W W
St School of Information Science and Technology

) BRI SRR

CS 110

Computer Architecture
RISC-V I

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/3/6

Administrative

HW2, due Mar. 17th and Lab 3 (to check next week) are released
Proj. 1.1 will be released today; DDL Mar. 27th; start early!

Discussion this week on memory management & valgrind (useful
for your labs/HWs/projects) by TA Yizhou Wang at teaching
center 301 on Monday/Friday

Discussion next week on RISC-V assembly by TA Dagian Cao at
teaching center 301, flipped class, view the video in advance!

* Play with venus to understand better about RISC-V assembly

https://venus.cs61c.org/

Outline

* Assembly instructions in RISC-V (RV32I)

* Desicion-making instructions
* Branch (B-type)
* Function call
* Unconditional jump (J-type)
« (Calling convention

 Managing the stack

B-type Branch

Computer Decision Making—Branch

- Normal operation: execute instructions in sequence

n C: 1f/while/for-statement; function call

RISC-V provides conditional branch (B-type) & unconditional jump
(J-type)

imm[12] | imm|[10:5] rs2 rsl funct3 | imml[4:1] | imm[11] | opcode | B-type

 RISC-V: similar to if-statement instruction
beq rsl, rs2, L(imm/label)

meaning: go to statement labeled if (value in rs1) == (value in rs2);
otherwise, go to next statement
* beqg stands for branch if equal

« Similarly, bne for branch if not equal

B-type Branch

Computer Decision Making—Branch

1c:
20:
24:
28
2C:
30:

a8 83 1f b8
28 1c 82 52
a8 43 1f b8
a8 83 5f b8
a9 43 5f b8
08 01 09 @b

assembler

Example:
beq rsl, rs2, L(imm/label)
C code Compile « Assembly
addi x2, x0, 5
int main(void) { ~ addi x3, x0, 6
int 1=5; : _
i (11=6)4 bne x2, x3, L1 #imm = 8
i+ beq x2, x3, L2
) L1:add1i x2, x2, 1
else 1-—-; ret
return 0;

}

L2:add1 x2, x2, -1
ret

Label can also point to data (more in discussion)

Computer Decision Making—Branch

* Assembly (real stuff in ARM64)

o . mov w8, #5
Example: L tmp3:
.locl 10 9 is _stmt O
g subs w8, w8, #6
beq rsl, rs2, L(imm/label) e LBB0 >
b LBBO 1
 Ccode LBBO_1:
Ltmp4:
int main(void) { .locl 11 10 is_stmt 1
int 1=5; ldr w8, [sp, #8]
. i 1=6){ add w8, w8, #1
if (i!= str w8, [sp, #8]
i++; .locl 12 5
1 b LBBO 3
:) Ltmp>5:
else 1——; LBBO_2:
return 0; .loc1l 13 11
} ldr w8, I[sp, #8]

subs w8, w8, #1
str w8, [sp, #8]
b LBBO 3
Ltmp6:
LBBO_3:
.locl 0 11 is_stmt ©
mov w@, #0
.locl 14 5 is _stmt 1
add sp, sp, #16
ret

Computer Decision Making—Branch

* Normal operation: execute instructions in sequence
* In programming languages: 1f/wh1le/for-statement

- RISV-V provides conditional branch & unconditional jump

imm[12] | imm|[10:5] rs2 rsl funct3 | imml[4:1] | imm[11] | opcode | B-type

 RISC-V: if-statement instructions are
blt/bltu/bge/bgeu rsl, rs2, L(imm/label)

meaning: go to statement labeled L if (value in rsl) </= (value

in rs2) using singed/unsigned comparison; otherwise, go to
the next statement

B-type Branch

C Loop Mapped to RISC-V Assembly

%nt Al20]; # Assume x8 holds pointer to A
Int sum = @; # Assign x10=sum
for (int i=0; i < 20; add <9, x8, x0 # x9=GA[0]

1++)

. add x10, x0, x0 # sum=0
sum += A[i];

add x11, x0, x0 # 1=0
add1i x13,x0, 20 # x13=20
Loop:
bge x11,x13,Done
lw x12, 0(+x2) # x12=A[1i]
add x10,x10,x12 # sum+=
addi 9, ,4 # GA[i+1]
addi x11,x11,1 # 1++
] Loop
Done:
ret

Optimization

 The simple translation is
sub-optimall

* Inner loop is now 4
Instructions rather than 7

 And only 1 branch/jump
rather than two: Because
first time through is
always true so can move
check to the end!

