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Administrative
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• HW2 and Lab2 (with guidance to valgrind) will be released, keep 
an eye on Piazza

• Start early on labs so that checking can be faster

• Those who haven’t enrolled in Piazza and Gradescope please 
enroll yourselves ASAP!

• Discussion next week on memory management & valgrind (useful 
for your labs/HWs/projects) by TA Yizhou Wang at teaching center 
301 on Monday/Friday

• The similarity check is conducted automatically for each HW, proj., 
etc. Please comply with the course rules!

• We grade only on your most recent valid activated submissions before 
ddl for all assignments!



Outline
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• Pointer

• Array

• Pointer arithmetic

• C memory management

• Stack

• Heap



Address vs. Value
• Consider memory to be a single huge array

of bytes

• Each cell/byte of the array has an 

address associated with it

• Each cell also stores some value

• Don’t confuse the address referring to a 

memory location with the value stored there

• Byte-addressable

• int: 4 bytes (by convention)

• char: 1 byte (C standard)

• address itself: machine-dependent

(4 bytes throughout this course, 4 GiB 

memory)

• RV32I instructions: 4 bytes
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Memory

…
0x78

…
0x56

…
0x34

0x9a
0x12

Bytes

0

4

123

…
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Pointers
• An address refers to a particular memory location; 

• Pointer: A variable that contains the address of a 
variable;

• Pointer syntax and basic usage
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Memory

...
0xf0
0x78

...
0xde
0x56

...
0xbc
0x34

4

0x9a
0x12

Bytes

0

4

123

…
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int *p;

Tells compiler that variable p is the address of an int;

* called the “dereference operator” in this context;

p = &X;

Tells compiler to assign address of X to p;

& called the “address operator” in this context;

z = *p;

Tells compiler to assign value at address p to z;

*p = 5;

Change the value at p to 5 and use pointer to write;
X

p



Pointers and Parameters Passing

• C passes parameters “by value”

– Procedure/function/method gets a copy of the parameter, so 
changing the copy cannot change the original
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void add_one (int *p) 
{*p = *p + 1;}
int y = 3;
add_one(&y);

void add_one (int x)
{x = x + 1;}
int y = 3;
add_one(y);

y remains 
equal to 3

y equals to 
4 now



Pointers and Structures

typedef struct {

    int x;

    int y;

} Point;

Point p1={1,2};

Point p2;

Point *paddr;

paddr = &p1;

/* dot notation */

int h = p1.x;

p2.y = p1.y;

/* arrow notation */

int h = paddr->x; or

int h = (*paddr).x;

/* This works too */

p2 = p1;

7
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Types of Pointers

• Pointers are used to point to any kind of data (int, char, a 
struct, and a function, etc.)

• Normally a pointer only points to one type (int, char, a 
struct, and a function, etc.).

– void * is a type that can point to anything (generic 
pointer, more in memory management later)

– Be careful, use void * sparingly to help avoid program 
bugs, and security issues, and other bad things!
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Why Pointers in C?

• At time C was invented (early 1970s), compilers often didn’t produce 
efficient code

– Computers 100,000 times faster today, compilers better

• C designed to let programmer say what they want code to do without 
compiler getting in way

– If we want to pass a large struct or array, it’s easier/faster/etc. to 

pass a pointer than the whole thing

– In general, pointers allow cleaner, more compact code

– Even give compilers hints which registers to use!

• Today’s compilers produce much better code, so may not need to use 
pointers in application code

• Low-level system code still needs low-level access via pointers

9
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Pointers in C

• So what are the drawbacks?

– Pointers are probably the single largest source of bugs in C, so 

be careful anytime you deal with them

• Most problematic with dynamic memory management—

coming up later

• Dangling references and memory leaks

10
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C Pointer Dangers

• Declaring a pointer just allocates space to hold the pointer – it 
does not allocate the thing being pointed to!

• Local variables in C are not initialized, they may contain 
anything (a.k.a. “garbage”)

• What does the following code do?
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void f(void)
{
    int *ptr;
    *ptr = 5;
}

Undefined Behavior

Pointer Array Pointer arithmetic Memory management

ptr not 
initialized.
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C Arrays

• Declaration:

  int ar[2];

 Declare a 2-element integer array: just a block of memory 

  int ar[] = {795, 635};

 Declare and initialize a 2-element integer array

• Must specify size (or provide info. that can infer the size)
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C Strings

• String in C is just an array of characters

   char string[] = "abc";

• How do you tell how long a string is?

