o) (BN SR A SR

& u-;.l‘"" School of Information Science and Technology

CS 110
Computer Architecture
RISC-V

Instructors:
Chundong Wang & Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/3/4

Administrative

HW2, due Mar. 17th and Lab 3 (RISC-V and Venus) to be
released

Start early on labs so that checking can be faster

Discussion this week on memory management & valgrind (useful
for your labs/HWs/projects) by TA Yizhou Wang at teaching
center 301 on Monday/Friday

The similarity check is conducted automatically for each HW, proj.,
etc. Please comply with the course rules!

We grade only on your most recent activated submissions before ddl
for all assignments!

Outline

* Intro. to ISA

* Intro. to RISC-V

« Assembly instructions in RISC-V (RV32I)
* R-type

I-type arithmetic and logic

I-type load

S-type

Desicion-making instructions

ISA

Intro to ISA

Part of the abstract model of a computer that defines how the CPU is
controlled by the software; interface between the hardware and the
software;

Programmers’ manual because it is the portion of the machine that is
visible to the assembly language programmers, the compiler writers,
and the application programmers.

Defines the supported data types, the registers, how the hardware
manages main memory, key features, instructions that can be
executed (instruction set), and the input/output model of multiple ISA
Implementations

ISA can be extended by adding instructions or other capabilities
-by ARM

ISA

ISA vs. Microarchitecture

* ISA: Manual for building microarchitecture or processors

* Microarchitecture: Implementation of an ISA

ISA

Popular ISAs
« X86/AMDG64
— Dominant architecture for personal computers and servers
— Name derived from Intel 8086/80186/80286...
— Multiple version: X86-16, X86-32 (IA-32), X86-64 (AMDG64)
— Extensions such as MMX, SSE, etc.

* Major vendors : X86 integer addition
— Intel, AMD, VIA, Zhaoxin, DM&P, RDC Syntax

<reg>,<reg>

— To OEM (original equipment manufacturer) <reg>,<mem>
_ _ <mem>, <regs>
« CISC (complex instruction set computer) <mems>, immsx

— Variable-length instructions
— Allow memory access with instructions other than load or store

— VAX architecture had an instruction to multiply polynomials!

ISA

Popular ISAs

- ARM

— Dominant architecture for embedded devices
— Advanced RISC Machine

: ARM addition
— Multiple version: ARMv1-ARMv9 Syntax

. Major vendors <reg>,<reg>,<reg or imms
— Apple, Huawei, Qualcomm, Xilinx, etc.
— ARM sells IP cores to IC vendors (core licence)
— |C vendors sell MCU/CPU/SoC to OEM or for self use
« RISC (reduced instruction set computer)
— 32-bit fixed-length instructions (not actually for Thumb-16)

— Allow memory access with only load or store instructions

— Simpler to design hardware. Generally generate smaller heat

| RY.

RISC vs. CISC

Disassembly of section __TEXT,__ text:

0000000000000000 <1tmp0>: 0000000000000054 <main>:

@: ff c3 00 d1 . sub sp, sp, #48 54: 55 i push %rbp
4: fd 7b 02 a9 E stp x29, x30, [sp, #32] 55: 48 89 e5 E mov %rsp,%rbp
8: fd 83 00 91 ; add x29, sp, #32 58: 48 83 ec 30 ' sub $0x30,%rsp
C: 08 00 80 52 . mov w8, #0 5¢: e8 00 00 00 00 ' call 61 <main+0xd>
10: e8 Of 00 b9 : str w8, [sp, #12] 61: c745fcd2040000 : movl $0x4d2,-0x4(%rbp)
14: bf c3 1f b8 ' stur wzr, [x29, #-4] 68: c745f8e1100000 : movl $0x10e1,-0x8(%rbp)
18: 48 9a 80 52 ! mov w8, #1234 6f: 8b 55 fc i mov -Ox4(%rbp),%edx
1c: a8 83 1f b8 i stur w8, [x29, #-8] 72: 8b 4518 ' mov -O0x8(%rbp),%eax
20: 28 1c 82 52 ! mov w8, #4321 75: 01d0 + add %edx,%eax
24: a8 43 1f b8 ! stur w8, [x29, #-12] 77: 89454 r mov %eax,-0xc(%rbp)
28: a8 83 5f b8 . ldur w8, [x29, #-8] 7a: 8b 45 f4 : mov -Oxc(%rbp),%eax
2c: a9 43 5f b8 : ldur w9, [x29, #-12] 7d: 89 c2 i mov %eax,%edx
30: 08 01 09 0b ' add w8, w8, wg‘ 7f. 48 8d 05 00 00 00 00 lea 0x0(%rip),%rax # 86 <main+0x32>
34: e8 13 00 b9 : str w8, [sp, #16] 86: 48 89 T i mov %rax,%rcx
38: €9 13 40 b9 : ldr w9, [sp, #16] 89: e8 72 ff ff ff ' call 0 <printf>
3c: e8 03 09 aa : mov XS, X9 8e: b8 00 00 00 00 . mov $UXO,%eaX
40: €9 03 00 91 E mov x9, sp 93: 4883 c430 E add $0x30,%rsp
44: 28 01 00 f9 . str x8, [x9] 97: 5d ' pop %rbp
48: 00 00 00 90 ' adrp x0, 0x0 <ltmp@+dx48> & 3 ret
4c: 00 00 00 91 ! add x0, x0, #0 99: 90 : nop
50: 00 00 00 94 : bl 0x50 <ltmp@+0x50> 9a: 90 1 nop
54: e@ Of 40 b9 : ldr wo, [sp, #12] 9b: 90 } hop
58: fd 7b 42 a9 : ldp x29, x30, [sp, #32] 9c: 90 ; nop
5c: ff c3 00 91 ! add sp, sp, #48 9d: 20 » 0P
60: cO 03 5f d6 : ret Je: %9 \ nop
' 9f: 90 ' nop
Assembly Assembly

Compiled on Mac machine using ARM CPU Compiled on Windows machine using Intel CPU
8

ISA

Popular ISAs

* RISC philosophy (John Cocke IBM, John Hennessy Stanford,
David Patterson Berkeley, 1980s)

 Hennessy & Patterson won ACM A.M. Turing Award (2017)
Reduced Instruction Set Computer (RISC)

— Keep the instruction set small and simple, makes it easier to build fast
hardware.

— Let software do complicated operations by composing simpler ones.

RISC-V

Popular ISAs

 RISC-V (pronounced “risk-five”)
— Started as a summer project in UC Berkeley, 2010
— The ISA itself is published in 2011 as open source

— RISC-V foundation formed 2015 to own, maintain and publish IP related to
RISC-V’s definition (a nonprofit business association)

* More than 3,100 members and still growing
— Alibaba Cloud: T-Head % %x C series; E series, and R series
— Huawei: Hi3861V100 SoC for loT/smart home
— Tencent: a premier member
— Intel, Google, Meta, SiFive, AMD/Xilinx, etc.
— ShanghaiTech hold several RISC-V Summits China recent years!
« Other ISA examples: MIPS, IBM/Motorola PowerPC (quite old Mac), Intel 1A64,

RISC-V

More than 3,100 RISC-V Members

$1,2000

The total market for $1,0000
RISC-V IP and Software $800.0
is expected to grow to 36000

$1.07 billion by 2025 at a sa000
CAGR of 54.1% $200.0

$- = g g
2018 2019 2020 2021 2022 2023 2024 2025

P (S Millions) wmmm Software and Tools ($ Millions)

Total (S Millions)

Source: Tractica

IOpET = o FOEL" roxy* Fora~ FOra s Fagas

[Ran T TR LET - TR iR B A TP @S AT & e = jFpdaienri] = e 8

From riSCV.Org Source: Semico Research Corp

RISC-V

RISC-V

 Why RISC-V instead of Intel x867

— RISC-V is simple, elegant and open-source. Don’t want to get
bogged down in gritty details.

