
CS 110
Computer Architecture

C Memory Management

Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-

2025/index.html

School of Information Science and Technology (SIST)

2025/2/27

Administrative

2

• HW2 and Lab2 (with guidance to valgrind) will be released, keep
an eye on Piazza

• Start early on labs so that checking can be faster

• Those who haven’t enrolled in Piazza and Gradescope please
enroll yourselves ASAP!

• Discussion next week on memory management & valgrind (useful
for your labs/HWs/projects) by TA Yizhou Wang at teaching center
301 on Monday/Friday

• The similarity check is conducted automatically for each HW, proj.,
etc. Please comply with the course rules!

• We grade only on your most recent valid activated submissions before
ddl for all assignments!

Outline

3

• Pointer

• Array

• Pointer arithmetic

• C memory management

• Stack

• Heap

Address vs. Value
• Consider memory to be a single huge array

of bytes

• Each cell/byte of the array has an

address associated with it

• Each cell also stores some value

• Don’t confuse the address referring to a

memory location with the value stored there

• Byte-addressable

• int: 4 bytes (by convention)

• char: 1 byte (C standard)

• address itself: machine-dependent

(4 bytes throughout this course, 4 GiB

memory)

• RV32I instructions: 4 bytes

4

Memory

…
0x78

…
0x56

…
0x34

0x9a
0x12

Bytes

0

4

123

…

Pointer Array Pointer arithmetic Memory management

Pointers
• An address refers to a particular memory location;

• Pointer: A variable that contains the address of a
variable;

• Pointer syntax and basic usage

5

Memory

...
0xf0
0x78

...
0xde
0x56

...
0xbc
0x34

4

0x9a
0x12

Bytes

0

4

123

…

Pointer Array Pointer arithmetic Memory management

int *p;

Tells compiler that variable p is the address of an int;

* called the “dereference operator” in this context;

p = &X;

Tells compiler to assign address of X to p;

& called the “address operator” in this context;

z = *p;

Tells compiler to assign value at address p to z;

*p = 5;

Change the value at p to 5 and use pointer to write;
X

p

Pointers and Parameters Passing

• C passes parameters “by value”

– Procedure/function/method gets a copy of the parameter, so
changing the copy cannot change the original

6

Pointer Array Pointer arithmetic Memory management

void add_one (int *p)
{*p = *p + 1;}
int y = 3;
add_one(&y);

void add_one (int x)
{x = x + 1;}
int y = 3;
add_one(y);

y remains
equal to 3

y equals to
4 now

Pointers and Structures

typedef struct {

 int x;

 int y;

} Point;

Point p1={1,2};

Point p2;

Point *paddr;

paddr = &p1;

/* dot notation */

int h = p1.x;

p2.y = p1.y;

/* arrow notation */

int h = paddr->x; or

int h = (*paddr).x;

/* This works too */

p2 = p1;

7

Pointer Array Pointer arithmetic Memory management

Types of Pointers

• Pointers are used to point to any kind of data (int, char, a
struct, and a function, etc.)

• Normally a pointer only points to one type (int, char, a
struct, and a function, etc.).

– void * is a type that can point to anything (generic
pointer, more in memory management later)

– Be careful, use void * sparingly to help avoid program
bugs, and security issues, and other bad things!

8

Pointer Array Pointer arithmetic Memory management

Why Pointers in C?

• At time C was invented (early 1970s), compilers often didn’t produce
efficient code

– Computers 100,000 times faster today, compilers better

• C designed to let programmer say what they want code to do without
compiler getting in way

– If we want to pass a large struct or array, it’s easier/faster/etc. to

pass a pointer than the whole thing

– In general, pointers allow cleaner, more compact code

– Even give compilers hints which registers to use!

• Today’s compilers produce much better code, so may not need to use
pointers in application code

• Low-level system code still needs low-level access via pointers

9

Pointer Array Pointer arithmetic Memory management

Pointers in C

• So what are the drawbacks?

– Pointers are probably the single largest source of bugs in C, so

be careful anytime you deal with them

• Most problematic with dynamic memory management—

coming up later

• Dangling references and memory leaks

10

Pointer Array Pointer arithmetic Memory management

C Pointer Dangers

• Declaring a pointer just allocates space to hold the pointer – it
does not allocate the thing being pointed to!

• Local variables in C are not initialized, they may contain
anything (a.k.a. “garbage”)

• What does the following code do?

