L) ERREE SR AR SR

%f.:af,; : .-.,;;?' School of Information Science and Technology

CS 110
Computer Architecture
C Memory Management

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-
2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/2/27

Administrative

HW2 and Lab2 (with guidance to valgrind) will be released, keep
an eye on Piazza

Start early on labs so that checking can be faster

Those who haven't enrolled in Piazza and Gradescope please
enroll yourselves ASAP!

Discussion next week on memory management & valgrind (useful
for your labs/HWs/projects) by TA Yizhou Wang at teaching center
301 on Monday/Friday

The similarity check is conducted automatically for each HW, proj.,
etc. Please comply with the course rules!

We grade only on your most recent valid activated submissions before
ddl for all assignments!

Outline

Pointer

Array

Pointer arithmetic

C memory management
* Stack

* Heap

Consider memory to be a single huge array

Address vs. Value

of bytes

Don’t confuse the address referring to a
memory location with the value stored there

Each cell/byte of the array has an
address associated with it

Each cell also stores some value

Byte-addressable

» address itself: machine-dependent
(4 bytes throughout this course, 4 GiB

int: 4 bytes (by convention)
char: 1 byte (C standard)

memory)

RV32l instructions: 4 bytes

Memory

Bytes

0x9a

0x78

0x56 | Ox34

0Ox12

3

2 1

0

* An address refers to a particular memory location;

Pointers

Pointer: A variable that contains the address of a
variable;

Pointer syntax and basic usage

int *p;

Tells compiler that variable p is the address of an 1nt;
* called the “dereference operator” in this context;

p = &X;

Tells compiler to assign address of X to p;

& called the “address operator” in this context;

Z = XD,
Tells compiler to assign value at address p to z;
*p = 5;

Change the value at p to 5 and use pointer to write;

Memory

¢
wn

<— >

0xfO

Okae

Oxbe

0Ox9a

0x78

0x56

0x34

Ox12

3

2

1

0

Pointers and Parameters Passing

C passes parameters “by value”

— Procedure/function/method gets a copy of the parameter, so
changing the copy cannot change the original

void add_one (int x) void add_one (1int *p)

{x = x + 1;} {xp = xp + 1;}
int y = 3; int y = 3;
add_one(y); add_one(&y);

y remains y equals to
equal to 3 4 now

typedef struct {

Pointers and Structures

int x;
int vy,

} Point;

Point pl={1,2};

Point p2;

Point *xpaddr;

paddr

&p1l;

/* dot notation %/
int h = pl.x;
p2.y = pl.y;

/* arrow notation x/
int h = paddr—>x; or
int h = (*kpaddr).x;

/* This works too x/
p2 = pl;

Types of Pointers

* Pointers are used to point to any kind of data (1nt, char, a
struct,anda function, etc.)

* Normally a pointer only points to one type (1nt, char, a
struct, and a function, etc.).

—vo1ld *x is atype that can point to anything (generic
pointer, more in memory management later)

— Be careful, use vo1ld * sparingly to help avoid program
bugs, and security issues, and other bad things!

Why Pointers in C?

At time C was invented (early 1970s), compilers often didn’t produce
efficient code

— Computers 100,000 times faster today, compilers better

C designed to let programmer say what they want code to do without
compiler getting in way

— If we want to pass a large struct or array, it's easier/faster/etc. to
pass a pointer than the whole thing

— In general, pointers allow cleaner, more compact code
— Even give compilers hints which registers to use!

Today’s compilers produce much better code, so may not need to use
pointers in application code

Low-level system code still needs low-level access via pointers

Pointers in C

« So what are the drawbacks?

— Pointers are probably the single largest source of bugs in C, so
be careful anytime you deal with them

* Most problematic with dynamic memory management—
coming up later

» Dangling references and memory leaks

10

C Pointer Dangers

Declaring a pointer just allocates space to hold the pointer — it
does not allocate the thing being pointed to!

Local variables in C are not initialized, they may contain
anything (a.k.a. “garbage”)

What does the following code do?

1

Undefined Behavior

xptr =

} PTr not
initialized.

11

Outline

* Array

12

C Arrays

* Declaration:
int ar[2];
Declare a 2-element integer array: just a block of memory
int ar[] = {795, 635};
Declare and initialize a 2-element integer array
* Must specify size (or provide info. that can infer the size)

13

-

C Strings

« String in C is just an array of characters
char string[] = "abc";
* How do you tell how long a string is?

