301 by TA Guanghui Hu.



Outline

Binary system

Everything is a number

Signed and Unsigned integers

« 2’s-complement representation

Floating-point numbers



Binary System

« 0 and 1 (binary digit or bit, unit of information entropy)

* Decided by the characteristic of semiconductor devices (bi-stable states)
* Resilient to noise (threshold)

« Supported by Boolean algebra theory (George Boole, 1854)

« Basic operations: A, |, ~




Binary system

Binary System

* Represent a number in binary system

* Analogy to decimal (to represent values)
* Positionally weighted coding

* Binary-decimal conversion

« Extend to Hexadecimal (Base 16)/Octal (Base 8)



Binary system

Binary Arithmetic
0011 1100
+ 0010 - 1010
1101 110 /10101111

X 1110

Can be implemented by logic operations

6



Everything is a number

Everything is a Number

* Inside computers, everything is a number

* But numbers usually stored with a fixed size

* 4-bit nibbles (rarely used), 8-bit bytes, 16-bit half words, 32-bit
words, 64-bit double words, ...



Everything is a number

Everything is a Number
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Everything is a number

Everything is a Number

* Inside computers, everything is a number

* But numbers usually stored with a fixed size

* 4-bit nibbles (rarely used), 8-bit bytes, 16-bit half words, 32-bit
words, 64-bit double words, ...

A 6407640 pixel color image A 20720 slice of the color image
HEX: #292023

RGB(41, 32, 35)

HEX: #c6c3ba
N e RGB(198, 195, 186)

Ty Ry

[ g F N R
Around 60 KB on disk HEX: #d5d2c9
https://www.graphicsmill.com/blog/2014/11/06/Compre RGB(21 3, 21 O, 201)

ssion-ratio-for-different-JPEG-quality-values



Everything is a number

Everything is a Number

* Inside computers, everything is a number
« BUT NOT NECESSARY THE BINARY VALUE

 ldentity, bank account, profile, ...
* |D number, DoB (date of birth), criminal record, mobile, etc.

« Bank account numbers, balance, loan, transaction records, etc.

 Game account, coins, equipments, ...

10



Everything is a number

Everything is a Number

* Inside computers, everything is a number (but not necessary the value)

* Instructions: e.g., move directions: forward, backward, left, right; use
(00),, (01),, (10), and (11),

lw t0, 0(s2)
PAssembly Langlt;acg\e/ Iw t1, 4(s2)
rogram (e.g. -
5 (e-g., ) swtl, 0(s2)
swtO, 4(s2)
Assembler
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0OOOO 1001 1100 0110
Program (RISC-V) 1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Stored program

® It is how you interpret the numbers decides the meaning

Anything can be represented as a number, i.e., data or instructions
ISA, defined by human, decides the meaning

11



Everything is a number

Everything is a Number

Inside computers, everything is a number

But numbers usually stored with a fixed size

* 4-bit nibbles (rarely used), 8-bit bytes, 16-bit half words, 32-bit
words, 64-bit double words, ...

Integer and floating-point operations can lead to results too big/small
to store within their representations: overflow

To avoid overflow, use more bits or extend the range by interpreting a
number differently

12



Signed and unsigned integers

Signed and Unsigned Integers

Commonly used in computers to represent integers
C, C++ have signed integers, e.qg., 7, -255:
int x, vy, z;
e X = 7;
C, C++ also have unsigned integers, e.g. for addresses
Unsigned integers use their values to represent numbers directly

Unsigned integers in 32 bit word represent 0 to 232-1
(4,294,967,295) (4 Gibi)



Signed and unsigned integers

Unsigned Integers

0000 0000 0000 0000 0000 0000 0000 0000:ye = Oten
0000 0000 0000 0000 0000 0000 0000 00014y = 1ien
0000 0000 0000 0000 0000 0000 0000 0010:wo = 2ten

011111111111 171111117 117117111 110140 = 2,147,483,645,,
0111171111111 171171171117 11711311 111040 = 2,147,483,6464,
01111111 11111711111171 111117111 111140 = 2,147,483,64 7,
1000 0000 0000 0000 0000 0000 0000 00004, = 2,147,483,648,.,
1000 0000 0000 0000 0000 0000 0000 00014, = 2,147,483,649;¢,,
1000 0000 0000 0000 0000 0000 0000 00104, = 2,147,483,650:¢,,