– Last character is followed by a ‘\0’ (NULL) byte 
(a.k.a. “null terminator”) (RTFM)     
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int strlength char

int 0
while 0

return

C11 standard: The declaration 

         char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose 
members are initialized with character string 
literals. This declaration is identical to

         char s[] = { 'a', 'b', 'c', '\0' },
              t[] = { 'a', 'b', 'c' };
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Array/Pointer Duality

• Key Concept: Array variable is a “pointer” to the first (lowest 
addressed, i.e., 0th) element

• So, array variables almost identical to pointers

– Not usually the other way (example next slide)

• Consequences:

– ar is an array variable, but works like a pointer

– ar[0] is the same as *ar

– ar[2] is the same as *(ar+2)

– Can use pointer arithmetic to conveniently access arrays

15
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Array/Pointer Duality

• Be really careful! 

char string1[] = "abc";

char *string2 = "abc";

• CAN modify string1[x] 

• CANNOT modify string2[x] 

• CAN access string2 by string2[x]

16
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Excercise

• What do these below mean? Be really careful! 

int 3 5 6 7 9

int

int 5

int 5

int     

int 
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void
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Changing a Pointer Argument?

• What if want function to change a pointer?

• What gets printed?

void inc_ptr int
1

int 3 50 60 70
int

"q = %d\n"

*q = 50

50 60 70

A q

Pointer Array Pointer arithmetic Memory management



Pointer to a Pointer

• Solution! Pass a pointer to a pointer, declared as **h
• Now what gets printed?

void inc_ptr(int **h)
{   *h = *h + 1;   }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q

Pointer Array Pointer arithmetic Memory management

h



Arguments in main()

• To get arguments to the main function, use:

int main(int argc, char *argv[])

• argc contains the number of strings on the command line 
(the executable counts as one, plus one for each 
argument). Here argc is 5:

% clang  -ansi  introC_1_1.c  -o  introC_1_1.out 

• argv is a pointer array, pointing to multiple strings

20
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Example

% clang  -ansi  introC_1_1.c  -o  introC_1_1.out 

• argc = 5 /* number arguments */ 

argv[0] = "clang", 
argv[1] = "-ansi", 
argv[2] = "introC_1_1.c",

argv[3] = "-o",

argv[4] = "introC_1_1.out"

21
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More C Pointer & Array Dangers

• An array in C does not know its own length, and its bounds are 
not checked!

– Consequence: We can accidentally access off the end of an 
array

– Suggestion: We must pass the array and its size to any 
procedure that is going to manipulate it

• Out of boundary errors:

– These are VERY difficult to find; 
Be careful! 

22
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Use Defined Constants
• Array size n; want to access from 0 to n-1, so you should use counter AND 

utilize a variable for declaration and incrementation

– Bad pattern
int i, ar[10];

for(i = 0; i < 10; i++){ ... }

– Better pattern
const int ARRAY_SIZE = 10;

int i, a[ARRAY_SIZE];

for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE SOURCE OF TRUTH

– You avoid maintaining two copies of the number 10

– DRY: “Don’t Repeat Yourself”

23
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Arrays and Pointers

• Array = pointer to the initial (0th) 
array element

a[i](*(a+(i)))

• An array is passed to a function as a 
pointer

– The array size is lost!

• Usually bad style to interchange 
arrays and pointers

– Avoid pointer arithmetic!

Really int *array

int foo(int array[],

    unsigned int size)

{

   … array[size - 1] …

}

int

main(void)

{

   int a[10], b[5];

   … foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays

Pointer Array Pointer arithmetic Memory management
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Pointing to Different-Sized Objects

• Modern machines are “byte-
addressable”

– Hardware’s memory composed of 
8-bit storage cells, each has a 
unique address

• A C pointer is just abstracted 
memory address

• Type declaration tells compiler 
how many bytes to fetch on each 
access through pointer

– E.g., 32-bit integer stored in 4 
consecutive 8-bit bytes

• Alignment
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int *x

32-bit integer stored 
in four bytes

short *y

16-bit short stored 
in two bytes

char *z

Byte address

Memory

Byte-addressable

0123

4-7
8-11
…

8-bit character 
stored in one byte
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Pointing to Different-Sized Objects

• Modern machines are “byte-
addressable”

– Hardware’s memory composed of 
8-bit storage cells, each has a 
unique address

• A C pointer is just abstracted 
memory address

• Type declaration tells compiler 
how many bytes to fetch on each 
access through pointer

– E.g., 32-bit integer stored in 4 
consecutive 8-bit bytes

• Alignment
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int *x

32-bit integer stored 
in four bytes

short *y

16-bit short stored 
in two bytes

char *z

Byte address

Memory

Byte-addressable

0123

4-7
8-11
…

8-bit character 
stored in one byte
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sizeof() Operator

• sizeof(type) returns number of bytes in object

– But number of bits in a byte is not standardized

• In olden times, when dragons roamed the earth, bytes could be 
5, 6, 7, 9 bits long

• By definition, sizeof(char)==1

• Can take sizeof(variable), or sizeof(type)

• We’ll see more of sizeof when we look at dynamic memory 
management

28
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Excercise
int foo(int array[], unsigned int 
size)

{

   …

   printf(“%d\n”, sizeof(array));

}

int main(void)

{

   int a[10], b[5];

   … foo(a, 10)… foo(b, 5) …

   printf(“%d\n”, sizeof(a));

}

What does this print 
(32-bit address)?

