
CS 110
Computer Architecture

RISC-V
Instructors:

Chundong Wang & Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/3/4

Administrative

2

• HW2, due Mar. 17th and Lab 3 (RISC-V and Venus) to be
released

• Start early on labs so that checking can be faster

• Discussion this week on memory management & valgrind (useful
for your labs/HWs/projects) by TA Yizhou Wang at teaching
center 301 on Monday/Friday

• The similarity check is conducted automatically for each HW, proj.,
etc. Please comply with the course rules!

• We grade only on your most recent activated submissions before ddl
for all assignments!

Outline

3

• Intro. to ISA

• Intro. to RISC-V

• Assembly instructions in RISC-V (RV32I)

• R-type

• I-type arithmetic and logic

• I-type load

• S-type

• Desicion-making instructions

Intro to ISA

4

• Part of the abstract model of a computer that defines how the CPU is
controlled by the software; interface between the hardware and the
software;

• Programmers’ manual because it is the portion of the machine that is
visible to the assembly language programmers, the compiler writers,
and the application programmers.

• Defines the supported data types, the registers, how the hardware
manages main memory, key features, instructions that can be
executed (instruction set), and the input/output model of multiple ISA
implementations

• ISA can be extended by adding instructions or other capabilities

-by ARM

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

ISA vs. Microarchitecture

5

• ISA: Manual for building microarchitecture or processors

• Microarchitecture: Implementation of an ISA

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Popular ISAs

6

• X86/AMD64

– Dominant architecture for personal computers and servers

– Name derived from Intel 8086/80186/80286...

– Multiple version: X86-16, X86-32 (IA-32), X86-64 (AMD64)

– Extensions such as MMX, SSE, etc.

• Major vendors

– Intel, AMD, VIA, Zhaoxin, DM&P, RDC

– To OEM (original equipment manufacturer)

• CISC (complex instruction set computer)

– Variable-length instructions

– Allow memory access with instructions other than load or store

– VAX architecture had an instruction to multiply polynomials!

add: X86 integer addition
Syntax
add <reg>,<reg>
add <reg>,<mem>
add <mem>,<reg>
add <mem>,imm*
... ...

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Popular ISAs

7

• ARM

– Dominant architecture for embedded devices

– Advanced RISC Machine

– Multiple version: ARMv1-ARMv9

• Major vendors

– Apple, Huawei, Qualcomm, Xilinx, etc.

– ARM sells IP cores to IC vendors (core licence)

– IC vendors sell MCU/CPU/SoC to OEM or for self use

• RISC (reduced instruction set computer)

– 32-bit fixed-length instructions (not actually for Thumb-16)

– Allow memory access with only load or store instructions

– Simpler to design hardware. Generally generate smaller heat

add: ARM addition

Syntax

add(S) <reg>,<reg>,<reg or imm>

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RISC vs. CISC

8

Assembly
Compiled on Mac machine using ARM CPU

Assembly
Compiled on Windows machine using Intel CPU

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Popular ISAs

9

• RISC philosophy (John Cocke IBM, John Hennessy Stanford,
David Patterson Berkeley, 1980s)

• Hennessy & Patterson won ACM A.M. Turing Award (2017)

Reduced Instruction Set Computer (RISC)

– Keep the instruction set small and simple, makes it easier to build fast
hardware.

– Let software do complicated operations by composing simpler ones.

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Popular ISAs

10

• RISC-V (pronounced “risk-five”)

– Started as a summer project in UC Berkeley, 2010

– The ISA itself is published in 2011 as open source

– RISC-V foundation formed 2015 to own, maintain and publish IP related to
RISC-V’s definition (a nonprofit business association)

• More than 3,100 members and still growing

– Alibaba Cloud: T-Head 玄铁 C series; E series, and R series

– Huawei: Hi3861V100 SoC for IoT/smart home

– Tencent: a premier member

– Intel, Google, Meta, SiFive, AMD/Xilinx, etc.

– ShanghaiTech hold several RISC-V Summits China recent years!

