
CS 110
Computer Architecture

C Language
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao

Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-

2025/index.html

School of Information Science and Technology (SIST)

ShanghaiTech University

2025/2/25

Administrative

2

• HW1 due today!

• Lab1 checked this week.

• Discussion this week on Linux installation, git, gdb, etc.

Mon. or Fri. 19:50-, teaching center 301 by TA Guanghui Hu

Outline

3

• Introduction to C

• How C works?

• C language review

• C memory management

Introduction to C
“The Universal Assembly Language”

4

Introduction to C How C works? C review C memory management

History

5

• Appear early 1970s as a system implementation language for the nascent
Unix operation system (Dennis Ritchie, group lead primarily by Ken
Thompson, Bell Lab.)

• Influenced largely by BCPL and B language, named as NB (“new B”) in
1971 and renamed as C in 1972

• <The C Prgramming Language, 1st edition> in 1978

• Standardized by the ANSI X3J11 committee in the middle 1980s

• <The C Prgramming Language, 2nd edition> in 1988

• The ANSI C standard published (C89)

• Accepted as ISO/IEC 9899:1990 (C90) in 1990

• Updated as ISO/IEC 9899:1990/Amd.1:1995 (C95) in 1995

• C99, C11, C17, etc.

Ritchie, Dennis M. "The development of the C language." ACM Sigplan Notices 28.3 (1993): 201-208.

Introduction to C How C works? C review C memory management

• General-purpose imperative, procedural language

• BCPL, B and C all “close to the machine”; differ syntactically, but similar
broadly

• Linker resolve external names (later B and all those of C)

• BCPL uses a “global vector” for communicating between separately compiled
programs

• Covered later in CALL lecture

• Introduction of “fuller type” & better memory management

• B and BCPL are typeless, or rather have a single data type, the “word” or “cell”,
a fixed-length bit pattern

• Values of array type are converted into pointers to the first of the objects
making up the array; Pointers are integer indices in B and BCPL

• Composed type (e.g., pointer to pointer)

Some features of C

6

Ritchie, Dennis M. "The development of the C language." ACM Sigplan Notices 28.3 (1993): 201-208.

Introduction to C How C works? C review C memory management

Disclaimer

• You will not learn how to fully code in C in these lectures! You’ll still
need your C reference for this course

• K&R C is a recommendation

• Check online for more sources

• ANSI/ISO C standard manual (RTFM)

• Key C concepts: pointers, arrays, memory management

7

Introduction to C How C works? C review C memory management

Turing Machine & Machine Structure
Backgrounds to understand how C works

8

Head

S0 S1 S2 S3 S4 S5 S6 S7 S8 S0

Symbols
Read/write

Machine state

Update state according to the symbol
being read and the current state

Introduction to C How C works? C review C memory management

9

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory
Interfaces

Program

Data

%0
%1
%2
…

Machine Structure
Backgrounds to understand how C works

Introduction to C How C works? C review C memory management

Organization of Computers

10

• Von Neumann Architecture

• A.K.A. Princeton architecture

• Uniform memory for data &
program/instruction

• Harvard Architecture

• Separated memory for data &
program

• E.g. MCU, DSP, L1 Cache

CPU

L1 Data
Cache

L1 Instru.
Cache

Introduction to C How C works? C review C memory management

Outline

11

• Introduction to C

• How C works?

• C language review

• C memory management

How C program works?

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

12

We are here!

Introduction to C How C works? C review C memory management

Compilation: Overview

13

• C compilers map C programs into architecture (OS & ISA)-specific
machine code (strings of 1s and 0s)

• Unlike Java, which converts to architecture-independent bytecode

• Unlike Python environments, which interpret the code

• These differ mainly in exactly when your program is converted to
low-level machine instructions (“levels of interpretation”)

• For C, generally a two part process of compiling .c files to .o files,
then linking the .o files into executables;

• Assembling is also done (but is hidden, i.e., done automatically, by
default); we’ll talk about that later

Introduction to C How C works? C review C memory management

Compilation: Advantages

• Excellent run-time performance: generally much faster than

Python or Java for comparable code (because it optimizes for a

given architecture)

• Reasonable compilation time: enhancements in compilation

procedure (Makefiles) allow only modified files to be recompiled

14

• Mainstream C compiler in Linux:

– GNU Complier Collection (gcc, not only for C family);

– clang/LLVM (for C language family)

– In terminal/command line tool/shell, “man clang/gcc”