What does this print 
(32-bit int)?

4

40

Because array is really
a pointer (and a pointer is 
architecture dependent, but 
likely to be 8 on modern
machines!)

Pointer Array Pointer arithmetic Memory management
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Pointer Arithmetic

pointer + number  pointer – number

e.g., pointer + 1    adds 1 to a pointer

char   *p;
char    a;
char    b;

p = &a;
p += 1;

int   *p;
int    a;
int    b;

p = &a;
p += 1;

In each, p now points to b

(Assuming compiler doesn’t reorder 
variables in memory. Never code like 
this!!!!)

Adds 1*sizeof(char) 
to the memory address

Adds 1*sizeof(int) 
to the memory address

Pointer arithmetic should be used cautiously

Pointer Array Pointer arithmetic Memory management
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Pointer Arithmetic--Exercise

Pointer Array Pointer arithmetic Memory management

int 3 5 6 7 9

int

int 5

Are arr+1, p+1, p1+1 the same?
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Arrays and Pointers

int  i;

int  array[10];

for (i = 0; i < 10; i++)

{

  array[i] = …;

}

int *p;

int  array[10];

for (p = array; p < &array[10]; p++)

{

  *p = …;

}

These code sequences have the same effect!

Pointer Array Pointer arithmetic Memory management



Concise strlen()

int(long) strlen char
char
while

/* Null body of while */
return 1

What happens if there is no zero character at end 
of string?

33
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Point past end of array?

• Array size n; want to access from 0 to n-1, but test for exit by 
comparing to address one element past the last member of 
the array

int 10 0
0 10

while /* sum = sum+*p; p = p+1*/

• C defines that one element past end of array must be a 
valid address, i.e., not causing an error

34
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Valid Pointer Arithmetic

• Add an integer to a pointer.

• Subtract 2 pointers (pointed to the same array/object)

• Compare pointers (<, <=, ==, !=, >, >=)

• Compare pointer to NULL (indicates that the pointer points to 
nothing)

• Everything else illegal since makes no sense:

• Adding two pointers

• Multiplying pointers 

• Subtract pointer from integer

35
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Summary

• “Lowest High-level language”

• => closest to assembler

• Pointers: powerful but dangerous

• Pointer arithmetic and arrays useful but also dangerous

36



Summary
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• Pointers and arrays are virtually same

• C knows how to increment pointers

• C is an efficient language, with little protection

• Array bounds not checked

• Variables not automatically initialized

• (Beware) The cost of efficiency is more overhead for the 
programmer.

“C gives you a lot of extra rope but be careful not to hang 
yourself with it!”



Outline

38

• Pointer

• Array

• Pointer arithmetic

• C memory management

• Stack

• Pointer



C Memory Management
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• To simplify, assume one program runs at a time 

• A program’s address space contains 4 regions:

• stack: local variables inside functions, grows 
downward 

• heap: space requested for dynamic data via 
malloc(); resizes dynamically, grows upward

• static data: variables declared outside functions, 
does not grow or shrink. Loaded when program 
starts, can be modified.

• code (a.k.a. text): loaded when program starts, 
does not change

• 0x0 unwritable/unreadable (NULL pointer)

Memory Address
(32 bits assumed here)

code

static data

heap

stack

~ 0000 0000hex

FFFF FFFFhex

Pointer Array Pointer arithmetic Memory management



Where are Variables Allocated?

• If declared outside a function, 
allocated in “static” storage 

• If declared inside function, 
allocated on the “stack”
and freed when function
returns

• main() is treated like
a function

• For the above two types, the memory management is automatic

• Don’t need to deallocating when no longer using them

• A variable does not exist anymore once a function ends!

int myGlobal;
main() {
  int myTemp;
}

40
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The Stack

• Every time a function is called, a new “stack 
frame” is allocated on the stack

• Stack frame includes:
• Return address (who called me?)
• Arguments
• Space for local variables

• Stack frames: contiguous blocks of memory; 
stack pointer indicates start of stack frame

• When function ends, stack frame is tossed off the 
stack; frees memory for future stack frames

• Details covered later (RISC-V processor)

funcD frame

funcB frame

funcC frame

funcA frame

Stack Pointer
41

funcA() { funcB(); }
funcB() { funcC(); }
funcC() { funcD(); }
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Stack Animation

• Last In, First Out (LIFO) data structure

main ()
{ a(0); 
}

void a (int m)
{ b(1); 
}
void b (int n)
{ c(2); 
}
void c (int o)
{ d(3); 
}
void d (int p)
{ 
}

stack

Stack Pointer
Stack 
grows 
down

42
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Passing Pointers into the Stack
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• It is fine to pass a
pointer to stack
space further down.

