ci) RERFESRAFER

13’,; .----.,:j?' School of Information Science and Technology

CS 110
Computer Architecture
C Language

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-
2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/2/25

Administrative

HW1 due today!

Labl checked this week.

Discussion this week on Linux installation, git, gdb, etc.
Mon. or Fri. 19:50-, teaching center 301 by TA Guanghui Hu

Outline

Introduction to C
How C works?
C language review

C memory management

Introduction to C
“The Universal Assembly Language”

SECOND EDITION

THE

PROGRAMMING
CANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

Introduction to C

History

« Appear early 1970s as a system implementation language for the nascent
Unix operation system (Dennis Ritchie, group lead primarily by Ken
Thompson, Bell Lab.)

 Influenced largely by BCPL and B language, named as NB (“new B”) in
1971 and renamed as C in 1972

« <The C Prgramming Language, 1st edition>in 1978

« Standardized by the ANSI X3J11 committee in the middle 1980s
 <The C Prgramming Language, 2nd edition> in 1988

 The ANSI C standard published (C89)

« Accepted as ISO/IEC 9899:1990 (C90) in 1990

« Updated as ISO/IEC 9899:1990/Amd.1:1995 (C95) in 1995

« C99, C11, C17, etc.

Ritchie, Dennis M. "The development of the C language.” ACM Sigplan Notices 28.3 (1993): 201-208.

5

Introduction to C

Some features of C

« General-purpose imperative, procedural language

« BCPL, B and C all “close to the machine”; differ syntactically, but similar
broadly

* Linker resolve external names (later B and all those of C)

« BCPL uses a “global vector” for communicating between separately compiled
programs

 Covered later in CALL lecture
 Introduction of “fuller type” & better memory management

« B and BCPL are typeless, or rather have a single data type, the “word” or “cell”,
a fixed-length bit pattern

« Values of array type are converted into pointers to the first of the objects
making up the array; Pointers are integer indices in B and BCPL

« Composed type (e.g., pointer to pointer)

Ritchie, Dennis M. "The development of the C language.” ACM Sigplan Notices 28.3 (1993): 201-208.

6

Introduction to C

Disclaimer

* You will not learn how to fully code in C in these lectures! You'll still
need your C reference for this course

« K&R Cis a recommendation
« Check online for more sources
 ANSI/ISO C standard manual (RTFM)

« Key C concepts: pointers, arrays, memory management

Introduction to C

Turing Machine & Machine Structure

Backgrounds to understand how C works

Head

1 Read/write Symbols

— HEBRRERRRRRD —

Machine state

[U pdate state according to the symbol 1

being read and the current state

Introduction to C

Machine Structure

Backgrounds to understand how C works

Processor
Enable?

Read/Write

Address

Write
Data

Read
Data

\)
Y \ Y J

Processor-Memory Interface |/O-Memory
Interfaces

Introduction to C

Organization of Computers

« VVon Neumann Architecture « Harvard Architecture

* A.K.A. Princeton architecture « Separated memory for data &

. program
« Uniform memory for data &
program/instruction « E.g. MCU, DSP, L1 Cache

CPU

L1 Data L1 Instru.
Cache Cache

Outline

 How C works?

How C program works?

High Level Language
Program (e.g., C)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

We are here!

Compiler

Assembly Language
Program (e.g., RISC-V)

Assembler

Machine Language
Program (RISC-V)

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

Anything can be represented
as a nhumber,
i.e., data or instructions

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

12

Compilation: Overview

* C compilers map C programs into architecture (OS & ISA)-specific
machine code (strings of 1s and 0s)

« Unlike Java, which converts to architecture-independent bytecode
« Unlike Python environments, which interpret the code

« These differ mainly in exactly when your program is converted to
low-level machine instructions (“levels of interpretation”)

* For C, generally a two part process of compiling .c files to .o files,
then linking the .o files into executables;

« Assembling is also done (but is hidden, i.e., done automatically, by
default); we'll talk about that later

13

Compilation: Advantages

Excellent run-time performance: generally much faster than
Python or Java for comparable code (because it optimizes for a
given architecture)