« ltis flexible
— Enabled by different extensions

Name Description

Base

RV32I Base Integer Instruction Set, 32-bit

RV32E Base Integer Instruction Set (embedded), 32-bit, 16 register
RV64I Base Integer Instruction Set, 64-bit

RV64E Base Integer Instruction Set (embedded), 64-bit

RV128I Base Integer Instruction Set, 128-bit

Extension

M Standard Extension for Integer Multiplication and Division
A Standard Extension for Atomic Instructions

F Standard Extension for Single-Precision Floating-Point

D Standard Extension for Double-Precision Floating-Point

RVG=RVI+M+A+F+D

Manual available: https://riscv.org

RISC-V

Where are we?

temp
v [k]

High Level Language
Program (e.g., C)
Compiler

Assembly Language
Program (e.g., RISC-V)

Assembler

Machine Language
Program (RISC-V)

lw
lw
Sw
Sw

We are here!

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

1

Register File

|

Logic Circuit Description
(Circuit Schematic Diagrams)

13

Assembly Language

« Basic job of a CPU: execute a series of instructions.
 Instructions are the primitive operations that the CPU may execute.
« Basic job of a instruction: change the state of a computer.

Disassembly of section ___TEXT,__ text:

0000000000000000 <1tmp®>:

@: ff c3 00 d1 sub sp, sp, #48

4: fd 7b 02 a9 stp x29, x30, [sp, #32]
8: fd 83 00 91 add x29, sp, #32

c: 08 00 80 52 mov w8, #0

10: e8 Of 00 b9 str w8, [sp, #12]

14: bf c3 1f b8 stur wzr, [x29, #-4] assembly ona X86 CPU?
18: 48 9a 80 52 mov w8, #1234

1c: a8 83 1f b8 stur w8, [x29, #-8]
20: 28 1c 82 52 mov w8, #4321
24: a8 43 1f b8 stur w8, [x29, #-12]
28: a8 83 5f b8 1ldur w8, [x29, #-8]
2c: a9 43 5f b8 1ldur w9, [x29, #-12]
30: 08 91 09 @b add w8, w8, w9
34: e8 13 00 b9 str w8, [sp, #16]
38: €9 13 40 b9 1dr w9, [sp, #16]
3c: e8 03 89 aa mov x8, x9
40: e9 03 00 91 mov x9, sp
44: 28 01 00 f9 str x8, [x9]
48: 00 00 00 90 adrp x0, 0x0 <ltmp0+0x48>
4c: 00 00 00 91 add x0, x0, #0
50: 00 00 00 94 bl Ox50 <ltmp@+0x50>
54: e0 Of 40 b9 1dr w@, [sp, #12]
58: fd 7b 42 a9 1dp x29, x30, [sp, #32]
5¢: ff ¢3 00 91 add sp, sp, #48
60: c@ 03 5f d6 ret

ARM Assembly
Compiled on Mac machine using ARM CPU 14

Exercise 1: Can we execute this

Exercise 2: Can we use
a Linux OS to run ARM
assembly?

RISC-V

CPU State: Assembly Registers
(hardware/variable)

« Unlike C or Java, assembly cannot use variables
« Keep assembly/computer hardware abstract simple
« Assembly operands are registers

Limited number of special locations/memory built directly into the CPU

Operations can only be performed on these registers in RISC-V

« Benefit: Since registers are directly in hardware (CPU), they are
very fast

RISC-V

Regqisters, inside the Processor

Processor
Enable?
Read/Write
Address
Write Data

\ J \]

Processor-Memory Interface

I/O-Mererory Interfaces

16

RISC-V

RV32| Registers

Processor Registers X0Q/zero
x1
Control X2
Datapath || @ "™/ °"”"''"”
PC
x31
| |=—_U€EsteE —— | . Similar to memory, use “address” to
Arithmetjc|&-LogicUnit refer to specific location
(A
PC register
® Hold address of the current instruction
1c: a8 83 1f b8 stur w8, [x29, #-8]

20: 28 1c 82 52 mov w8, #4321

« 32 registers in RISC-V 24: a8 43 1f b8 stur w8, [x29, #-12]
28: a8 83 5f b8 1ldur w8, [x29, #-8]

— Why 327 Smaller is faster, but too small is bad. 2c: ag 43 5f b8 1dur w9, [x29, #-12]
30: 08 01 09 @b add w8, w8, w9
« Each RV32 register is 32-bit wide

— Groups of 32 bits called a word in RV32; P&H textbook uses 64-bit
variant RV64 (doubleword)

17

RISC-V

C, Java variables vs. reqisters

 In C (and most high level languages) variables declared first and
given a type
—Example: 1int fahr, celsius;

char a, b, ¢, d, e;

« Each variable can ONLY represent a value of the type it was
declared as (cannot mix and match int and char variables).