• Other ISA examples: MIPS, IBM/Motorola PowerPC (quite old Mac), Intel IA64,
...

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

More than 3,100 RISC-V Members

11

• Semico Research predicts the
market will consume 62.4 billion
RISC-V CPU cores by 2025, a
146.2% CAGR 2018-2025. The
industrial sector to lead with
16.7 billion cores.

Source: Semico Research Corp

62.4 billion RISC-V CPU cores
by 2025

Source: Tractica

The total market for
RISC-V IP and Software
is expected to grow to

$1.07 billion by 2025 at a
CAGR of 54.1%

From riscv.org

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RISC-V

12

• Why RISC-V instead of Intel x86?

– RISC-V is simple, elegant and open-source. Don’t want to get
bogged down in gritty details.

• It is flexible

– Enabled by different extensions

Name Description
Base
RV32I Base Integer Instruction Set, 32-bit
RV32E Base Integer Instruction Set (embedded), 32-bit, 16 register
RV64I Base Integer Instruction Set, 64-bit
RV64E Base Integer Instruction Set (embedded), 64-bit
RV128I Base Integer Instruction Set, 128-bit
Extension
M Standard Extension for Integer Multiplication and Division
A Standard Extension for Atomic Instructions
F Standard Extension for Single-Precision Floating-Point
D Standard Extension for Double-Precision Floating-Point

RVG = RVI + M + A + F + D

Manual available: https://riscv.org

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Where are we?

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

13

We are here!

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Assembly Language

14

• Basic job of a CPU: execute a series of instructions.

• Instructions are the primitive operations that the CPU may execute.

• Basic job of a instruction: change the state of a computer.

ARM Assembly
Compiled on Mac machine using ARM CPU

Exercise 1: Can we execute this
assembly on a X86 CPU?

Exercise 2: Can we use
a Linux OS to run ARM
assembly?

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

CPU State: Assembly Registers
(hardware/variable)

• Unlike C or Java, assembly cannot use variables

• Keep assembly/computer hardware abstract simple

• Assembly operands are registers

• Limited number of special locations/memory built directly into the CPU

• Operations can only be performed on these registers in RISC-V

• Benefit: Since registers are directly in hardware (CPU), they are
very fast

15

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Processor

Control

Datapath

Registers, inside the Processor

16

PC

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes
Address

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Write Data

Read Data

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Registers

Enable?
Read/Write

RV32I Registers

17

Processor

Control

Datapath
PC

Arithmetic & Logic Unit
(ALU)

Registers

… …

• Similar to memory, use “address” to
refer to specific location

x0/zero
x1

… …

x2

x31

PC register

• Hold address of the current instruction

• 32 registers in RISC-V
– Why 32? Smaller is faster, but too small is bad.

• Each RV32 register is 32-bit wide
– Groups of 32 bits called a word in RV32; P&H textbook uses 64-bit

variant RV64 (doubleword)

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Registers

C, Java variables vs. registers

• In C (and most high level languages) variables declared first and

given a type

– Example: int fahr, celsius;

char a, b, c, d, e;

• Each variable can ONLY represent a value of the type it was

declared as (cannot mix and match int and char variables).

• In Assembly Language, registers have no type, simply stores 0s

and 1s; operation determines how register contents are treated

(think about the hardware)

18

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Assembly Instructions

• In assembly language, each statement (called an instruction),
executes exactly one of a short list of simple commands

• Unlike in C (and most other high hevel hanguages), each line of
assembly code contains at most 1 instruction

• Another way to make your code more readable: comments!