Reasonable compilation time: enhancements Iin compilation
procedure (Makefiles) allow only modified files to be recompiled

Mainstream C compiler in Linux:

— GNU Complier Collection (gcc, not only for C family);
— clang/LLVM (for C language family)

— In terminal/command line tool/shell, “man clang/gcc”

C Compilation Simplified Overview

main.c J C source files (text)

Pre-processing Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Parsing & Semantic
Analysis

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Code generation &
Optimization

Assembler

Translate assembly to machine code (binary)

main.o J Machine code object files (.0)

697 o J Zl;e-bgilt object file
ibraries

main.out J Machine code executable file (.out)

15

C Pre-Processing (CPP)

C source files first pass through CPP, before compiler sees code (mainly
text editing)

CPP replaces comments with a single space

CPP commands begin with “#”

#include “file.h” /* Inserts file.h into output */
#include <stdio.h> /* Looks for file in standard location */
#tdefine M_PI (3.14159) /* Define constant */

#if/#endif /* Conditional inclusion of text */

Use -save-temps (-E) option to gcc to see result of preprocessing

Function-Like Macro

#define MAG(x, y) (sart((x)*(x) + (y)*(y)))

#include <stdio.h>
#include <math.h>

#tdefine MAGO(X, y) sqrt(x*x + y*y)

%clang/gcc -E introC_1_0.c

#define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))

#tdefine MAG2(x,y) ({double a=x; double b=y; sgrt(a*a + b*b);})
#define MSG "Hello \
World!\n"

int main() {

#ifdef MSG

printf(MSG /* "hil\n" */);

Hendif

}

printf("%f\n",MAG(3.0,4.0));
double i=2, j=3, kO, k1, k2, k3;
double c=2, d=3;
kO=MAGO(i+1,j+1); \
k1=MAG(i+1,j+1);
k2=MAG(++i,++j);
k3=MAG2(++c,++d);
printf("%f\n",k0);
printf("%f\n",k1);
printf("%f\n",k2);
printf("%f\n",k3);

-

return O;

kO=sqrt(i+1*i+1 + j+1*j+1);
_ k1=(sqrt((i+1)*(i+1) + (j+1)*(j+1)));

. k2=(sqrt((++i)*(++i) + (++j)*(++))));
k3=({double a=++c; double b=++d; sqrt(a*a + b*b);});

=> Convention: put parenthesis EVERYWHERE!

17

CPP Macro |l

* Avoid using macros whenever possible
* NO or very tiny speedup.
* |nstead use C functions — e.g. inline function:

double mag(double x, double y);

double inline mag(double x, double y)
{ return sqrt(x*x + y*y); }

Read more...

RTFM: https://gcc.gnu.org/onlinedocs/cpp/Macros.html

https://chunminchang.gitbooks.io/cplusplus-learning-note/content/Appendix/preprocessor_macros_vs_inline_functions.html

18

C Compilation Simplified Overview

main.c J C source files (text)

Pre-processing Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Parsing & Semantic
Analysis

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Code generation &
Optimization

Assembler

Translate assembly to machine code (binary)

main.o J Machine code object files (.0)

697 o J Zl;e-bgilt object file
ibraries

main.out J Machine code executable file (.out)

19

Parser & Semantic Analysis

* Recognize each code word as a “token” (identifiers/symbols, C
keywords, constant, comma, semicolon, etc.)