* In Assembly Language, registers have no type, simply stores Os
and 1s; operation determines how register contents are treated
(think about the hardware)

Assembly Instructions

In assembly language, each statement (called an instruction),
executes exactly one of a short list of simple commands

Unlike in C (and most other high hevel hanguages), each line of
assembly code contains at most 1 instruction

Another way to make your code more readable: comments!
Hash (#) is used for RISC-V comments

— anything from hash mark to end of line is a comment and will be
ignored

Assembly Instructions

 Different types of instructions (4 core types + B/J based on the
handling of immediate)

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode

imm|11:5] rs2 rsl funct3 imm 4:0) opcode
imm[12] | imm[10:5 rs2 rsl funct3 |imm[4:1] | imm[11] | opcode
imm|[31:12)] rd opcode

imm|20)] imm|[10:1] imm[11] imm[19:12] rd opcode

R-type
I-type

S-type
B-type
U-type

J-type

- Different types have different format but “rs1”, “rs2” and “rd” are
at the same position (hardware friendly)

* As an ID number, the machine code of the instructions has different
fields; format depends on their operands/type

20

 Different types of instructions (4 core types + B/J based on the

Assembly Instructions

handling of immediate)

31 30

25 24

21

Instructions-R type

20

19

15 14

12 11

8

6 0

funct7

rs2

rsl

funct3

rd

opcode

 R-type

— Register-register operation, mainly for arithmetic & logic

— Has two operands (accessed from the source registers, rsl &
rs2) and one output (saved to the destination register, rd)

— Cannot access main memory (instruction executed by CPU

alone, no data exchange with main memory)

R-type

21

Instructions-R type

RV32l R-type Arithmetic

« Syntax of instructions
« Addition: add rd,rsl,rs2 (operation rd,rsl,rs2)

Adds the value stored in register rs1 to that of rs2 and stores the
sum into register rd, similartoa=b+c,ae rd,be rsl, c e rs2

« Example:

add x5, x2, x1
add x6, x0, x5
add x4, x1, x3

Registers

0

0x12340000

0x00006789

OxFFFFFFFF

Instructions-R type

RV32l R-type Arithmetic

« Syntax of instructions
« Subtraction: sub rd, rsl, rs2

Subtract the value stored in register rs2 from that of rs1 and stores
the difference into register rd, equivalenttoa=b-c,a & rd, b & rsi,
cCoe rs2

« Example: sub x5, x2, x1
sub x6, x5, x0 Registers

0 X0/zero
0x12340000 |x1
0x00006789 |x2
OxFFFFFFFF | x3

Instructions-R type

RV32] R-type Logic Operation

« Syntax of instructions:
« AND/OR/XOR: and/or/xor rd, rsl, rs2

Logically bit-wise and/or/xor the value stored in register rs1 and that of
rs2 and stores the result into register rd, equivalentto a =b (&/|/*) c, a
sSrdbersl,ce rs?

« Example: and x5, x2, x1

xor x6, x1, x5 Registers

and x4, x1, x3 0 X0/zero
0x12340000 | x1
0x00006789 | x2
OXFFFFFFFF | x3
x4
x5
X0
X7

Instructions-R type

RV32] R-type Logic Operation

« Syntax of instructions:
« AND/OR/XOR: and/or/xor rd, rsl, rs2

Logically bit-wise and/or/xor the value stored in register rs1 and that of
rs2 and stores the result into register rd, equivalentto a =b (&/|/*) c, a
sSrdbersl,ce rs?