1111117111711 71111 111117111 1111 110140 = 4,294,967,293,¢,,

1111117117171 71171117111 171171 1111 1110w = 4,294,967,294,,
1111117111711 1171111111111 1111 111140 = 4,294,967,295¢¢,,

(ApQpy_q...0100); = ap 2"+ ay_1- 2" 1+ -+ a;- 2+ a4 2°



Signed and unsigned integers

Signed Integers

A straight-forward method: add a sign bit (sign-magnitude)

Most-significant bit (MSB, leftmost) is the sign bit, 0 means positive, 1
means negative; the other bits remain unchanged

00 0000 0000 0000 0000 0000 0000 00114y, = 3ten
00 0000 0000 0000 0000 0000 0000 00114, = -3ten

Sign (0000)2
bit or
(1110)2 (1100)2 (1010)2 (1000)2 (0010)2 (0100)2 (0110)2
Range: (1111)2 (1101)2 (1011)2 (1001)2 (0001)2 (0011): (0101)2 (0111):
I I I I A R e
e Positive: 0 ~ 2(n-1)-1 7 6 -5 -4-3-2-1+0+4+12 3 4 5 6 7

« Negative: -0 ~ -(2(-1)-1)

« Arithmetically unfriendly



Signed and unsigned integers

Signed Integers
One’s- & Two’s-Complement Representation

« One’s-complement representation

* Positive numbers, stay unchanged; Negative numbers, toggle all bits

00 0000 0000 0000 0000 0000 0000 0011,y = 3ten
1111111711711171171117171711711 1111 110040 = -3ten

Sign
bit (OooorO)2
(1001)2 (1011)2 (1101)2 (1111) (0010)2 (0100)2 (0110)2
 Range: (1000)2 (1010)2 (1100)2 (1110)2 (0001)2 (0011)2 (0101)2 (0111):
N I I N R N R N I A N N N
» Positive: 0 ~ 2(-1)-1 7 6 5 -4-32-1+0+12 3 4 5 6 7

« Negative: -0 ~ -(2(-1)-1)

* Arithmetically unfriendly



Signed and unsigned integers

Two’s-Complement Representation
(Signed Integer)

(0000)2
or

(1001)> (1011)2 (1101)2 1112 5590y, (0100). (0110):
(1000)2 (1010)2 (1100): (111d2 (0001)2 (0011)2 (0101)2 (0111):
I I N R I I I I I e e e e
-8-7-6—5—4-3—2—11’O+123 4 5 6 7

+0

 Two’s-complement representation:

* Positive numbers, stay unchanged; Negative numbers, apply two’s
complement (for an n-bit number A, complement to 2"is 2"-A, or toggling all
bits and adding 1)

« Easy for arithmetics

00 0000 0000 0000 0000 0000 0000 001146 = 34ten
11111111111711111111111 1111 11016 = -3¢eny
Sign
bit



Signed and unsigned integers

Two’s-Complement Representation
(Signed Integer)

(1001)2 (1011)2 (1101)2 (1111)2 (0010)2 (0100)2 (0110)2
(1000)2 (1010)2 (1100)2 (1110)2 (0001)2 (0011)2 (0101)2 (0111)>

L1 N I I N N N N ||
-8 -/ -6 -J; -4 -3 -2 -1 +0 +1 2 3 4 J). 6 7
¥
(0000);
+ 2’complement number (a,a,_1 ... a1 agp);
9 0 1 represents

* Sign extension

(1000)2 (0111)2
—8 +7

18



Signed and unsigned integers

Two’s-Complement Arithmetic

(Addition & Subtraction)
3 0011 3 0011 -3 1101
+2 0010 +(-2) 1110 +(-2) 1110
7 0111 -8 1000
+1 0001 +(-1) 1111

® Overflow check!