 Record the location of each token

%clang -fsyntax-only -Xclang -dump-tokens introC_1 1.c

. . int 'int' [StartOfLine] [LeadingSpacel Loc=<introC_1_1.c:3:3>
#IﬂClUde <Std|0.h> identifier 'x! [LeadingSpace] Loc=<introC_1_1.c:3:7>
. . equal '=' [LeadingSpace] Loc=<introC_1_1.c:3:9>
|nt ma|n() {//Compute 1234 + 4321 numeric_constant '1234' [LeadingSpace] Loc=<introC_1_1.c:3:11>
comma ‘', Loc=<introC_1_1.c:3:15>
- - — . identifier 'y [LeadingSpace] Loc=<introC_1_1.c:3:17>
Int X= 1234; y - 4321; equal '=' [LeadingSpace] Loc=<introC_1_1.c:3:19>
. numeric_constant '4321' [LeadingSpace] Loc=<introC_1_1.c:3:21>
|nt Z= X+y" semi ';' Loc=<introC_1_1.c:3:25>
int 'int’' [StartOfLine] [LeadingSpace] Loc=<introC_1_1.c:4:3>
H n,_0 1" . identifier 'z [LeadingSpace] Loc=<introC_1_1.c:4:7>
prlntf(Z_A)d/n)Z)) equal '=' [LeadingSpace] Loc=<introC_1_1.c:4:9>
identifier 'x' [LeadingSpace] Loc=<introC_1_1.c:4:11>
return O; plus '+' Loc=<introC_1_1.c:4:12>
identifier 'y Loc=<introC_1_1.c:4:13>
} semi ';' Loc=<introC_1_1.c:4:14>
identifier 'printf' [StartOfLine] [LeadingSpace] Loc=<introC_1_1.c:5:3>
1_paren '(' Loc=<introC_1_1.c:5:9>
string_literal '"z=%d/n"' Loc=<introC_1_1.c:5:10>
comma ', Loc=<introC_1_1.c:5:18>
identifier 'z’ Loc=<introC_1_1.c:5:19>
r_paren ') Loc=<introC_1_1.c:5:20>
semi ';' Loc=<introC_1_1.c:5:21>
return 'return' [StartOfLine] [LeadingSpacel Loc=<introC_1_1.c:6:3>
Lexer nums_:ric_constant 9! [LeaqingSpace] Loc=<introC_1_1.c:6:10>
semi ';' Loc=<introC_1_1.c:6:11>
r_brace '}’ [StartOfLine] Loc=<introC_1_1.c:7:1>

20

Parser & Semantic Analysis

* QOrganize tokens as “AST" tree

* Report errors

% clang -fsyntax-only -Xclang -ast-dump introC_1 1.c

#tinclude <stdio.h>

int main() {//compute 1234 + 4321
int x= 1234, y = 4321;
int z = x+y;

. " "—FunctionDecl ~ <intr : ; ' > ‘ lain 'int ()
1 —t) /) "—CompoundStmt ! "8aad <col:12, - >
prlntf(. /)d n.,z); | -DeclStmt 0x15901 <line:3:3, col:25>
. | |-VarDecl @ 6b8 < ; 11> :7 used x 'int' cinit
return OI | | "-IntegerLiteral 0x1! 2e0l1:115> *INtY 1234
| “-VarDecl 0x1590: 8 < : 1> 17 used y 'int' cinit
} | "—-IntegerLiteral 0x1590 o : J < 1215 "ipt! 1
| -Dec1lStmt 0x1590f8920 <line:4:3, 14>
| "—VarDecl)f8828 < 23, ©olil3> used z 'int' cinit
| ‘—-BinaryOperator ,) <CO ; > Ipty Ly
| |-ImplicitCastExpr 9 3d0 < > 'int' <LValueToRValue>
| | “-DeclRefExpr 90 <C > 'int' lvalue Var f 'kt
| "—ImplicitCastExpr 0)T88 < 13> 'int' <LValueToRValue>
| "—DeclRefExpr 0x1590)@ <co] > 'int' lvalue Var 0x1 ‘ ‘Int?
| -CallExpr 159 ' <1lin 3 1:20> 'int'
| |-ImplicitCastExpr 908 <col:3> 'int (%) (const char %, ...)' <FunctionToPointerDeca
y>
| | “-DeclRefExpr 0x ~ <col:3> *int (const char *; ...)" Function ¢

'iht (const cHAT *, .o=«)"

21

C Compilation Simplified Overview

main.c J C source files (text)

Pre-processing Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Parsing & Semantic
Analysis

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Code generation &
Optimization

Assembler

Translate assembly to machine code (binary)

main.o J Machine code object files (.0)