• Hash (#) is used for RISC-V comments

– anything from hash mark to end of line is a comment and will be
ignored

19

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Assembly Instructions

• Different types of instructions (4 core types + B/J based on the
handling of immediate)

20

• Different types have different format but “rs1”, “rs2” and “rd” are
at the same position (hardware friendly)

• As an ID number, the machine code of the instructions has different
fields; format depends on their operands/type

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Assembly Instructions

• Different types of instructions (4 core types + B/J based on the

handling of immediate)

21

• R-type

– Register-register operation, mainly for arithmetic & logic

– Has two operands (accessed from the source registers, rs1 &

rs2) and one output (saved to the destination register, rd)

– Cannot access main memory (instruction executed by CPU

alone, no data exchange with main memory)

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I R-type Arithmetic

• Syntax of instructions

• Addition: add rd,rs1,rs2 (operation rd,rs1,rs2)

Adds the value stored in register rs1 to that of rs2 and stores the

sum into register rd, similar to a = b+c, a ⇔ rd, b ⇔ rs1, c ⇔ rs2

• Example: add x5, x2, x1

add x6, x0, x5

add x4, x1, x3

22

0

0x12340000

0x00006789

0xFFFFFFFF

Registers

x0/zero

x1
x2

x3
x4

x5
x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I R-type Arithmetic

• Syntax of instructions

• Subtraction: sub rd, rs1, rs2

Subtract the value stored in register rs2 from that of rs1 and stores

the difference into register rd, equivalent to a = b-c, a ⇔ rd, b ⇔ rs1,

c ⇔ rs2

• Example: sub x5, x2, x1

sub x6, x5, x0

23

0

0x12340000

0x00006789

0xFFFFFFFF

Registers

x0/zero

x1
x2

x3
x4

x5
x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I R-type Logic Operation

• Syntax of instructions:

• AND/OR/XOR: and/or/xor rd, rs1, rs2

Logically bit-wise and/or/xor the value stored in register rs1 and that of

rs2 and stores the result into register rd, equivalent to a = b (&/|/^) c, a

⇔ rd, b ⇔ rs1, c ⇔ rs2

• Example: and x5, x2, x1

xor x6, x1, x5

and x4, x1, x3

24

0

0x12340000

0x00006789

0xFFFFFFFF

Registers
x0/zero

x1
x2

x3
x4

x5
x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I R-type Logic Operation

• Syntax of instructions:

• AND/OR/XOR: and/or/xor rd, rs1, rs2

Logically bit-wise and/or/xor the value stored in register rs1 and that of

rs2 and stores the result into register rd, equivalent to a = b (&/|/^) c, a

⇔ rd, b ⇔ rs1, c ⇔ rs2

• Used for bit-mask
and x5, x7, x4
or x6, x7, x4
• XOR can be used for bit-wise negation

25

0

0x12340000

0x00006789

0xFFFFFFFF

0xFFFF0000

0x12345678

Registers
x0/zero

x1
x2

x3
x4

x5
x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I R-type Compare
• Syntax of instructions

• SLT/SLTU: slt/sltu rd, rs1, rs2

Compare the value stored in register rs1 and that of rs2, sets
rd=1, if rs1<rs2 otherwise rd=0, equivalent to a = b < c ? 1 : 0, a ⇔
rd, b ⇔ rs1, c ⇔ rs2. Treat the numbers as signed/unsigned with
slt/sltu.

• Example: slt x5, x2, x1
slt x4, x3, x1
sltu x5, x3, x1

• Overflow detection (unsigned)
add x5, x3, x3
sltu x6, x5, x3
• Overflow detection (signed)?
add t0, t1, t2
slti t3, t2, 0
slt t4, t0, t1
bne t3, t4, overflow

26

0

0x12340000

0x00006789

0xFFFFFFFF

Registers
x0/zero

x1
x2

x3
x4

x5
x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I R-type Shift

• Syntax of instructions:

• Shift left/right (arithmetic): sll/srl/sra rd, rs1, rs2

Left/Right shifts the value stored in register rs1 by lower 5 bits of
rs2, equivalent to a = b <</>> />>>c, a ⇔ rd, b ⇔ rs1, c ⇔ rs2.

arithmetic: sign extended.

• Example: sll x5, x2, x4

srl x6, x1, x4

sra x7, x3, x4
0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero
x1
x2

x3
x4

x5
x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I R-type Shift

• Syntax of instructions:

• Shift left/right (arithmetic): sll/srl/sra rd, rs1, rs2

Left/Right shifts the value stored in register rs1 by lower 5 bits of rs2,
equivalent to a = b <</>> />>>c, a ⇔ rd, b ⇔ rs1, c ⇔ rs2.

arithmetic: sign extended.