« Used for bit-mask

and x5, x7, x4

or xb, x7, x4

« XOR can be used for bit-wise negation

Registers

0 X0/zero
0x12340000 | x1
0x00006789 | x2
OXFFFFFFFF | x3
OxXFFFFO000 | x4

X5

X6
0x12345678 | x7

Instructions-R type

RV32I| R-type Compare

« Syntax of instructions

« SLT/SLTU: slt/sltu rd, rsl, rs2

Compare the value stored in register rs1 and that of rs2, sets
rd=1, if rsl<rs2 otherwise rd=0, equivalenttoa=b<c?1:0,a¢&
rd, b & rsl, c & rs2. Treat the numbers as signed/unsigned with
slt/sltu.

« Example: slt x5, x2, x1

slt x4, x3, x1

sltu x5, x3, x1 Registers

» Overflow detection (unsigned) 0 x0/zero
add x5, x3, X3 0x12340000 | x1
s1Ttu x6. X5. X3 0x00006789 | x2

A OXFFFFFFFF | x3
* Overflow detection (signed)? A
add t0Q, t1, t2 "
slti t3, t2, 0 o
slt t4, to, t1 .

bne t3, t4, overflow

Instructions-R type

RV32l R-type Shift

« Syntax of instructions:
« Shift left/right (arithmetic): sLl/srl/sra rd, rsl, rs2

Left/Right shifts the value stored in register rs1 by lower 5 bits of
rs2, equivalenttoa=b <</>>/>>>c,ae rd,be rsl,c e rs2.

arithmetic: sign extended.

« Example: sll x5, x2, x4
sril x6, x1, x4 Registers
sra x7, x3, x4

0 X0/zero

0x12340000 | X1
0x00006789 | X2
OXFFFFFFFF | X3

0x4 x4
X5

X6
X7

Instructions-R type

RV32l R-type Shift

« Syntax of instructions:

« Shift left/right (arithmetic): sL1/srl/sra rd, rsl, rs2

Left/Right shifts the value stored in register rs1 by lower 5 bits of rs2,
equivalenttoa=b <</>>/>>>c,ae rd,b e rsl, c & rs2.

arithmetic: sign extended.
« Example: sll x5, x2, x4
sri x6, x1, x4
sra x/7, x3, x4
« What is the arithmetic effect by shifting?

Registers

0

0x12340000

0x00006789

OXFFFFFFFF

0x4

 Different types of instructions

Assembly Instructions

Instructions-I type

imm|11:0]

rsl

funct3

rd

opcode

« |-type

* Register-Immediate type

* Has two operands (one accessed from source register, another a
constant/immediate, sign-extended) and one output (saved to

destination register)

« Can do arithmetic, logic and load from main memory

I-type

29

Instructions-I type

RV32l I-type Arithmetic

« Syntax of instructions
e Addition: addi rd, rsl1, imm

Adds 1imm to rs1, stores the result to rd, and imm is a signed
number.

« Example: addi x5, x4, 10
addi x6, x4, -10 Registers

-

« Similarly, andi/ori/xori/slti/sltui 0 X0/zero

. All the imm’s are sign-extended (details ~ |-2X12340000 |x1

will be covered in later lectures) gﬁggggﬁﬁ? ig

0x3 X4
- slli/srli/srai shift rs1 by the lower Xg
5-bits of imm, srai is distinguished by §7

using one of the higher bit of the 1mm (or
funct7 field)

addi x1, x0,
or X2, X2,
add x3, x1,
slt x4, x3,
sra x5, X3,
sub x0, x5,

» Register zero (x0) is ‘hard-wired’ to 0;
« By convention RISC-V has a specific

Instructions-I type

RV32| Excercise

-1
x1
X2
x1
x4
x4

no-op instruction...

—addi x0 x0 0

— You may need to replace code later:
No-ops can fill space, align data, and
perform other options

— Practical use in jump-and-link
operations (covered later)

Registers

X0/zero

x1
X2
X3
x4

x5
X6
X7/

31

Instructions-I type

RV32l |-type Load

Processor

\rithm

Enable?
Read/Write

Program

Address

Write Data ‘

Read Data
(Load data
from mem.