697 o J Zl;e-bgilt object file
ibraries

main.out J Machine code executable file (.out)

22

Code Generation & Optimization

* (Generate Intermediate representation (IR)

 LLVM IR for clang/LLVM
 GIMPLE for gcc

%clang -S -emit-llvm introC_1 1.c-ointroC_1 1.l

#include <stdio.h> Eource.filenane = “irirot1_t.c"
int main() {//compute 1234 + 4321 taraet L T bd oo le macoerts g o o2
int X= 1234, Y = 4321, @.str = private unnamed_addr constant [7 x i8] c"z=%d/n\0@@", align 1
intz= X+y; ; Function Attrs: noinline nounwind optnone ssp uwtable
printf(”z:%d/n" Z)' de:sini ;ﬁoggaigg ﬁ?ién 4
r=r %2 = alloca i32, align 4
return 0; 3 2 slioe 132, alian 4

} store i32 @, i32% %1, align 4

store i32 1234, i32% %2, align 4
store i32 4321, i32x %3, align 4
%5 load i32, i32% %2, align 4
%6 load i32, 1i32% %3, align 4
%7 add nsw i32 %5, %6
store i32 %7, i32% %4, align 4
%8 = load 132, i32% %4, align 4
%9 = call i32 (i8%, ...) @printf(i8x getelementptr inbounds ([7 x i8]

0), i32 %8)
ret i32 0

}

23

%2
%1
%0

Optimization

Processor

Enable?
Read/Write

B
»

Program

Address

Write
Data

Read
Data

\)
\

Processor-Memory Interface

|/O-Memory
Interfaces

24

IR to Assembly

% clang -SintroC_1 1.c-ointroC 1 1.s

#include <stdio.h>

int main() {//compute 1234 + 4321 .section __TEXT,__text,regular,pure_instructions
int x=1234,y=4321; .build_version macos, 12,0 sdk_version 13, 1
int z = x+y; o .globl _main ; -- Begin function main
printf("z=%d/n",z); Original .p2align 2
return O; code _main: ; @main
} .cfi_startproc
; %bb.0:
LLVM |R sub sp, sp, #48 |
define 32 @main() #0 { stp x29, x30, [sp, #32] ; 16-byte Folded Spill
%1 = alloca i32, align 4 add x29, sp, #32
%2 = alloca i32, align 4 .cfi_def_cfa w29, 16
%3 = alloca 32, align 4 .cfi_offset w30, -8
%4 = alloca i32, align 4 .cfi offset w29, -16

store i32 0, i32* %1, align 4

store i32 1234, i32* %2, align 4 mov. w8, #0

store i32 4321, i32* %3, align 4 str w8, [sp, #12] ; 4-byte Folded Spill
%5 = load i32, i32* %2, align 4 stur wazr, [x29, #-4]
%6 =load i32, i32* %3, align 4 mov w38, #1234
%7 = add nsw i32 %5, %6 stur W8, [X29, #_8]
store i32 %7, i32* %4, align 4 21
%8 = load i32, i32* %4, align 4 o W:’ #4239 i1 ARM Assembly
%9 = call i32 (i8*, ...) @printf(i8* getelementptr stur - w8, [x29, #-12]
inbounds ([7 x i8], [7 x i8]* @.str, i64 0, i64 0), Idur w8, [x29, #-8]
i32 %8) ldur w9, [x29, #-12]
reti320 add w8, w8, w9
} str w8, [sp, #16] Translated to machine code

ldr w9, [sp, #16] defined by ISA

Assembly to Machine Code
(later details in CALL)

% clang -cintroC_1 1.c-ointroC_1 1.0

% objdump -d introC_1 1.0

Disassembly of section __ TEXT,__ text:

0000000000000000 <1ltmp0d>:

Q:
4:
8:
c:
10:
14:
18:
1c:
Machine Code %25

28:
Stored program or ¢

instructions 30:
34:

38:
3c:
40:
44:
48:
4c:
50:
54:
58:
5c¢:
60:

ff
fd
fd
08
e8
bf
48
a8
28
a8
a8

: a9

08
e8
e9
e8
e9
28
00
00
00
e
fd
ff
(o]

c3
7b
83
00
of
c3
9a
83
1c
43
83
43
01
13
13
03
03
01
00
00
00
of
7b
c3
03

00
02
00
80
00
1f
80
1f
82
1f
5f
5f
09
00
40
09
00
00
00
00
00
40
42
00
5f

dl
a9
91
52
b9
b8
52
b8
52
b8
b8
b8
@b
b9
b9
aa
91
f9
90
91
94
b9
a9
91
d6

sub sp, sp, #48

stp x29, x30, [sp, #32]
add x29, sp, #32

mov w8, #0

str w8, [sp, #12]

stur wzr, [x29, #-4]
mov w8, #1234

stur w8, [x29, #-8]

mov w8, #4321

stur w8, [x29, #-12]
ldur w8, [x29, #-8]
ldur w9, [x29, #-12]
add w8, w8, w9

str w8, [sp, #16]

ldr w9, [sp, #16]

mov X8, X9

mov X9, sp

str x8, [x9]

adrp x0, 0x0 <ltmp0Q+0x48>
add x0, x0, #0

bl x50 <1ltmp0+0x50>
ldr wo, [sp, #12]

ldp x29, x30, [sp, #32]
add sp, sp, #48

ret 26

ARM Assembly

C Compilation Simplified Overview

main.c J C source files (text)

Pre-processing Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Parsing & Semantic
Analysis

Translate AST to lower level intermediate representation (LLVM
IR) and then generate assembly (.s)

Code generation &
Optimization

Assembler

Translate assembly to machine code (binary)

main.o J Machine code object files (.0)

697 o J Zl;e-bgilt object file
ibraries

main.out J Machine code executable file (.out)

27

Wrap-it-up

From C to machine code (clang/gcc *.c — *.out & ./*.out)

Pre-processing (macro, function-like macro, text editing, #include)

* Use “()” whenever necessary, or use “function” directly

Parser &

Semantic Analysis (tokenization & generate AST, basic

operations)

Translate to IR & optimize (machine structure)

Translate to assembly and then machine code, executed by
hardware (Some detalls covered In future lectures, CALL)

Clang manual:

https://re

eases.llvm.orqg/14.0.0/tools/clang/docs/UsersManual.html

GCC: htt

ns://gcc.gnu.org/

28

Outline

e Creview

Creview

C Review

* Typical C program

/ Comments

// Created by Siting Liu on 2023/2/5. Preprocessing elements

// / (header/macro)
#include <stdio.h>

_— Variables

int main(int argc, const char * argv([]) {

// insert code here... Functions
printf("Hello, World!\n");
return 0; - Statements

}

Must C program start with main()? (see C standard)

30

Creview

Variables

* Typed Variablesin C

int variablel =2: Must declare the type of data a variable

will hold:
float variable2 =1.618; L L
_ Initialize, otherwise it holds garbage
char variable3 ='A'

Type Description Examples

int integer numbers, including negatives 0, 78, -1400
unsigned int integer numbers (no negatives) 0, 46, 900

long larger signed integer -6,000,000,000
(un)signed char single text character or symbol ‘a', 'D", "’

float floating point decimal numbers 0.0,1.618,-1.4

double greater precision/big FP number 10E100

31

Creview

Integers
* Typed Variablesin C
Language sizeof(int)
Python >=32 bits (plain ints), infinite (long Ints)
Java 32 bits
C Depends on computer; 16 or 32 or 64 bits

« C: int should be integer type that target processor works with
most efficiently

* Generally: sizeof(long long) 2 sizeof(long) 2 sizeof(int) 2 sizeof(short)
* Also, short >= 16 bits, long >= 32 bits
* All could be 64 bits

32

Integer Constants

#tinclude <stdio.h>

int main() {
printf((6-2147483648)>(6)?"T\n":"F\n");
printf((6-0x80000000)>(6)?"T\n":"F\n");
return O;

}

Semantics: The value of a decimal constant is computed base 10; that of an octal
constant base 8; that of a hexadecimal constant base 16. The lexically first digit is the
most significant.