11

void f(void)
{
 int *ptr;
 *ptr = 5;
}

Undefined Behavior

Pointer Array Pointer arithmetic Memory management

ptr not
initialized.

Outline

12

• Pointer

• Array

• Pointer arithmetic

• C memory management

• Stack

• Pointer

C Arrays

• Declaration:

 int ar[2];

 Declare a 2-element integer array: just a block of memory

 int ar[] = {795, 635};

 Declare and initialize a 2-element integer array

• Must specify size (or provide info. that can infer the size)

13

Pointer Array Pointer arithmetic Memory management

C Strings

• String in C is just an array of characters

 char string[] = "abc";

• How do you tell how long a string is?

– Last character is followed by a ‘\0’ (NULL) byte
(a.k.a. “null terminator”) (RTFM)

14

int strlength char

int 0
while 0

return

C11 standard: The declaration

 char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose
members are initialized with character string
literals. This declaration is identical to

 char s[] = { 'a', 'b', 'c', '\0' },
 t[] = { 'a', 'b', 'c' };

Pointer Array Pointer arithmetic Memory management

Array/Pointer Duality

• Key Concept: Array variable is a “pointer” to the first (lowest
addressed, i.e., 0th) element

• So, array variables almost identical to pointers

– Not usually the other way (example next slide)

• Consequences:

– ar is an array variable, but works like a pointer

– ar[0] is the same as *ar

– ar[2] is the same as *(ar+2)

– Can use pointer arithmetic to conveniently access arrays

15

Pointer Array Pointer arithmetic Memory management

Array/Pointer Duality

• Be really careful!

char string1[] = "abc";

char *string2 = "abc";

• CAN modify string1[x]

• CANNOT modify string2[x]

• CAN access string2 by string2[x]

16

Pointer Array Pointer arithmetic Memory management

Excercise

• What do these below mean? Be really careful!

int 3 5 6 7 9

int

int 5

int 5

int

int

17

void

Pointer Array Pointer arithmetic Memory management

Changing a Pointer Argument?

• What if want function to change a pointer?

• What gets printed?

void inc_ptr int
1

int 3 50 60 70
int

"q = %d\n"

*q = 50

50 60 70

A q

Pointer Array Pointer arithmetic Memory management

Pointer to a Pointer

• Solution! Pass a pointer to a pointer, declared as **h
• Now what gets printed?

void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q

Pointer Array Pointer arithmetic Memory management

h

Arguments in main()

• To get arguments to the main function, use:

int main(int argc, char *argv[])

• argc contains the number of strings on the command line
(the executable counts as one, plus one for each
argument). Here argc is 5:

% clang -ansi introC_1_1.c -o introC_1_1.out

• argv is a pointer array, pointing to multiple strings

20

Pointer Array Pointer arithmetic Memory management

Example

% clang -ansi introC_1_1.c -o introC_1_1.out

• argc = 5 /* number arguments */

argv[0] = "clang",
argv[1] = "-ansi",
argv[2] = "introC_1_1.c",

argv[3] = "-o",

argv[4] = "introC_1_1.out"

21

Pointer Array Pointer arithmetic Memory management

More C Pointer & Array Dangers

• An array in C does not know its own length, and its bounds are
not checked!

– Consequence: We can accidentally access off the end of an
array

– Suggestion: We must pass the array and its size to any
procedure that is going to manipulate it

• Out of boundary errors:

– These are VERY difficult to find;
Be careful!

22

Pointer Array Pointer arithmetic Memory management

Use Defined Constants
• Array size n; want to access from 0 to n-1, so you should use counter AND

utilize a variable for declaration and incrementation

– Bad pattern
int i, ar[10];

for(i = 0; i < 10; i++){ ... }

– Better pattern
const int ARRAY_SIZE = 10;

int i, a[ARRAY_SIZE];

for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE SOURCE OF TRUTH

– You avoid maintaining two copies of the number 10

– DRY: “Don’t Repeat Yourself”

23

Pointer Array Pointer arithmetic Memory management

24

Arrays and Pointers

• Array = pointer to the initial (0th)
array element

a[i](*(a+(i)))

• An array is passed to a function as a
pointer

– The array size is lost!

• Usually bad style to interchange
arrays and pointers

– Avoid pointer arithmetic!