— Last character is followed by a ‘\0@’ (NULL) byte
(a.k.a. “null terminator”) (RTFM)

int strlength(char s[])

C1l1l standard: The declaration

{ Char S[] — "abC", t[3] — "abC";
int n = 0: "---.

while (s[n] != 0)
n++:
return n;

defines “plain” char array objects s and t whose
members are initialized with character string
literals. This declaration is identical to

char s| a', 'b', 'c', '\0' },
al’ Ibl’ ICI };

14

Array/Pointer Duality

Key Concept: Array variable is a “pointer” to the first (lowest
addressed, i.e., 0'") element

So, array variables almost identical to pointers

—Not usually the other way (example next slide)

Consequences:

— aris an array variable, but works like a pointer
— ar[0] isthe same as *ar
—ar[2] isthesameas x(ar+2)

— Can use pointer arithmetic to conveniently access arrays

Array/Pointer Duality

Be really careful!

stringl[] = "abc";
*xstring2 = "abc'",;

CAN modify stringl [x]
CANNOT modify string2 [X]
CAN access string2 by

ey

Excercise

* What do these below mean? Be really careful!

int arr[] = {3, 5, 6, 7, 9 };
int xp = arr;
int (%pl)[5] = &arr;

int *p2[5];
int (xp)(void);
int (xfunc_arr[5])(float x);

Changing a Pointer Argument?

 What if want function to change a pointer?
 What gets printed?

void 1inc_ptr(int xp) xq = 50
{ p= p+1; } A Q
int A[3] {50, 60, 70}, 1 1

int *xq =

A;
inc_ptr(q);
printf("q = %d\n",*q); m

Pointer to a Pointer

* Solution! Pass a pointer to a pointer, declared as *xh

* Now what gets printed?

vold 1inc_ptr(int sxh)

h

l *q = 60
{ *h = *h + 1; } A (g

1

int A[3] = {50, 60, 70}; 1

int *xq = A;
inc_ptr(&q); 50 70
printf (“xq

= %d\n", *q);

Arguments inmaln()

e To get arguments to the main function, use:
int main(int argc, char *argv|[])

* argc contains the number of strings on the command line
(the executable counts as one, plus one for each
argument). Here argc is 5:

% clang -ansi 1introC_1 1l.c -0 1introC_1 1.out

* argyv is a pointer array, pointing to multiple strings

Example

% clang -ansi 1introC_1_1.c -0 1introC_1_1.out
e argc = 5 /% number arguments x/

argv[@] = "clang",
argv[l] = "-ansi",
argv[2] = "introC_1 1.c",
argv[3] = "-0",

argv([4] "introC_1 1.out"

More C Pointer & Array Dangers

* An array in C does not know its own length, and its bounds are
not checked!

— Consequence: We can accidentally access off the end of an
array

— Suggestion: We must pass the array and its size to any
procedure that is going to manipulate it

* Out of boundary errors:

— These are VERY difficult to find;
Be careful!

Use Defined Constants

e Array size n; want to access from 0 to n-1, so you should use counter AND
utilize a variable for declaration and incrementation

— Bad pattern
int 1, ar[10];
for(i=0; 1 < 10; i++){ ... }
— Better pattern
const int ARRAY_SIZE = 10;
int 1, a[ARRAY_SIZE];
for(1i = 0; 1 < ARRAY_SIZE; i++){ ... }

* SINGLE SOURCE OF TRUTH
— You avoid maintaining two copies of the number 10
— DRY: “Don’t Repeat Yourself”

Arrays and Pointers

Passing arrays

* Array = pointer to the initial (0'") Must explicitly

Really int *array pacs the size
array element ’

_ . int foo(int aFFay[],
a[1]=(*(a+(1))) unsigned int size’)/
 An array is passed to a function as a 1
pointer . array[size - 1] ..
}
— The array size is lost!
int
* Usually bad style to interchange ?aln(VOld)
arrays and pointers int a[10], b[5];
— Avoid pointer arithmetic! .. foo(a, 10).. foo(b, 5) ..
}

Outline

 Pointer arithmetic

25

Pointing to Different-Sized Objects

Modern machines are “byte-
addressable”
— Hardware’s memory composed of

8-bit storage cells, each has a
unique address

A C pointer is just abstracted
memory address

Type declaration tells compiler
how many bytes to fetch on each
access through pointer