Signed and unsigned integers

Comparison

Sign-magnitude One’s-complement  Two’s-complement

5 0101 5 0101 5 0101
+(-3) 1011 + (-3) 1100 +(-3) 1101
0000 0001 0010

X X &

20



Signed and unsigned integers

Two’s-Complement Representation
(Signed Integer)

« Two’s complement treats 0 as positive, so 32-bit word represents 232
integers from -231 (-2,147,483,648) to 231-1 (2,147,483,647)

* Note: one negative number with no positive version

* Every computer uses two’s complement today

* Most-significant bit (MSB) (leftmost) is the sign bit, since 0 means
positive (including 0), 1 means negative

« Bit 31 is most significant (MSB), bit O is least significant (LSB)



Floating-point numbers

Fractional

* “Binary Point” like decimal point signifies boundary between integer
and fractional parts:

XXXX.YVVYY
2 e
1 - -2 3

0010.10104,, = 1x27 + 1x21 + 1x23 = 2.625:.,,

* Fixed-point: 1234.5678; 1234.0

22



Floating-point numbers

Fixed-Point Numbers

L 01.100 1.5+ 01.100 1.5,.,
Addition Is + 00.100 0.5, 00.100 0.5,.,

straightforward 10.000 2.0, 00 000

000 00
01100
00000
00000
0000110000

Multiplication a bit more complex

(Need to remember where point is)

23



Floating-point numbers

Scientific Notation (in Decimal)

mantissa exponent
. . g \ /
(Significand) 6.02,. x 102

T N\

decimal point radix (base)

 Normalized form: no leadings Os

(exactly one digit to left of decimal point)

« Alternatives to representing 1/1,000,000,000

« Normalized: 1.0x10°

 Not normalized: 0.1 x 10-8,10.0 x 10-10



Floating-point numbers

Scientific Notation (in Binary)

mantissa exponent
. . /
(Slgnlflcand)\fm o X -1

T AN

binary point radix (base)

« Computer arithmetic that supports it called floating point, because it

represents numbers where the binary point is not fixed

* Declare such variables in C as float (32b); double for double
precision (64Db).

 How to represent in computer? Everything is a number.



Floating-point numbers

Single-Precision 32-bit floating point (IEEE 754)

M E
(Significand)\{.01 X 2_1/
1 “~~ radix (base)
binary point
1-bit 8-bit 23-bit

S = (_1)S1gn E = Exponent, — 1274, M = (1. Mantissa),

Value = SXM x2E

https://ieeexplore.ieee.org/document/8766229

« Biased exponent: It can represent numbers in [-127, 128], and allows
comparing two floating point number easier (bit by bit) than the other
representations.

Play with: https://www.h-schmidt.net/FloatConverter/IEEE754.html 26




Floating-point numbers

How do we read a FP32 number?

Example

O 01111011 11000000000000000000000

Step 1: determine the sign

.+ §=(=1)°9" = (—1)° = 1 (positive)

Step 2: determine the unbiased exponent

« E =Exponent, —127,,=01111011, — 127,, =123 - 127 = —4

Step 3: determine the Mantissa

« M = 1.Mantissa, = 1.11, = 1.754,

Step 4: determine the converted decimal by using S, E and M

7
e decimal = SXxMx2E = 1x1.75x2™% = 0.109375



Floating-point numbers

Conversion—Store a FP32 number

Example: 0.09375 into single precision floating point

« Step 1: determine the sign
« Positive => Sign bit =0

« Step 2: Convert the magnitude 0.09375 to binary
 0.09375,, = 0.00011,

« Step 3: Convert to scientific/normalized notation to obtain mantissa and
unbiased exponent

e 0.00011, =1.1,x27*
« Step 4: determine the biased exponent and remove the leading 1 from 1.1
 Exponent =—-4,,+127,, = 123,, = 01111011,, Mantissa =1

« Step 5: padding Os to the end of mantissa to make up to 23 bits/truncate if
more than 23 bits

O 01111011 10000000000000000000000 o8



Floating-point numbers

Overflow vs. Underflow

« What if number too large/small? (> 2.0x2128 | < -2.0x2128)

* QOverflow! => Exponent larger than represented in 8-bit Exponent
field

« What would help reduce chances of overflow?