« The compiler will often do
this automatically for
optimization

« See that 1 is only used as
an index in a loop

Assume x8 holds pointer to A

Assign x10=sum

add x10, x0, x0 # sum=0

add x11, x8, x0 # ptr = A

addi x12,x11, 80 # end = A + 80

Loop:
lw x13,0(x11) # x13 = *ptr
add x10,x10, x13 # sum += x13
addi x11,x11, 4 # ptr++

blt x11, x12, Loop # ptr < end

This optimization is not required

Line by line translation is good

Correctness first, performance second

B-type Branch

Arrays and Pointers

int
int

{

}

i: int xp;
array[10]; int array[10];

for (i =0; i < 10; i++)| |[for (p = array; p < &array[10]; p++)

{

arrayl[i] = ..; XP = .}

¥

These code sequences have the same effect!

10

B-type Branch

Translate Assembly to C

addi x10,
add x12,
label a:

andi x14,
beq x14,
add x12,
label b:

addi x10,
bne x10,

X0, 0x7
X0, X0

x10, 1
X0, label b
x10, x12

x10, -1
X0, label_a

x10 = 7

x12 =0

label a: x14 = x10 & 1
if (x14!=0)

{x12 = x10+x12;}
label b: x10 = x10-1;

if (x10!=0)
{go to label_a;}

11

Outline

* Assembly instructions in RISC-V (RV32I)

* Function call

12

Call a Function—Unconditional Jump

0000000100003f40 < _main>: #include <stdio.h>
100003f40: ff c3 00 d1 sub sp, sp, #48 int main() {//Compute 1234 + 4321

100003f58: 48 9a 80 52 8, #1234 It x = 1234,y = 4321;
: 48 92 mov w8, int z = x+y;

100003f5c: a8 83 1f b8 stur w8, [x29, #-8]

: 1, _o 1 .
10000360: 28 1c 82 52 mov w8, #4321 printf("z=%d/n",z);
100003764: a8 43 1f b8 stur w8, [x29, #-12] return 0;
100003168: a8 83 5f b8 ldur w8, [x29, #-8] }

100003f6c: a9 43 5f b8 1dur w9, [x29, #-12]
100003f70: 08 01 09 0b add w8, w8, w9

Disassembly of section __TEXT,__stubs:

0000000100003fad <_ stubs>: Memory
100003fa4: 10 00 00 b@ adrp
100003fa8: 10 02 40 f9 ldr Processor
100003fac: 00 02 1f d6 br Control X, Data
. \ Read
Increase by 4 each Datapath Instructions
time an 1instruction > PC .
is executed — — \\\i?\\\
— Reglsters — Instruction \\
EXCEpt fOI’ Address = Program

branch/jump/function
call

13

Call a Function

#include <stdio.h> 1. Put parameters in a place
int sum_two_number(int a, int b) where function can access
T them
int y; .
return y=a+b; 2. Transfer control to function
} (PC jump to sum_two_number)
int main(int argc, const char *x argvl[]) 3. Acquire (local) storage
int x=4321, y=1234; resources needed for function
int a=1,b=2,c=3,d=4,e=5,1=6,9=0; 4, Perform desired task of the
c = sum_two_number(a,b); .
f = sum_two_number(e,d); 5. Put result yalue In a place
g = sum_two_number(c,f); where calling code can access
printf("Sum is %d.\n",y); it and restore any registers you
return 0; used
}

6. Return control to point of
origin, since a function can be
called from several points in a
program

14

RISC-V Function Call Conventions

« Registers faster than memory, so use them as much as possible

« (@Give names to registers and conventions on how to use them

REGISTER NAME, USE, CALLING CONVENTION @
REGISTER NAME USE SAVER
x0 Zero The constant value 0 N.A.
x1 ra Return address Caller
X2 Sp Stack pointer Callee
X3 gp Global pointer --
x4 tp Thread pointer
®5-x17 t0—-t2 Temporaries Caller
X8 s0/fp Saved register/Frame pointer Callee
x9 sl Saved register Callee
x10-x11 a0-al Function arguments/Return values Caller
x12-x17 az-a’ Function arguments Caller
x18-x27 s2-sll Saved registers Callee
2 28-331 £3-£6 Temporaries Caller

Older version: https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
Latest draft: https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/tag/draft-20230220-

87f4a72d5aeafo48b35a230eo0basaccdibfcfoz2
Part of application binary interface (ABI) 15