Really int *array

int foo(int array[],

 unsigned int size)

{

 … array[size - 1] …

}

int

main(void)

{

 int a[10], b[5];

 … foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays

Pointer Array Pointer arithmetic Memory management

Outline

25

• Pointer

• Array

• Pointer arithmetic

• C memory management

• Stack

• Pointer

Pointing to Different-Sized Objects

• Modern machines are “byte-
addressable”

– Hardware’s memory composed of
8-bit storage cells, each has a
unique address

• A C pointer is just abstracted
memory address

• Type declaration tells compiler
how many bytes to fetch on each
access through pointer

– E.g., 32-bit integer stored in 4
consecutive 8-bit bytes

• Alignment

26

int *x

32-bit integer stored
in four bytes

short *y

16-bit short stored
in two bytes

char *z

Byte address

Memory

Byte-addressable

0123

4-7
8-11
…

8-bit character
stored in one byte

Pointer Array Pointer arithmetic Memory management

Pointing to Different-Sized Objects

• Modern machines are “byte-
addressable”

– Hardware’s memory composed of
8-bit storage cells, each has a
unique address

• A C pointer is just abstracted
memory address

• Type declaration tells compiler
how many bytes to fetch on each
access through pointer

– E.g., 32-bit integer stored in 4
consecutive 8-bit bytes

• Alignment

27

int *x

32-bit integer stored
in four bytes

short *y

16-bit short stored
in two bytes

char *z

Byte address

Memory

Byte-addressable

0123

4-7
8-11
…

8-bit character
stored in one byte

Pointer Array Pointer arithmetic Memory management

sizeof() Operator

• sizeof(type) returns number of bytes in object

– But number of bits in a byte is not standardized

• In olden times, when dragons roamed the earth, bytes could be
5, 6, 7, 9 bits long

• By definition, sizeof(char)==1

• Can take sizeof(variable), or sizeof(type)

• We’ll see more of sizeof when we look at dynamic memory
management

28

Pointer Array Pointer arithmetic Memory management

29

Excercise
int foo(int array[], unsigned int
size)

{

 …

 printf(“%d\n”, sizeof(array));

}

int main(void)

{

 int a[10], b[5];

 … foo(a, 10)… foo(b, 5) …

 printf(“%d\n”, sizeof(a));

}

What does this print
(32-bit address)?

What does this print
(32-bit int)?

4

40

Because array is really
a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

Pointer Array Pointer arithmetic Memory management

30

Pointer Arithmetic

pointer + number pointer – number

e.g., pointer + 1 adds 1 to a pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In each, p now points to b

(Assuming compiler doesn’t reorder
variables in memory. Never code like
this!!!!)

Adds 1*sizeof(char)
to the memory address

Adds 1*sizeof(int)
to the memory address

Pointer arithmetic should be used cautiously

Pointer Array Pointer arithmetic Memory management

31

Pointer Arithmetic--Exercise

Pointer Array Pointer arithmetic Memory management

int 3 5 6 7 9

int

int 5

Are arr+1, p+1, p1+1 the same?

32

Arrays and Pointers

int i;

int array[10];

for (i = 0; i < 10; i++)

{

 array[i] = …;

}

int *p;

int array[10];

for (p = array; p < &array[10]; p++)

{

 *p = …;

}

These code sequences have the same effect!

Pointer Array Pointer arithmetic Memory management

Concise strlen()

int(long) strlen char
char
while

/* Null body of while */
return 1

What happens if there is no zero character at end
of string?

33

Pointer Array Pointer arithmetic Memory management

Point past end of array?

• Array size n; want to access from 0 to n-1, but test for exit by
comparing to address one element past the last member of
the array

int 10 0
0 10

while /* sum = sum+*p; p = p+1*/

• C defines that one element past end of array must be a
valid address, i.e., not causing an error

34

Pointer Array Pointer arithmetic Memory management

Valid Pointer Arithmetic

• Add an integer to a pointer.

• Subtract 2 pointers (pointed to the same array/object)

• Compare pointers (<, <=, ==, !=, >, >=)

• Compare pointer to NULL (indicates that the pointer points to
nothing)

• Everything else illegal since makes no sense:

• Adding two pointers

• Multiplying pointers

• Subtract pointer from integer

35

Pointer Array Pointer arithmetic Memory management

Summary

• “Lowest High-level language”

• => closest to assembler

• Pointers: powerful but dangerous

• Pointer arithmetic and arrays useful but also dangerous

36

Summary

37

• Pointers and arrays are virtually same

• C knows how to increment pointers

• C is an efficient language, with little protection

• Array bounds not checked

• Variables not automatically initialized

• (Beware) The cost of efficiency is more overhead for the
programmer.