Introduction to C How C works? C review C memory management

C Compilation Simplified Overview

15

main.c

Pre-processing

main.o

Linker lib.o

main.out

C source files (text)

Machine code object files (.o)

Pre-built object file
libraries

Machine code executable file (.out)

Parsing & Semantic
Analysis

Code generation &
Optimization

Assembler

Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Translate assembly to machine code (binary)

Introduction to C How C works? C review C memory management

C Pre-Processing (CPP)

• C source files first pass through CPP, before compiler sees code (mainly

text editing)

• CPP replaces comments with a single space

• CPP commands begin with “#”

• #include “file.h” /* Inserts file.h into output */

• #include <stdio.h> /* Looks for file in standard location */

• #define M_PI (3.14159) /* Define constant */

• #if/#endif /* Conditional inclusion of text */

• Use -save-temps (-E) option to gcc to see result of preprocessing

16

Introduction to C How C works? C review C memory management

Function-Like Macro
• #define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))

17

#include <stdio.h>
#include <math.h>
#define MAG0(x, y) sqrt(x*x + y*y)
#define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))
#define MAG2(x,y) ({double a=x; double b=y; sqrt(a*a + b*b);})
#define MSG "Hello \
World!\n"
int main
#ifdef MSG

/* "hi!\n" */
#endif

"%f\n" 3.0 4.0
double 2 3 ;
double 2 3

1 1
1 1

"%f\n"
"%f\n"
"%f\n"
"%f\n"

return 0
=> Convention: put parenthesis EVERYWHERE!

%clang/gcc -E introC_1_0.c

k0=sqrt(i+1*i+1 + j+1*j+1);
k1=(sqrt((i+1)*(i+1) + (j+1)*(j+1)));
k2=(sqrt((++i)*(++i) + (++j)*(++j)));
k3=({double a=++c; double b=++d; sqrt(a*a + b*b);});

Introduction to C How C works? C review C memory management

• Avoid using macros whenever possible

• NO or very tiny speedup.

• Instead use C functions – e.g. inline function:

double mag(double x, double y);

double inline mag(double x, double y)

{ return sqrt(x*x + y*y); }

Read more…

RTFM: https://gcc.gnu.org/onlinedocs/cpp/Macros.html

https://chunminchang.gitbooks.io/cplusplus-learning-note/content/Appendix/preprocessor_macros_vs_inline_functions.html

18

CPP Macro II

Introduction to C How C works? C review C memory management

C Compilation Simplified Overview

19

main.c

Pre-processing

main.o

Linker lib.o

main.out

C source files (text)

Machine code object files (.o)

Pre-built object file
libraries

Machine code executable file (.out)

Parsing & Semantic
Analysis

Code generation &
Optimization

Assembler

Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Translate assembly to machine code (binary)

Introduction to C How C works? C review C memory management

Parser & Semantic Analysis

20

• Recognize each code word as a “token” (identifiers/symbols, C

keywords, constant, comma, semicolon, etc.)

• Record the location of each token

#include <stdio.h>
int main //compute 1234 + 4321
int 1234 4321
int

"z=%d/n"
return 0

%clang -fsyntax-only -Xclang -dump-tokens introC_1_1.c

Lexer

Introduction to C How C works? C review C memory management

21

• Organize tokens as “AST” tree

• Report errors

#include <stdio.h>
int main //compute 1234 + 4321
int 1234 4321
int

"z=%d/n"
return 0

% clang -fsyntax-only -Xclang -ast-dump introC_1_1.c

Parser & Semantic Analysis

Introduction to C How C works? C review C memory management

C Compilation Simplified Overview

22

main.c

Pre-processing

main.o

Linker lib.o

main.out

C source files (text)

Machine code object files (.o)

Pre-built object file
libraries

Machine code executable file (.out)

Parsing & Semantic
Analysis

Code generation &
Optimization

Assembler

Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Translate assembly to machine code (binary)

Introduction to C How C works? C review C memory management

Code Generation & Optimization

23

• Generate intermediate representation (IR)