— E.g., 32-bit integer stored in 4
consecutive 8-bit bytes

Alignment

Pointer arithmetic

char xz

8-bit character
stored in one byte

short sy

16-bit short stored
in two bytes

\

Memory

Byt

8-11

Pointing to Different-Sized Objects

Modern machines are “byte-

addressable”

— Hardware’s memory composed of
8-bit storage cells, each has a

unique address

A C pointer is just abstracted

memory address

Type declaration tells compiler char *z
how many bytes to fetch on each 8-bit character
access through pointer

— E.g., 32-bit integer stored in 4

Pointer arithmetic

stored in one byte

AIAA e

consecutive 8-bit| =1
%2

Alignment >

%5
%6
%7

store 132 0, i32% %1, align 4
store 132 1234, i32% %2, align 4
store 132 4321, 1i32% %3, align 4

store 132 %7, 132% %4, align 4

alloca i32, align 4
alloca i32, align 4
alloca i32, align 4
alloca i32, align 4

load i32, i32% %2, align 4

Memory

Byt

8-11

load 132, i32% %3, align 4
add nsw 132 %5, %6

Pointer arithmetic

s1zeof () Operator

sizeof (type) returns number of bytes in object

— But number of bits in a byte is not standardized

* In olden times, when dragons roamed the earth, bytes could be
5, 6, 7, 9 bits long

By definition, sizeof(char)==
Can take sizeof(variable),orsizeof(type)

We'll see more of s1zeof when we look at dynamic memory
management

28

Pointer arithmetic

Excerc

ise

int foo(int array[], unsigned int
size)

What does this print
(32-bit address)?

Because array 1s really
a pointer (and a pointer is

architecture dependent, but
likely to be 8 on modern
machines!)

{
printf(“sd\n”, sizeof(array)) ;-
}
int main(void)
{
int a[1@], b[5];
.. Too(a, 10).. foo(b, 5) ..
, printf(“%d\n”, sizeof(a)); .

———— What does this print 40

(32-bit int)?

29

Pointer arithmetic

Pointer Arithmetic

pointer + number pointer — number

e.g., pointer+1 adds 1 to a pointer

char xp; int xp;
char aj; int aj;
char b; , int b;
In each, p now pointsto b
p = &a; (Assuming compiler doesn’t reorder—— |p = &a;
p += 1; “— variables in memory. Never code like p += 1;
this!!!!)
Adds 1ksizeof(char) Adds 1ks1izeof(1int)
to the memory address to the memory address

Pointer arithmetic should be used cautiously

Pointer Arithmetic--Exercise

int arr[] = { 3, 5, 6, 7, 9 };
int *xp = arr;
int (xpl)[5] = &arr;

Are arr+1l, p+1, pl+l the same?

31

Pointer arithmetic

Arrays and Pointers

int
int

i;
array[10];

int *p;
int array[10];

for (1 =0; 1 < 10; i++)| |for (p = array; p < &array[10]; p++)

1

array[1i] = ..;

}

{

These code sequences have the same effect!

32

Pointer arithmetic

Concise strlen()

int(long) strlen(char *s)
{ char xp = s;
while (*kp++)
; /* Null body of while x/
return (p — s —- 1);

What happens if there is no zero character at end
of string?

33

Pointer arithmetic

Point past end of array?

* Array size n; want to access from 0 to n-1, but test for exit by
comparing to address one element past the last member of
the array

int ar[10]={},*p, *q, sum=0;

p = &ar[0]; q = &ar[l0o];

while (p!=q) /* sum = sum+kxp; p = p+1x/
Sum += xp++;

 Cdefines that one element past end of array must be a
valid address, i.e., not causing an error

34

Pointer arithmetic

Valid Pointer Arithmetic

Add an integer to a pointer.
Subtract 2 pointers (pointed to the same array/object)
Compare pointers (<, <=, ==, =, >, >=)

Compare pointer to NULL (indicates that the pointer points to
nothing)

Everything else illegal since makes no sense:
Adding two pointers

Multiplying pointers

Subtract pointer from integer

Summary

o “Lowest High-level language”
e => closest to assembler

e Pointers: powerful but dangerous

¢ Pointer arithmetic and arrays useful but also dangerous

Summary

¢ Pointers and arrays are virtually same

e Cknows how to increment pointers

e Cis an efficient language, with little protection
e Array bounds not checked
e Variables not automatically initialized

e (Beware) The cost of efficiency is more overhead for the
programmer.