“C gives you a lot of extra rope but be careful not to hang
yourself with it!”

Outline

38

• Pointer

• Array

• Pointer arithmetic

• C memory management

• Stack

• Pointer

C Memory Management

39

• To simplify, assume one program runs at a time

• A program’s address space contains 4 regions:

• stack: local variables inside functions, grows
downward

• heap: space requested for dynamic data via
malloc(); resizes dynamically, grows upward

• static data: variables declared outside functions,
does not grow or shrink. Loaded when program
starts, can be modified.

• code (a.k.a. text): loaded when program starts,
does not change

• 0x0 unwritable/unreadable (NULL pointer)

Memory Address
(32 bits assumed here)

code

static data

heap

stack

~ 0000 0000hex

FFFF FFFFhex

Pointer Array Pointer arithmetic Memory management

Where are Variables Allocated?

• If declared outside a function,
allocated in “static” storage

• If declared inside function,
allocated on the “stack”
and freed when function
returns

• main() is treated like
a function

• For the above two types, the memory management is automatic

• Don’t need to deallocating when no longer using them

• A variable does not exist anymore once a function ends!

int myGlobal;
main() {
 int myTemp;
}

40

Pointer Array Pointer arithmetic Memory management

The Stack

• Every time a function is called, a new “stack
frame” is allocated on the stack

• Stack frame includes:
• Return address (who called me?)
• Arguments
• Space for local variables

• Stack frames: contiguous blocks of memory;
stack pointer indicates start of stack frame

• When function ends, stack frame is tossed off the
stack; frees memory for future stack frames

• Details covered later (RISC-V processor)

funcD frame

funcB frame

funcC frame

funcA frame

Stack Pointer
41

funcA() { funcB(); }
funcB() { funcC(); }
funcC() { funcD(); }

Pointer Array Pointer arithmetic Memory management

Stack Animation

• Last In, First Out (LIFO) data structure

main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}
void d (int p)
{
}

stack

Stack Pointer
Stack
grows
down

42

Pointer Array Pointer arithmetic Memory management

Passing Pointers into the Stack

43

• It is fine to pass a
pointer to stack
space further down.

#define BUFLEN 256
int main() {
 …
 char buf[BUFLEN];
 load_buf(buf, BUFLEN);
 …
}

buf char array
persistent through

load_buf’s execution

stack

• However, it is bad to return a
pointer to something in the
stack!

• Memory will be overwritten
when other functions called!

• So your data would no longer
exist, and writes can
overwrite key pointers,
causing crashes!

pointer buf

char* make_buf() {
 char buf[50];
 return buf;
}

int main(){
 …
 char *stackAddr =
 make_buf();
 …
}

stackAddr points to
overwritten memory

stack

buf???

Carving on the
moving boat to look

for the sword

Pointer Array Pointer arithmetic Memory management

Managing the Heap

• The heap is dynamic memory – memory that can be allocated, resized, and

freed during program runtime.

• Useful for persistent memory across function calls

• But biggest source of pointer bugs, memory leaks, …

• Large pool of memory, not allocated in contiguous order

• Back-to-back requests for heap memory could result in blocks very far apart

• C supports four functions for heap management:

• malloc() allocate a block of uninitialized memory

• calloc() allocate a block of zeroed memory

• free() free previously allocated block of memory

• realloc() change size of previously allocated block (might move)

44

Pointer Array Pointer arithmetic Memory management

Managing the Heap
• void *malloc(size_t n):

– Allocate a block of uninitialized memory

– n is an integer, indicating size of allocated memory block in bytes

– size_t is an unsigned integer type big enough to “count” memory bytes

– sizeof returns size of given type in bytes, produces more portable code

– Returns void* pointer to block; NULL return indicates no more memory; always check
for return NULL (if (ip))

– Think of pointer as a handle that describes the allocated block of memory;
Additional control information stored in the heap around the allocated block! (Including
size, etc.)

• Examples:
int *ip1, *ip2;

ip1 = (int *) malloc(sizeof(int));

Ip2 = (int *) malloc(20*sizeof(int)); //allocate an array of 20 ints.

typedef struct { … } TreeNode;

TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

45

“Cast” operation, changes type of a variable. Here
changes (void *) to (int *)

Assuming size of objects can
lead to misleading, unportable
code. Use sizeof()!