* Double-precision (FP64): 1 (sign)- 11(exponent, bias 1023)-
52(mantissa) in IEEE 754 standard

overflow underflow overflow

| o« ] « Ll « | « |
I 27 I 2 ] 1 % | D |
-2.0x2128 -1 -1.0x27%7 9 1.0x2127 1 2.0x2128

29



Floating-point numbers

+ 00

All exponent = 1s & All Mantissa = Os

Sign defined by the sign bit

Valid Arithmetic

e (+ -/) with finite numbers

« Multiplication with finite/infinite non-zero numbers

« Square root of 4+

« Conversion (e.g. fp32 o to fp64 o)

* remainder(x,oo) for finite normal x

Can be produced by

 division (x/0, x+0), log(0), etc. along with divideByZero exception

* Overflow with overflow exception

30



Floating-point numbers

Overflow vs. Underflow

* What if result too small? (>0 & < 1.0x2-127 |, <0 & > -1.0x2-127)

« Underflow! => Negative exponent larger than represented in 8-bit
Exponent field (have method solving it partially later)

« What would help reduce chances of underflow?

* Double-precision (FP64): 1 (sign)- 11(exponent, bias 1023)-
52(mantissa) in IEEE 754 standard

overflow underflow overflow
| <« | e i < | < |
| ) | ) | I | ) | ) |
-2.0x2128 -1 -1.0x27127 0 1.0x2-127 1 2.0x2128



Floating-point numbers

Denorms.

Denormalized numbers

Gap between smallest positive/largest negative FP numbers and 0

Normalization and hidden 1 is to blame!

Gaps!
- 00 st i 4 0O
4 +

Use exponent all 0s, mantissa + 0

No implicit leading 1, implicit exponent = -126

Extend smallest pos./largest neg. single-precision FP to +271%% (non-zero)
Followed by +27148 +1.5x27148 427147 427147 +1.25x27147 .. ...

Underflow still exists

- —t—tt+tHHHHHH+——
o + O 32



Floating-point numbers

NaN (Not-a-Number)

* Resulting from invalid operations (neither overflow nor
underflow)
— e.g. operations with NaN (quiet invalid operations, generally)

— 00X, yn(n < 0),0/0, 0o/, magnitude subtraction of infinities
(signaling invalid operation exception)

 Exponent all 1s, mantissa non-zero, sigh don’t-care
* Why NaN?

* Represent missing values

* Find sources of NaNs using signaling NaNs

33



Floating-point numbers

Representations for Special Cases

Exponent Mantissa Represented value

All ones All zeros + Inf

All ones Not all zeros  Not a number (NaN)

All zeros All zeros + Zero

All zeros Not all zeros Sub/denormal

https://ieeexplore.ieee.org/document/8766229 See sections 3.4, 6&7 for more details.

Normal numbers: Exponent 1-254, -126-127 after biasing

Value = SXM x2E »



Floating-point numbers

FP Arithmetic (hormal numbers)

* Floating-point addition
1. Alignment shift/preshift
2.Add/subtract the significands
3. Normalization shift/postshift

4.Round
5. Repeat 3,4 if not normalized

» (Detect inf and generate exception if necessary)

35



Floating-point numbers

Rounding Modes

« Default to “round-to-nearest-ties-to-even” (avoid systematic biases)

« Other modes:

 Round-to-+oo (up)

* Round-to-—oo (down)

 Round-towards-0

* Round-to-nearest-ties-to-max-magnitude (roundTiesToAway,
similar to SiSheWuRu)

« Used for FP arithmetics and FP-integer conversions

36



Floating-point numbers

FP Arithmetic (hormal numbers)

* Floating-point multiplication
1. Calculate the actual exponents (if considering the bias)
2.Add the actual exponents and add the bias (-127)
3. Multiply the significands
4.Normalize if necessary
5. Round
6. Repeat 4,5 if not normalized
/. Calculate the sign bit

» (Detect inf and generate exception if necessary)

37



Floating-point numbers

IEEE 754 standard

IEEE STANDARDS ASSOCIATION D o e:: |

IEEE Standard for Floating-Point
Arithmetic

IEEE Computer Society

Developed by the
Microprocessor Standards Committee

IEEE IEEE Std 754™-2019

3 Park Avenue
New York, NY 10016-5997
USA

Authorized licensed use limited to: ShanghaiTech University. Downloaded on February 28,2024 at 16:21:20 UTC from IEEE Xplore. Restrictions apply.

https://ieeexplore.ieee.org/document/8766229 38
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