“C gives you a lot of extra rope but be careful not to hang
yourself with it!”

Outline

* C memory management
* Stack

e Pointer

38

Memory management

C Memory Management

« To simplify, assume one program runs at a time

A program’s address space contains 4 regions:

stack: local variables inside functions, grows

downward FFFF FFFFyey |- — SRK

heap: space requested for dynamic data via
malloc(); resizes dynamically, grows upward

static data: variables declared outside functions,
does not grow or shrink. Loaded when program
starts, can be modified.

code (a.k.a. text): loaded when program starts,
does not change

0x0 unwritable/unreadable (NULL pointer)

39

Memory Address
(32 bits assumed here)

static data

code

~ 0000 0000,.,

Memory management

Where are Variables Allocated?

* |If declared outside a function,

allocated in “static” storage int myGlobal;
4
* If declared inside function, main() {
allocated on the “stack” int myTemp;
and freed when function }

returns

e maln() is treated like
a function

* For the above two types, the memory management is automatic
 Don’t need to deallocating when no longer using them

A variable does not exist anymore once a function ends!

Memory management

The Stack

Every time a function is called, a new “stack

frame” is allocated on the stack funcA() { funcB()

;)
Stack frame includes: funcB() { fU"Cc()E }
+ Return address (who called me?) funcC() { funcD(); }
* Arguments

 Space for local variables funcA frame
Stack frames: contiguous blocks of memory;
stack pointer indicates start of stack frame funcB frame

When function ends, stack frame is tossed off the
stack; frees memory for future stack frames

funcC frame

Details covered later (RISC-V processor)

funcD frame

Stack Pointer —

Memory management

Stack Animation
e Last In, First Out (LIFO) data structure stack
main ()
1 a(9); Stack PointerStach
} grows

down

vold b (1int n)
{ c(2);
}

void d (int p)

1
}

42

Passing Pointers into the Stack

stack
* ltisfinetopassa #define BUFLEN 256 buf char array
pointer to stack int main() { persistent through
space further down. _ Load_but’s execution

char buf [BUFLEN] ; _
load buf(buf, BUFLEN); pointer buf

}
 However, it is bad to return a charx make_buf() {
pointer to something in the char buf[50]; .
stack! return buf; stackAddr points to
} overwritten memory
e Memory will be overwritten
when other functions called! int main(){
* So your data would no longer char sstackAddr =
exist, and writes can make buf(): _
overwrite key pointers, - Carving on the
causing crashes! } moving boat to look

for the sword
43

Memory management

Managing the Heap

 The heap is dynamic memory — memory that can be allocated, resized, and
freed during program runtime.

* Useful for persistent memory across function calls
 But biggest source of pointer bugs, memory leaks, ...
* Large pool of memory, not allocated in contiguous order

 Back-to-back requests for heap memory could result in blocks very far apart
 Csupports four functions for heap management:

« malloc() allocate a block of uninitialized memory

« calloc() allocate a block of zeroed memory

¢ free() free previously allocated block of memory

« realloc() change size of previously allocated block (might move)

Managing the Heap

void *xmalloc(size_t n):

Allocate a block of uninitialized memory

N is an integer, indicating size of allocated memory block in bytes

size_tis an unsigned integer type big enough to “count” memory bytes

sizeof returns size of given type in bytes, produces more portable code

Returns Vo1dx* pointer to block; NULL return indicates no more memory; always check

forreturnNULL (if (ip))

Think of pointer as a handle that describes the allocated block of memory;
Additional control information stored in the heap around the allocated block! (Including

size, etc.)

“Cast” operation, changes type of a variable. Here

Examples: changes (void *) to (iInt *)

int *xipl, *ip2;

ipl = (int *x)"malloc(sizeof(int));

Ip2 = (int *) malloc(20xsizeof(int)); //allocate an array of 20 ints.

typedef struct { .. } TreeNode;
TreeNode xtp = (TreeNode *) malloc(sizeof(TreeNode));

Assuming size of objects can
lead to misleading, unportable 45
code. Use sizeof()!