The type of an integer constant is the first of the corresponding list in which its value
can be represented. Unsuffixed decimal int, long int, unsigned long int; unsuffixed
octal or hexadecimal: int, unsigned int, long int, unsigned long int; suffixed by the
letter u or U: unsigned int, unsigned long int; suffixed by the letter | or L: long int,
unsigned long int; suffixed by both the letters u or U and 1 or L: unsigned long int.

Range of each type defined in <limits.h> (INT_MAX, INT_MIN)

33

Consts. and Enums. In C

« Constant is assigned a typed value once In the declaration;
value can't change during entire execution of program

const float golden_ratio = 1.618;
const int days_in_week = 7;

* You can have a constant version of any of the standard C
variable types

 Enums: a group of related integer constants. EX:

enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};
enum color {RED, GREEN, BLUE};

enum color c = RED;

Creview

C Syntax: Variable Declarations

 All variable declarations must appear before they are used (e.g., at
the beginning of the block)

« A variable may be initialized in its declaration;
If not, it holds garbage!

« Examples of declarations:
— Correct: {
inta=0, b=10;

— |ncorrect: for (inti=0;i<10; i++)
}

Newer C standards are more flexible about this...

Creview

C Syntax: True or False

* What evaluates to FALSE in C?

* 0O (Integer)

 NULL (a special kind of pointer: more on this later)
* No explicit Boolean type (use stdbool.h)
* What evaluates to TRUE in C?

* Anything that isn’t false is true

« Same idea as in Python: only Os or empty sequences are false,
anything else is true!

Creview

C Operators

arithmetic: +, -, *, /, % * subexpression grouping: ()
assignment: = e order relations: <, <=, >, >=
augmented assignment: +=,-=, < increment and decrement: ++
*= /=, %=, &=, |=, M=, <<=, >>= and --

pitwise logic: ~, &, |, » « member selection: ., ->
pitwise shifts: <<, >> . conditional evaluation: ? :
poolean logic: !, &&, ||

equality testing: ==, |=

38

Creview

Typed C Functions

* You need to declare the return type of a function when you
declare it (plus the types of any arguments)

* You also need to declare functions before they are used

« Usually in a separate header file, e.g.
int number_of people();
float dollars_and_cents();

int sum(int x, int y);
int number_of people()

* void type means “returns nothing” { return 3;}

float dollars_and_cents ()
{ return 10.33; }

int sum (int x, int y)
{returnx +v;}

	Slide 1: CS 110 Computer Architecture C Language
	Slide 2: Administrative
	Slide 3: Outline
	Slide 4
	Slide 5
	Slide 6: Some features of C
	Slide 7: Disclaimer
	Slide 8: Turing Machine & Machine Structure Backgrounds to understand how C works
	Slide 9
	Slide 10: Organization of Computers
	Slide 11: Outline
	Slide 12: How C program works?
	Slide 13: Compilation: Overview
	Slide 14: Compilation: Advantages
	Slide 15: C Compilation Simplified Overview
	Slide 16: C Pre-Processing (CPP)
	Slide 17: Function-Like Macro
	Slide 18: CPP Macro II
	Slide 19: C Compilation Simplified Overview
	Slide 20: Parser & Semantic Analysis
	Slide 21
	Slide 22: C Compilation Simplified Overview
	Slide 23: Code Generation & Optimization
	Slide 24: Optimization
	Slide 25: IR to Assembly
	Slide 26: Assembly to Machine Code (later details in CALL)
	Slide 27: C Compilation Simplified Overview
	Slide 28: Wrap-it-up
	Slide 29: Outline
	Slide 30: C Review
	Slide 31: Variables
	Slide 32: Integers
	Slide 33: Integer Constants
	Slide 34: Consts. and Enums. in C
	Slide 36: C Syntax: Variable Declarations
	Slide 37: C Syntax: True or False
	Slide 38: C Operators
	Slide 39: Typed C Functions