#define BUFLEN 256
int main() {
   …
  char buf[BUFLEN];
  load_buf(buf, BUFLEN);
  …
}

buf char array
persistent through 

load_buf’s execution

stack

• However, it is bad to return a 
pointer to something in the 
stack!

• Memory will be overwritten 
when other functions called!

• So your data would no longer 
exist, and writes can 
overwrite key pointers, 
causing crashes!

pointer buf

char* make_buf() {
    char buf[50];
    return buf;
}

int main(){
   …
  char *stackAddr = 
      make_buf(); 
   …
}

stackAddr points to 
overwritten memory

stack

buf???

Carving on the 
moving boat to look 

for the sword
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Managing the Heap

• The heap is dynamic memory – memory that can be allocated, resized, and 

freed during program runtime.

• Useful for persistent memory across function calls

• But biggest source of pointer bugs, memory leaks, …

• Large pool of memory, not allocated in contiguous order

• Back-to-back requests for heap memory could result in blocks very far apart

• C supports four functions for heap management:

• malloc() allocate a block of uninitialized memory

• calloc() allocate a block of zeroed memory

• free()  free previously allocated block of memory

• realloc() change size of previously allocated block (might move)

44
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Managing the Heap
• void *malloc(size_t n):

– Allocate a block of uninitialized memory

– n is an integer, indicating size of allocated memory block in bytes

– size_t is an unsigned integer type big enough to “count” memory bytes

– sizeof returns size of given type in bytes, produces more portable code

– Returns void* pointer to block; NULL return indicates no more memory; always check 
for return NULL (if (ip))

– Think of pointer as a handle that describes the allocated block of memory; 
Additional control information stored in the heap around the allocated block! (Including 
size, etc.)

• Examples:  
int *ip1, *ip2;

ip1 = (int *) malloc(sizeof(int));

Ip2 = (int *) malloc(20*sizeof(int)); //allocate an array of 20 ints.

typedef struct { … } TreeNode;

TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

45

“Cast” operation, changes type of a variable. Here 
changes (void *) to (int *)

Assuming size of objects can 
lead to misleading, unportable 
code. Use sizeof()!
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Managing the Heap
•  void free(void *p):

– Releases memory allocated by malloc()

– p is pointer containing the address originally returned by malloc()
    int *ip;

    ip = (int *) malloc(sizeof(int));

    ... .. ..

  free((void*) ip); /* Can you free(ip) after ip++ ? */

    typedef struct {… } TreeNode;

    TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

     ... .. ..

  free((void *) tp);

– When you free memory, you must be sure that you pass the original 

address returned from malloc() to free(); Otherwise, system 

exception (or worse)!

46
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Managing the Heap

•  void *realloc(void *p, size_t size):

– Returns new address of the memory block.

• In doing so, it may need to copy all data to a new location.

  realloc(NULL, size); // behaves like malloc

  realloc(ptr,  0); // behaves like free, deallocates heap block

– Always check for return NULL

    

47

int *ip; ip = (int *) malloc(10*sizeof(int));

… … …               /* check for NULL */

ip = (int *) realloc(ip, 20*sizeof(int));

/* contents of first 10 elements retained */

… … …                /* check for NULL */

realloc(ip,0); /* equivalent to free(ip); */

Keep track of 
this, since it 
might change.

Pointer Array Pointer arithmetic Memory management



How are malloc/free implemented?
• Underlying operating system allows malloc library to ask for large 

blocks of memory to use in heap (stdlib.h)

48
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Initial Empty Heap space from Operating System

Free Space

Malloc library creates linked list of empty blocks (one block initially)

FreeObject 1

Free

First allocation chews up space from start of free space

After many mallocs and frees, have potentially long linked list of odd-sized blocks
Frees link block back onto linked list – might merge with neighboring free space



Faster malloc implementations
• “Buddy allocators” always round up to power-of-2 sized chunks to 

simplify finding correct size and merging neighboring blocks

49

free

used
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Observations/Summary

• Code, static storage are easy: they never grow or shrink

• Stack space is relatively easy: stack frames are created and destroyed in 

last-in, first-out (LIFO) order, avoid “dangling references"

• Managing the heap is tricky: 

• Memory can be allocated/deallocated at any time

• “Memory leak”: If you forget to deallocate memory

• “Use after free”: If you use data after calling free

• “Double free”: If you call free 2x on same memory

50
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