• Example: sll x5, x2, x4

srl x6, x1, x4

sra x7, x3, x4

• What is the arithmetic effect by shifting?

28

0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero

x1
x2

x3
x4

x5
x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Assembly Instructions

• Different types of instructions

29

• I-type

• Register-Immediate type

• Has two operands (one accessed from source register, another a

constant/immediate, sign-extended) and one output (saved to

destination register)

• Can do arithmetic, logic and load from main memory

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I I-type Arithmetic

• Syntax of instructions

• Addition: addi rd, rs1, imm

Adds imm to rs1, stores the result to rd, and imm is a signed
number.

• Example: addi x5, x4, 10

addi x6, x4, -10

30

0

0x12340000

0x00006789

0xFFFFFFFF

0x3

Registers

x0/zero
x1
x2

x3
x4

x5
x6

x7

• Similarly, andi/ori/xori/slti/sltui
• All the imm’s are sign-extended (details

will be covered in later lectures)

• slli/srli/srai shift rs1 by the lower
5-bits of imm, srai is distinguished by
using one of the higher bit of the imm (or
funct7 field)

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I Excercise

addi x1, x0, -1
or x2, x2, x1
add x3, x1, x2
slt x4, x3, x1
sra x5, x3, x4
sub x0, x5, x4

31

0

0

0

0

0

0

0

0

Registers

x0/zero

x1

x2

x3

x4

x5

x6

x7

• Register zero (x0) is ‘hard-wired’ to 0;

• By convention RISC-V has a specific
no-op instruction...
– addi x0 x0 0

– You may need to replace code later:
No-ops can fill space, align data, and
perform other options

– Practical use in jump-and-link
operations (covered later)

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

RV32I I-type Load

32

Processor

Control

Datapath

PC

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Processor-Memory Interface
I/O-Memory Interfaces

Program

Data

Write Data

Read Data
(Load data
from mem.

to Reg.)Fast but limited
place to hold values

Much larger place
to hold values, but

slower than registers!

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Register

Assembly Instructions—Load
• RV32I is a load-store architecture, where only load and store

instructions access memory and arithmetic instructions only operate

on CPU registers.

33

• lw rd, imm(rs1) : Load word at addr. to register rd
addr.= (number in rs1) + imm
• Example
lw x1, 12(x4)
addr.= 4 + 12 = (10)HEX

Bytes

0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero

x1

x2

x3

x4

x5

x6

x7

Main memory
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456

0
4
8
c

…

3c

Offset Base

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Big-endian and little-endian from Jonathan Swift's Gulliver's Travels

Big Endian vs. Little Endian

Big Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE0 BYTE1 BYTE2 BYTE3

00000001 00000100 00000000 00000000

Examples
Names in the West (e.g. Siting, Liu)

”Network Byte Order”: most network protocols

IBM z/Architecture; very old Macs

Little Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

Examples
Names in China (e.g. LIU Siting)

CANopen

Intel x86; RISC-V (can also support big-endian)

Consider the number 1025 as we normally write it:
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

• The order in which BYTES are stored in memory

• Bits always stored as usual. (E.g., 0xC2=0b 1100 0010)

en.wikipedia.org/wiki/Big_endian

big-endian: MIPS, IA-64, PowerPC 34

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Assembly Instructions—Load
• RV32I is a load-store architecture, where only load and store

instructions access memory and arithmetic instructions only operate

on CPU registers.

35

• lw rd, imm(rs1) : Load word at addr. to register rd
addr.= (number in rs1) + imm
• Example
lw x1, 12(x4)

addr.= 4 + 12 = (10)HEX
• C code example
int A[100];
/*assume &A[0] = 4*/
G = A[3];

/*load G/A[3] to x1/

Bytes

0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero

x1

x2

x3

x4

x5

x6

x7

Main memory
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456

0
4
8
c

…

3c

Offset Base

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Assembly Instructions—Load

• RV32I is a load-store architecture, where only load and store

instructions access memory and arithmetic instructions only operate

on CPU registers.