Managing the Heap

void free(vold *p):
— Releases memory allocated bymal loc()

— pis pointer containing the address originally returned bymalloc()
int *xip;
ip = (int x) malloc(sizeof(int));

free((voidx) ip); /* Can you free(ip) after ip++ ? %/

typedef struct {.. } TreeNode;
TreeNode xtp = (TreeNode *) malloc(sizeof(TreeNode));

free((void %) tp);
— When you free memory, you must be sure that you pass the original
address returned frommalloc () to free(); Otherwise, system

exception (or worse)!

Managing the Heap

« vold xrealloc(void *xp, size t size):
— Returns new address of the memory block.

* In doing so, it may need to copy all data to a new location.

realloc(NULL, size); // behaves like malloc
realloc(ptr, 0); // behaves like free, deallocates heap block

— Always check for return NULL

int xip; ip = (int *) malloc(lOxsizeof(int));
......... /* check for NULL *x/
fﬁi’psmcekiff ip = (int *) realloc(ip, 20xsizeof(int));
might change. /* contents of first 10 elements retained x/
......... /* check for NULL x/
realloc(ip,0); /*x equivalent to free(ip); */

47

Memory management

How are malloc/free implemented?

* Underlying operating system allows ma l Loc library to ask for large
blocks of memory to use in heap (std L1b. h)

Initial Empty Heap space from Operating System

Free Space \‘

Malloc library creates linked list of empty blocks (one block initially)

[el
Object 1 Free

First allocation chews up space from start of free space

a Vel BV A— \ﬂ

After many mallocs and frees, have potentially long linked list of odd-sized blocks
Frees link block back onto linked list — might merge with neighboring free space

Memory management

Faster malloc implementations

* “Buddy allocators” always round up to power-of-2 sized chunks to
simplify finding correct size and merging neighboring blocks

free

used

Memory management

Observations/Summary

 Code, static storage are easy: they never grow or shrink
e Stack space is relatively easy: stack frames are created and destroyed in
last-in, first-out (LIFO) order, avoid “dangling references"
* Managing the heap is tricky:
 Memory can be allocated/deallocated at any time
 “Memory leak”: If you forget to deallocate memory
e “Use after free”: If you use data after calling free
 “Double free”: If you call free 2x on same memory

	幻灯片 1: CS 110 Computer Architecture C Memory Management
	幻灯片 2: Administrative
	幻灯片 3: Outline
	幻灯片 4: Address vs. Value
	幻灯片 5: Pointers
	幻灯片 6: Pointers and Parameters Passing
	幻灯片 7: Pointers and Structures
	幻灯片 8: Types of Pointers
	幻灯片 9: Why Pointers in C?
	幻灯片 10: Pointers in C
	幻灯片 11: C Pointer Dangers
	幻灯片 12: Outline
	幻灯片 13: C Arrays
	幻灯片 14: C Strings
	幻灯片 15: Array/Pointer Duality
	幻灯片 16: Array/Pointer Duality
	幻灯片 17: Excercise
	幻灯片 18: Changing a Pointer Argument?
	幻灯片 19: Pointer to a Pointer
	幻灯片 20: Arguments in main()
	幻灯片 21: Example
	幻灯片 22: More C Pointer & Array Dangers
	幻灯片 23: Use Defined Constants
	幻灯片 24: Arrays and Pointers
	幻灯片 25: Outline
	幻灯片 26: Pointing to Different-Sized Objects
	幻灯片 27: Pointing to Different-Sized Objects
	幻灯片 28: sizeof() Operator
	幻灯片 29: Excercise
	幻灯片 30: Pointer Arithmetic
	幻灯片 31: Pointer Arithmetic--Exercise
	幻灯片 32: Arrays and Pointers
	幻灯片 33: Concise strlen()
	幻灯片 34: Point past end of array?
	幻灯片 35: Valid Pointer Arithmetic
	幻灯片 36: Summary
	幻灯片 37: Summary
	幻灯片 38: Outline
	幻灯片 39: C Memory Management
	幻灯片 40: Where are Variables Allocated?
	幻灯片 41: The Stack
	幻灯片 42: Stack Animation
	幻灯片 43: Passing Pointers into the Stack
	幻灯片 44: Managing the Heap
	幻灯片 45: Managing the Heap
	幻灯片 46: Managing the Heap
	幻灯片 47: Managing the Heap
	幻灯片 48: How are malloc/free implemented?
	幻灯片 49: Faster malloc implementations
	幻灯片 50: Observations/Summary