• LLVM IR for clang/LLVM

• GIMPLE for gcc

#include <stdio.h>
int main //compute 1234 + 4321
int 1234 4321
int

"z=%d/n"
return 0

%clang -S -emit-llvm introC_1_1.c -o introC_1_1.ll

Introduction to C How C works? C review C memory management

Optimization

24

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory
Interfaces

Program

Data

%0
%1
%2
…

%0
%1
%2
…

Introduction to C How C works? C review C memory management

IR to Assembly

25

#include <stdio.h>
int main //compute 1234 + 4321
int 1234 4321
int

"z=%d/n"
return 0

define i32 @main() #0 {
 %1 = alloca i32, align 4
 %2 = alloca i32, align 4
 %3 = alloca i32, align 4
 %4 = alloca i32, align 4
 store i32 0, i32* %1, align 4
 store i32 1234, i32* %2, align 4
 store i32 4321, i32* %3, align 4
 %5 = load i32, i32* %2, align 4
 %6 = load i32, i32* %3, align 4
 %7 = add nsw i32 %5, %6
 store i32 %7, i32* %4, align 4
 %8 = load i32, i32* %4, align 4
 %9 = call i32 (i8*, ...) @printf(i8* getelementptr
inbounds ([7 x i8], [7 x i8]* @.str, i64 0, i64 0),
i32 %8)
 ret i32 0
}

% clang -S introC_1_1.c -o introC_1_1.s

12 0 13 1

2

.0
#48

#32] ; 16-byte Folded Spill
#32

16
-8
-16

#0
#12] ; 4-byte Folded Spill

#-4]
#1234

#-8]
#4321

#-12]
#-8]
#-12]

#16]
#16]

ARM Assembly

Original
code

LLVM IR

Translated to machine code
defined by ISA

Introduction to C How C works? C review C memory management

Assembly to Machine Code
(later details in CALL)

26

% clang -c introC_1_1.c -o introC_1_1.o

% objdump -d introC_1_1.o

ARM Assembly

Machine Code

Stored program or
instructions

Introduction to C How C works? C review C memory management

C Compilation Simplified Overview

27

main.c

Pre-processing

main.o

Linker lib.o

main.out

C source files (text)

Machine code object files (.o)

Pre-built object file
libraries

Machine code executable file (.out)

Parsing & Semantic
Analysis

Code generation &
Optimization

Assembler

Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Translate assembly to machine code (binary)

Introduction to C How C works? C review C memory management

Wrap-it-up

28

• From C to machine code (clang/gcc *.c → *.out & ./*.out)

• Pre-processing (macro, function-like macro, text editing, #include)

• Use “()” whenever necessary, or use “function” directly

• Parser & Semantic Analysis (tokenization & generate AST, basic
operations)

• Translate to IR & optimize (machine structure)

• Translate to assembly and then machine code, executed by
hardware (Some details covered in future lectures, CALL)

• Clang manual:
https://releases.llvm.org/14.0.0/tools/clang/docs/UsersManual.html

• GCC: https://gcc.gnu.org/

Introduction to C How C works? C review C memory management

Outline

29

• Introduction to C

• How C works?

• C review

• C memory management

C Review

30

• Typical C program

// Created by Siting Liu on 2023/2/5.
//

#include <stdio.h>

int main int const char
// insert code here...
printf "Hello, World!\n"
return 0

Preprocessing elements
(header/macro)

Functions

Comments

Statements

Variables

• Must C program start with main()? (see C standard)

Introduction to C How C works? C review C memory management

Variables

31

• Typed Variables in C

Must declare the type of data a variable
will hold;

Initialize, otherwise it holds garbage

Type Description Examples
int integer numbers, including negatives 0, 78, -1400
unsigned int integer numbers (no negatives) 0, 46, 900
long larger signed integer -6,000,000,000
(un)signed char single text character or symbol 'a', 'D', '?’
float floating point decimal numbers 0.0, 1.618, -1.4
double greater precision/big FP number 10E100

int variable1 = 2;

float variable2 = 1.618;

char variable3 = 'A';

C standard defines a lot of “Undefined Behavior”s. It means the code may produce unpredictable behavior. It may

• Produce different results on different computers/OS;

• Produce different results among multiple runs;

• Very difficult to re-produce and debug

Introduction to C How C works? C review C memory management

Integers

32

• Typed Variables in C

Language sizeof(int)

Python >=32 bits (plain ints), infinite (long ints)

Java 32 bits

C Depends on computer; 16 or 32 or 64 bits

• C: int should be integer type that target processor works with
most efficiently

• Generally: sizeof(long long) ≥ sizeof(long) ≥ sizeof(int) ≥ sizeof(short)

• Also, short >= 16 bits, long >= 32 bits

• All could be 64 bits

Introduction to C How C works? C review C memory management

Integer Constants

33

#include <stdio.h>
int main

printf 6 2147483648 6 "T\n" "F\n"
printf 6 0x80000000 6 "T\n" "F\n"
return 0

Semantics: The value of a decimal constant is computed base 10; that of an octal

constant base 8; that of a hexadecimal constant base 16. The lexically first digit is the

most significant.