RISC-V Function Call Conventions

¢ a0—a7 (x10-x17): eight argument registers to pass parameters
and return values (a@-al)

* ra: one return address register to return to the point of origin (x1)

e Also s0-s1 (x8-x9) and s2-s11 (x18-x27): saved registers

REGISTER NAME, USE, CALLING CONVENTION

@

REGISTER NAME USE SAVER
x0 Zero The constant value 0 N.A.
x1 ra Return address Caller
X2 Sp Stack pointer Callee
X3 gp Global pointer -
x4 tp Thread pointer -

®5-x7 tO~ts Temporaries Caller
X8 s0/fp Saved register/Frame pointer Callee

%9 sl Saved register Callee
x10-x11 a0-al Function arguments/Return values Caller
x12-x17 az2-a’ Function arguments Caller
x18-x27 52-s11 Saved registers Callee
x28-x31 £3-£6 Temporaries Caller

16

Call a Function

¢ a0—a7 (x10-x17): eight argument registers to pass parameters
and return values (a@-al)

#include <stdio.h>

%”t sum_two_number(int a, int b) y is returned function argument;
int y; / Can be put in registers af—-al
return y ;

}

int main(int argc, const char *x argvl[]) {
int x=4321, y=1234,
int a=1,b=2,c=3,d=4,e=5,f=6,g=0; | Processor 1LY
y = sum_two_number(x;y); Control
c = sum_two number(d,b); I f Dat
f = sum_two_number(g,d); Datapath o
g = sum_two_numberfc,f); PG
printf("Sum is %d/\n",y);
return 0; ——— Registers ——

}

X and y are function arguments; Program

Can be put in registers a@—-a’/

17

Call a Function

* ra: one return address register to return to the point of origin (x1)

#include <stdio.h>
int sum two number(int a, int b)

{ Func_called:

0x2000 //one instruction

0x2004 //another instruction

| R //need jump back to main()

int main(int argc, const char *x argv[]) {

Start:

0x1000 //one instruction

0x1004 //another instruction

; 0x1008 //a third instruction

SEVERGIS 0x100¢ //PC jump to 0x2000 (call function
value to sum_two_number)

CEIEICEERCl«— {01010 //next instruction... ...

18

Function call

Call a Function—J-type

 JAL: Jump & Link, jump to function
» Unconditional jump (J-type)

31 30 21 20 19 12 11 76 0
imm[20)] imm|[10:1] imm[11] | imm[19:12] rd opcode
1 10 1 8 5t 7

jal rd label

« Jump to label (1mm+PC, explain later) and save return address
(PC+4) to rd;

- rdis x1 (ra) by convention;

 When rd is x0, it is simply unconditional jump (j) without
recording PC+4.

19

Function call

Return—JALR

JALR: Jump & Link Register

Unconditional jump (I-type encoding)

31 20 19 15 14 12 11 76 0

imm|[11:0] rsl funct3 rd opcode

12 3 3 3 7

jalr rd rsl1l label

Jump to label (imm+rs1)&~1 and save return address (PC+4) to
rd

rs1 can be the return address we just saved to ra

When rd is x0, it is simply unconditional jump () without
recording PC+4.

20

Function call

Unconditional Jump

—jal rd offset —jalr rd rs offset
« Jump and Link (jal)

« Add the immediate value to the current address in the program (the
“program counter”), go to that location

 The offset is 20 bits, sign extended and left-shifted one (not two)
« At the same time, store into rd the value of PC+4
« So we know where it came from (need to return to)

« jal offset == jal x1 offset (pseudo-instruction; X1 = ra =
return address)

-] offset == jal x0 offset (jump is a pseudo-instruction in RISC-V)
« Two uses:
* Unconditional jumps in loops and the like

« (Calling other functions

21

Function call

Jump and Link Register

 The same except the destination
« Instead of PC + immediate itis[valuein rs] + immediate
« Same immediate format as |-type: 12 bits, sign extended
« Again, if you don’t want to record where you jump to...
e Jjr rs == jalr x0 rs
 Two main uses
* Returning from functions (which were called using Jump and Link)