Fast but limited

place to hold values

| toReg.) |

Processor-Memory Interface

Much larger place
to hold values, but
slower than registers!

\ J

I/O-Mererory Interfaces

32

on CPU regqisters.

Assembly Instructions—Load

 RV32l is a load-store architecture, where only load and store
Instructions access memory and arithmetic instructions only operate

imm|[11:0] rsl

funct3

rd

opcode

Offset Base

« lw rd, imm(rsl) :Load word at addr. to register rd
addr.= (number 1in rsl) + imm

 Example
lw x1, 12(x4)
addr.= 4 + 12 = (10)Hex

0

0x12340000

0x00006789

OXFFFFFFFF

0x4

Registers

x0/zero
x1
X2
X3
x4
x5
X6
x7

Bytes

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

Main memory

I-type

3C

ohowNO .

Instructions-I type

Big Endian vs. Little Endian

Big-endian and little-endian from Jonathan Swift's Gulliver's Travels

e The order in which BYTES are stored in memory
e Bits always stored as usual. (E.g., 0xC2=0b 1100 0010)

Consider the number 1025 as we normally write it:

BYTE2

BYTE1

BYTEO

00000000 00000100 00000001

Big Endian

ADDR3 ADDR2 ADDR1 ADDRO
BYTEO BYTE1 BYTE2
00000001 00000100 00000000

Examples

Names in the West (e.g. Siting, Liu)
”"Network Byte Order”: most network protocols
IBM z/Architecture; very old Macs

Little Endian

ADDR3 ADDR2 ADDR1 ADDRO
BYTE2 BYTE1 BYTEO
00000000 00000100 00000001

Examples
Names in China (e.g. LIU Siting)

CANopen
Intel x86; RISC-V (can also support big-endian)

en.wikipedia.org/wiki/Big_endian

big-endian: MIPS, |A-64, PowerPC 34

on CPU regqisters.

Assembly Instructions—Load

 RV32l is a load-store architecture, where only load and store
Instructions access memory and arithmetic instructions only operate

imm|11:0] rsl

funct3

rd

opcode

Offset Base

« lw rd, imm(rsl) :Load word at addr. to register rd
addr.= (number in rsl) + 1imm

« Example

w x1, 12(x4)

addr.= 4 + 12 = (10)Hex
« C code example

int A[100];

G = A[3];

0

0x12340000

0x00006789

OXFFFFFFFF

0x4

Registers

x0/zero
x1
X2
X3
x4
x5
X6
x7

Bytes

56

34

34

12

56

34

34

12

56

34

34

12

56

34

34

12

56

34

34

12

56

34

34

12

56

34

34

12

56

34

34

12

Main memory

I-type

3C

Sk~ 0N

Assembly Instructions—Load

 RV32l is a load-store architecture, where only load and store
Instructions access memory and arithmetic instructions only operate

on CPU regqisters.

imm|[11:0] rsl funct3

rd

opcode

I-type

 Lb/lbu rd, imm(rs1): Load signed/unsigned byte at addr. to

register rd
addr.= (number in rsl) + 1imm
 Example
b x1, 12(x4) 0x123@4@000
addr.= 4 + 12 = (10)Hex [5xp0006789
lbu x1, 12(x4) OXFFFFFFFF
0x4

Registers

x0/zero
x1
X2
X3
x4
x5
X6
x7

Bytes

56

34 | 23 | 01

34

12 | cd | ab

56

34 | 23 | 01

34

12 | cd | ab

56

34 | 23 | 01

34

12 | cd | ab

56

34 | 23 | 01

34

12 | cd | ab

56

34 | 23 | 01

34

12 | cd | ab

56

34 123 | 01

34

12 | cd | ab

56

34 | 23 | 01

34

12 | cd | ab

56

34 | 23 | 01

34

12 | cd | ab

3C

SoOh~h0WN

Assembly Instructions—Load

 RV32l is a load-store architecture, where only load and store
Instructions access memory and arithmetic instructions only operate

on CPU regqisters.

imm|[11:0] rsl funct3

rd

opcode

I-type

 Lh/lhu rd, imm(rsl): Load signed/unsigned halfword at addr.