Pointer Array Pointer arithmetic Memory management

Managing the Heap
• void free(void *p):

– Releases memory allocated by malloc()

– p is pointer containing the address originally returned by malloc()
 int *ip;

 ip = (int *) malloc(sizeof(int));

 free((void*) ip); /* Can you free(ip) after ip++ ? */

 typedef struct {… } TreeNode;

 TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

 free((void *) tp);

– When you free memory, you must be sure that you pass the original

address returned from malloc() to free(); Otherwise, system

exception (or worse)!

46

Pointer Array Pointer arithmetic Memory management

Managing the Heap

• void *realloc(void *p, size_t size):

– Returns new address of the memory block.

• In doing so, it may need to copy all data to a new location.

 realloc(NULL, size); // behaves like malloc

 realloc(ptr, 0); // behaves like free, deallocates heap block

– Always check for return NULL

47

int *ip; ip = (int *) malloc(10*sizeof(int));

… … … /* check for NULL */

ip = (int *) realloc(ip, 20*sizeof(int));

/* contents of first 10 elements retained */

… … … /* check for NULL */

realloc(ip,0); /* equivalent to free(ip); */

Keep track of
this, since it
might change.

Pointer Array Pointer arithmetic Memory management

How are malloc/free implemented?
• Underlying operating system allows malloc library to ask for large

blocks of memory to use in heap (stdlib.h)

48

Pointer Array Pointer arithmetic Memory management

Initial Empty Heap space from Operating System

Free Space

Malloc library creates linked list of empty blocks (one block initially)

FreeObject 1

Free

First allocation chews up space from start of free space

After many mallocs and frees, have potentially long linked list of odd-sized blocks
Frees link block back onto linked list – might merge with neighboring free space

Faster malloc implementations
• “Buddy allocators” always round up to power-of-2 sized chunks to

simplify finding correct size and merging neighboring blocks

49

free

used

Pointer Array Pointer arithmetic Memory management

Observations/Summary

• Code, static storage are easy: they never grow or shrink

• Stack space is relatively easy: stack frames are created and destroyed in

last-in, first-out (LIFO) order, avoid “dangling references"

• Managing the heap is tricky:

• Memory can be allocated/deallocated at any time

• “Memory leak”: If you forget to deallocate memory

• “Use after free”: If you use data after calling free

• “Double free”: If you call free 2x on same memory

50

Pointer Array Pointer arithmetic Memory management

	幻灯片 1: CS 110 Computer Architecture C Memory Management
	幻灯片 2: Administrative
	幻灯片 3: Outline
	幻灯片 4: Address vs. Value
	幻灯片 5: Pointers
	幻灯片 6: Pointers and Parameters Passing
	幻灯片 7: Pointers and Structures
	幻灯片 8: Types of Pointers
	幻灯片 9: Why Pointers in C?
	幻灯片 10: Pointers in C
	幻灯片 11: C Pointer Dangers
	幻灯片 12: Outline
	幻灯片 13: C Arrays
	幻灯片 14: C Strings
	幻灯片 15: Array/Pointer Duality
	幻灯片 16: Array/Pointer Duality
	幻灯片 17: Excercise
	幻灯片 18: Changing a Pointer Argument?
	幻灯片 19: Pointer to a Pointer
	幻灯片 20: Arguments in main()
	幻灯片 21: Example
	幻灯片 22: More C Pointer & Array Dangers
	幻灯片 23: Use Defined Constants
	幻灯片 24: Arrays and Pointers
	幻灯片 25: Outline
	幻灯片 26: Pointing to Different-Sized Objects
	幻灯片 27: Pointing to Different-Sized Objects
	幻灯片 28: sizeof() Operator
	幻灯片 29: Excercise
	幻灯片 30: Pointer Arithmetic
	幻灯片 31: Pointer Arithmetic--Exercise
	幻灯片 32: Arrays and Pointers
	幻灯片 33: Concise strlen()
	幻灯片 34: Point past end of array?
	幻灯片 35: Valid Pointer Arithmetic
	幻灯片 36: Summary
	幻灯片 37: Summary
	幻灯片 38: Outline
	幻灯片 39: C Memory Management
	幻灯片 40: Where are Variables Allocated?
	幻灯片 41: The Stack
	幻灯片 42: Stack Animation
	幻灯片 43: Passing Pointers into the Stack
	幻灯片 44: Managing the Heap
	幻灯片 45: Managing the Heap
	幻灯片 46: Managing the Heap
	幻灯片 47: Managing the Heap
	幻灯片 48: How are malloc/free implemented?
	幻灯片 49: Faster malloc implementations
	幻灯片 50: Observations/Summary