36

• lb/lbu rd, imm(rs1): Load signed/unsigned byte at addr. to
register rd

addr.= (number in rs1) + imm

• Example

lb x1, 12(x4)

addr.= 4 + 12 = (10)HEX

lbu x1, 12(x4)

0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero

x1

x2

x3

x4

x5

x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Bytes

abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456

0
4
8
c

…

3c

Assembly Instructions—Load

• RV32I is a load-store architecture, where only load and store

instructions access memory and arithmetic instructions only operate

on CPU registers.

37

• lh/lhu rd, imm(rs1): Load signed/unsigned halfword at addr.

to register rd (similar to lb/lbu)

addr.= (number in rs1) + imm

• Example

lh x1, 12(x4)

addr.= 4 + 12 = (10)HEX

lhu x1, 12(x4)

0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero

x1

x2

x3

x4

x5

x6

x7

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Bytes

abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456

0
4
8
c

…

3c

Assembly Instructions—S-Type Store
• RV32I is a load-store architecture, where only load and store

instructions access memory and arithmetic instructions only operate
on CPU registers.

38

• sw rs2, imm(rs1): Store word at rs2 to memory addr.
addr.= (number in rs1) + imm
• Example
sw x1, 12(x4)
addr.= 4 + 12 = (10)HEX
• C code example
int A[100];
/* &A[0] => x4 */
A[3] = h;
/* h in rs2 => A[3] */

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero

x1

x2

x3

x4

x5

x6

x7

Bytes

abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456

0
4
8
c

…

3c

Assembly Instructions—S-Type Store
• RV32I is a load-store architecture, where only load and store

instructions access memory and arithmetic instructions only operate

on CPU registers.

39

• sw rs2, imm(rs1) : Store word at rs2 to memory addr.
addr.= (number in rs1) + imm
• Example
sw x1, 12(x4)
addr.= 4 + 12 = (10)HEX
• Similarly,
sh: Store lower 16 bits at rs2

sb: Store lower 8 bits at rs2
No shu/sbu?

Decision-makingInstructions-S type Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

0

0x12340000

0x00006789

0xFFFFFFFF

0x4

Registers

x0/zero

x1

x2

x3

x4

x5

x6

x7

Bytes

abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456
abcd1234
01233456

0
4
8
c

…

3c

Memory Alignment

• RISC-V does not require that integers be word aligned...

– But it can be very very bad if you don't make sure they are...

• Consequences of unaligned integers

– Slowdown: The processor is allowed to be a lot slower when it

happens

• In fact, a RISC-V processor may natively only support aligned

accesses, and do unaligned-access in software!

An unaligned load could take hundreds of times longer!

• Lack of atomicity: The whole thing doesn't happen at once... can

introduce lots of very subtle bugs

• So in practice, RISC-V recommends integers to be aligned on 4- byte

boundaries; halfword 2-byte boundaries

40

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Excercise! What’s in x12?

41

0x0

0x4

0x6

0xF

0xFFFFFFFF

addi x11,x0,0x4F6

sw x11,0(x5)

lb x12,1(x5)

A:
B:
C:
D:
E:

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

42

0x8

0x85

0xC

0xBC

0XFFFFFF85

0XFFFFFFF8

0XFFFFFFC

0XFFFFFFBC

addi x11,x0,0x85F6

sw x11,0(x5)

lb x12,1(x5)

A:
B:
C:
D:
E:
F:
G:
H:

Excercise! What’s in x12?

Instructions-S typeInstructions-I typeInstructions-R typeRISC-VISA

Summary

• RISC-V ISA basics: (32 registers, referred to as x0-x31, x0=0)

• Simple is better

• One instruction (simple operation) per line (RISC-V assembly)

• Fixed-length instructions (for RV32I)

• 6 types of instructions (depending on their format)

• Instructions for arithmetics, logic operations, register-memory data
exchange (load/store word/halfword/byte)

• RISC-V is little-endian

• Load-store architecture

43