to register rd (similar to 1b/ lbu)
addr.= (number in rsl) + imm

 Example

0
lth x1, 12(x4) 0x12340000
addr.= 4 + 12 = (10)ux | 0x00006789
Thu x1, 12(x4) @xFF@FXIZFFFF

Registers

x0/zero
x1
X2
X3
x4
x5
X6
x7

Bytes

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

56

34

23

34

12

cd

3C

SoOh~h0WN

Assembly Instructions—S-Type Store

 RV32l is a load-store architecture, where only load and store
Instructions access memory and arithmetic instructions only operate
on CPU regqisters.

imm|[11:5] rs2 rsl funct3 | imm/4:0] opcode S-type

e sw rs2, imm(rsl): Store word at rs2 to memory addr.
addr.= (number in rsl) + 1imm

 Example Bytes
sw x1, 12(x4) R R R
ad((:jl”.; 4+ 1|2 - (1®)HEX 0 X0/zero gi ig ij gtl)
. e example 56 | 34 | 23 | 01
20 P 0x12340000 |x1 34 [12 [cd | ab
int A[100]; 5 56 | 34 | 23 | 01
0x00006789 |X 34 | 12 [cd | ab
/* SA[O] => x4 */ OxFFFFFFFF |x3 S6 | 34 [25 ot
A[3] = h; ox4 | x4 S6 3453 o1 .
/* h 1n rs2 => A[3] */ X5 R
X6 34 [12 | cd | ab | 8
56 | 34 |23]| 014
X7 34 | 12 | cd | ab | @

Registers

Assembly Instructions—S-Type Store

 RV32l is a load-store architecture, where only load and store
Instructions access memory and arithmetic instructions only operate
on CPU regqisters.

imm|[11:5] rs2 rsl funct3 | imm/4:0] opcode S-type

e sw rs2, imm(rsl) : Store word at rs2 to memory addr.
addr.= (number in rsl) + 1imm

 Example Bytes

sw X1, 12(x4) e 3¢
addr.= 4 + 12 = (10)hex 56 [34 23 [01
. Similarly 0 |X0/rero it

’ . 1

sh: Store lower 16 bits at rg2 |-9X12340000 T3 55 Ton
_ . 0x00006789 |x2 32 112 T cd | ab
sb: Store lower 8 bits at rs2 OxFEFFEFER 153 TN EENNT
C d

No shu/sbu? Ox4 x4 56 34 |23 |01 | .
x5 34 | 12 | cd | ab

56 34 | 23 01 | C

X0 34 | 12 | cd | ab | 8

56 | 34 [23] 014

X7 34 [12 [cd | ab | @

Registers

Memory Alignment

« RISC-V does not require that integers be word aligned...
— But it can be very very bad if you don't make sure they are...

« Consequences of unaligned integers
— Slowdown: The processor is allowed to be a lot slower when it

happens
* |n fact, a RISC-V processor may natively only support aligned
accesses, and do unaligned-access in software!
An unaligned load could take hundreds of times longer!
 Lack of atomicity: The whole thing doesn't happen at once... can

introduce lots of very subtle bugs
« So in practice, RISC-V recommends integers to be aligned on 4- byte

boundaries; halfword 2-byte boundaries

Excercise! What's in x127

addi x11,x0,0x4F6
sw Xx11,0(x5)
b x12,1(x5)

0x4
Ox6

OxF

m oo m >

: | OXFFFFFFFF

41

Excercise! What's in x127

addi x11,x0,0x85F6
sw X11,0(x5)
b x12,1(x5)

T O MMMONO >

Ox85

OxC

OxBC

: [OXFFFFFFFQ

+ | OXFFFFFF85

OXFFFFFFC

: | OXFFFFFFBC

42

Summary

RISC-V ISA basics: (32 registers, referred to as x0-x31, x0=0)
Simple is better

One instruction (simple operation) per line (RISC-V assembly)
Fixed-length instructions (for RV32l)

6 types of instructions (depending on their format)

Instructions for arithmetics, logic operations, register-memory data
exchange (load/store word/halfword/byte)

RISC-V is little-endian

Load-store architecture