The type of an integer constant is the first of the corresponding list in which its value

can be represented. Unsuffixed decimal int, long int, unsigned long int; unsuffixed

octal or hexadecimal: int, unsigned int, long int, unsigned long int; suffixed by the

letter u or U: unsigned int, unsigned long int; suffixed by the letter l or L: long int,

unsigned long int; suffixed by both the letters u or U and 1 or L: unsigned long int.

Range of each type defined in < > (INT_MAX, INT_MIN)

Introduction to C How C works? C review C memory management

Consts. and Enums. in C

• Constant is assigned a typed value once in the declaration;
value can't change during entire execution of program

 const float golden_ratio = 1.618;

 const int days_in_week = 7;

• You can have a constant version of any of the standard C
variable types

• Enums: a group of related integer constants. Ex:

 enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};

 enum color {RED, GREEN, BLUE};

34

Introduction to C How C works? C review C memory management

enum color c = RED;

C Syntax: Variable Declarations

• All variable declarations must appear before they are used (e.g., at

the beginning of the block)

• A variable may be initialized in its declaration;

if not, it holds garbage!

• Examples of declarations:

– Correct: {

 int a = 0, b = 10;

 ...

− Incorrect: for (int i = 0; i < 10; i++)

 }

36

Newer C standards are more flexible about this…

Introduction to C How C works? C review C memory management

C Syntax: True or False

• What evaluates to FALSE in C?

• 0 (integer)

• NULL (a special kind of pointer: more on this later)

• No explicit Boolean type (use stdbool.h)

• What evaluates to TRUE in C?

• Anything that isn’t false is true

• Same idea as in Python: only 0s or empty sequences are false,

anything else is true!

37

Introduction to C How C works? C review C memory management

C Operators

• arithmetic: +, -, *, /, %

• assignment: =

• augmented assignment: +=, -=,
*=, /=, %=, &=, |=, ^=, <<=, >>=

• bitwise logic: ~, &, |, ^

• bitwise shifts: <<, >>

• boolean logic: !, &&, ||

• equality testing: ==, !=

• subexpression grouping: ()

• order relations: <, <=, >, >=

• increment and decrement: ++
and --

• member selection: ., ->

• conditional evaluation: ? :

38

Introduction to C How C works? C review C memory management

Typed C Functions

• You need to declare the return type of a function when you

declare it (plus the types of any arguments)

• You also need to declare functions before they are used

• Usually in a separate header file, e.g.

int number_of_people();

float dollars_and_cents();

int sum(int x, int y);

• void type means “returns nothing”

39

int number_of_people()

{ return 3;}

float dollars_and_cents ()

{ return 10.33; }

int sum (int x, int y)

{ return x + y;}

Introduction to C How C works? C review C memory management

	Slide 1: CS 110 Computer Architecture C Language
	Slide 2: Administrative
	Slide 3: Outline
	Slide 4
	Slide 5
	Slide 6: Some features of C
	Slide 7: Disclaimer
	Slide 8: Turing Machine & Machine Structure Backgrounds to understand how C works
	Slide 9
	Slide 10: Organization of Computers
	Slide 11: Outline
	Slide 12: How C program works?
	Slide 13: Compilation: Overview
	Slide 14: Compilation: Advantages
	Slide 15: C Compilation Simplified Overview
	Slide 16: C Pre-Processing (CPP)
	Slide 17: Function-Like Macro
	Slide 18: CPP Macro II
	Slide 19: C Compilation Simplified Overview
	Slide 20: Parser & Semantic Analysis
	Slide 21
	Slide 22: C Compilation Simplified Overview
	Slide 23: Code Generation & Optimization
	Slide 24: Optimization
	Slide 25: IR to Assembly
	Slide 26: Assembly to Machine Code (later details in CALL)
	Slide 27: C Compilation Simplified Overview
	Slide 28: Wrap-it-up
	Slide 29: Outline
	Slide 30: C Review
	Slide 31: Variables
	Slide 32: Integers
	Slide 33: Integer Constants
	Slide 34: Consts. and Enums. in C
	Slide 36: C Syntax: Variable Declarations
	Slide 37: C Syntax: True or False
	Slide 38: C Operators
	Slide 39: Typed C Functions