« (Calling pointers to function

22

Call a Function

#include <stdio.h> 1. Put parameters in a place
int sum_two_number(int a, int b) where function can access
1 e them (addi/add etc. to copy)
retui;] y=a+b; 2. Transfer control to function (PC
1 jump to sum_two_number,
int main(int argc, const char x argvI[l) jal/jalr)
{ int x=4321, y=1234; 3. Acquire (local) storage
int a=1,b=2,c=3,d=4,e=5,f=6,q=0; resources needed for function
y = sum_two_number(x,y); 4. Perform desired task of the
¢ = sum_two_number(a,b); function (we have learned this)
f = sum_two_number(e,d); .
g = sum_two_number(c,f); . Putresult value in a place
printf("Sum is %d.\n",y); where calling code can access
return 0; it and restore any registers you
} used (addi/add etc. to copy)
6. Return control to point of
int (xp)(void); origin, since a function can be

called from several points in a
program (jalr)
23

REGISTER NAME, USE, CALLING CONVENTION @

REGISTER NAME USE SAVER
x0 ZETO The constant value 0 N.A.
x1 ra Return address Caller
X2 Sp Stack pointer Callee
X3 gp Global pointer -
x4 tp Thread pointer -

x5-x7 t0-t2 Temporaries Caller
%8 s0/fp Saved register/Frame pointer Callee

x9 sl Saved register Callee

| x10-x11 a0-al Function arguments/Return values | Caller
x12-x17 a2 =at Function arguments Caller
x18-x27 s2-sll Saved registers Callee

x28-x31 £3-£6 Temporaries Caller

Function call

Notes on Functions

Calling program (caller) puts parameters into registers a@—a’/
and uses jal Xto invoke (callee) at address labeled X

PC provides the returning point (PC+4 stored in ra)
What value does jal X place into ra?
jr ra puts address inside ra back into PC

New problem, small # of GPRs

#include <stdio.h>

int

sum_two_number(int a, int b)

3. Acquire (local) storage resources

int y; needed for function
return y=a+b;

main(int argc, const char x argvl[])

25

Function call

Where are Old Register Values Saved
to Restore Them after Function Call?

Need a place to save old values before call function, restore them
when return, and delete; use the big main memory

|deal is stack: last-in-first-out queue (e.g., stack of plates) Limited

« Push: placing data onto stack Space

» Pop: removing data from stack Processor

Control

Stack in memory, so need register to point to it I :

sp is the stack pointer in RISC-V (x2)

Convention is grow from high to low addresses

—— Registers

 Push decrements sp, Pop increments sp

26

Function call

Stack

Stack frame may include: Memory Address

o C (32 bits assumed here)
 Return “instruction” address FFFF FFFFp.,

. stack
« Parameters (spill) T 7
» Space for other local variables
Stack frames contiguous; stack pointer (sp/x2) T
tells where bottom of stack frameis = p——l—m ——
| | heap
When procedure/function begins, sp is

decreased to create space; data are stored Iin static data
the stack frame (push)

code

When procedure ends, stack frame is tossed off
the stack; frees memory for future stack frames; ~ 0000 0000,
Sp restores (pop)

27

Calling Convention

Could have saved all variables to main memory
Calling convention to make things easier
Callee-saved registers: callee clean the mess

— (Callee needs to save old value of sx (and any other callee saved
registers), and makes sure they are not changed after return, and

REGISTER NAME, USE, CALLING CONVENTION

@

REGISTER NAME USE SAVER
%0 Zero The constant value 0 N.A.
x1 ra Return address Caller
X2 Sp Stack pointer Callee
X3 gp Global pointer --
x4 tp Thread pointer =

X5-x17 tl—~ta Temporaries Caller
X8 s0/fp Saved register/Frame pointer Callee

%9 sl Saved register Callee
x10-x11 al0-al Function arguments/Return values Caller
x12-x17 az-al Function arguments Caller
x18-x27 s2-sll Saved registers Callee
x28-x31 t3-t6 Temporaries Caller

28

Example

. Leaf function: a function that calls no function 0 X0/zero
1
int Leaf (int g, int h, int i, int j) ra |~
{ sp X2
int f; f=(g+h) - (1i+3); | .-
}. return f; o1 e
int main (void){ ao x10
int a=1, b=2, c=3, d=4, e, X; al x11
e = Leaf(a,b,d,c); a2 x12
a3 x13
return e; a4 x14
v /xa function called by 0S¥/ |

« Parameter variables g, h, 1 and j in argument registers al, a2, a3,
and a4, and f in a® when returned, and assume x in s1

« Assume function Leaf use s1 for intermediate results

* Register ra consideration
29

Function call

RISC-V Code for Leaf ()

addi sp, sp, —4 # adjust stack for 1 items, callee

saved sl

sw sl, 0(sp) # save callee saved sl to stack

add sl1, a@, al # sl =g + h

add a2, aZ2, a3 #] = 1 +]

sub a@, sl1l, a2 # calculate result (g + h) — (i + j)
return value (g + h) — (i + j)

lw s1, @(sp) # restore register s1 for caller

addi sp, sp, 4 # adjust stack to delete 1 1items

jr ra # jump back to caller (pseudo—assembly: ret)
Stack for
main()
Stack
Sp Tomtoe of <1 During call
30

Stack Animation

* Last In, First Out (LIFO) data structure stack
main ()
1 alo); Stack Pointai?<s
1 grows
down

void d (int p)
{
s

31

Optimization for Leaf ()

» (Caller-saved registers: caller clean the mess

— Caller needs to save old value of caller-saved registers, and
makes sure they are not changed for further use

REGISTER NAME, USE, CALLING CONVENTION

@

REGISTER NAME USE SAVER
x0 Zero The constant value 0 N.A.
xl ra Return address Caller
X2 Sp Stack pointer Callee
X3 gp Global pointer -
x4 tp Thread pointer -
x5-%7 £0-t2 Temporaries Caller
X8 s0/fp Saved register/Frame pointer Callee
%9 sl Saved register Callee
x10-x11 a0-al Function arguments/Return values Caller
x12-x17 az2-a’ Function arguments Caller
x18-x27 32-sll Saved registers Callee
x28-x31 £3-£6 Temporaries Caller

32

Function call

Optimization for Leaf ()

« (Caller-saved registers: caller clean the mess

— Caller needs to save old value of caller-saved registers, and
makes sure they are not changed for further use

Leaf:

’ ’ ’

saved sl

Sw—S1,@{sp) # cave callea covad ol 4o ctack

add t1, a0, al # s1 =g + h

add a2, aZ2, a3 #] = 1 +]

sub a@, tl1, a2 # calculate result (g + h) — (i + j)

return value (g + h) — (i + j)

tw——st—0-sp—#—restore—register—st—for—eatter——

" ’ 4 o | o L

jr ra # jump back to caller (pseudo—assembly: ret)

33

Function call

Nested Call

int bar(int g,int h,int i,int j)

{
int f = (g +h) - (1 + j);
return f:

¥

int foo(int x)
{

//do stuff

int x = bar(g, h, i, j);
//q9, h, 1, j for other use
return (x/2);

¥

int main()

{

// do stuff 1
foo(x);

é/ do stuff 2

In foo, g, h, 1, and

j are in s0-s3

foo:
do stuff (code omitted)
save ra

addi sp, sp, -4
sw ra, 0(sp)

set up argument registers
add a0, s0, x0

add al, sl1, x0

add a2, s2, x0

(Prologue)

add a3, s3, x0

jal bar

restore ra
sral a0, a0, 1
lw ra, 0(sp)

(Epilogue)

addi sp, sp, 4

jr ra

34

Function call

Nested Call

int bar(int g,int h,int i,int j)

{
int f = (g +h) - (1 + j);
return f:

¥

int foo(int x)
{

//do stuff

int x = bar(g, h, i, j);
//q9, h, 1, j for other use
return (x/2);

¥

int main()

{

// do stuff 1
foo(x);

é/ do stuff 2

In foo, g, h, 1, and

j are in t0-t3

foo:
do stuff (code omitted)
save ra

addi sp, sp, -4
sw ra, 0(sp)

set up argument registers
add a0, s0, x0

add al, sl1, x0

add a2, s2, x0

(Prologue)

add a3, s3, x0

jal bar

restore ra
sral a0, a0, 1
lw ra, 0(sp)

(Epilogue)

addi sp, sp, 4

jr ra

35

Call a Function

1. Caller put parameters in a place where function can access
them (a@—a’/, or stack when registers not avail.), and then save
caller-saved registers to stack (e.g. ra, a@—-a/,t0-t1l1)

2. Transfer control to callee function (PC jump to function):
jal/jalr, raischanged to where caller left

3. Acquire (local) storage resources needed for function: change
sp (size decided when compiling);

Callee push callee-saved registers to stack (e.g., s0—s11)

4. Perform desired task of the function

5. Put result value in a place where calling code can access it (a0,
al), and restore/pop callee-saved registers (s0—-s11, sp)

6. Return control to point of origin, since a function can be called
from several points in a program (j r ra); caller restores caller-
saved registers

