
CS 110
Computer Architecture

RISC-V II
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/3/6

Administrative

2

• HW2, due Mar. 17th and Lab 3 (to check next week) are released

• Proj. 1.1 will be released today; DDL Mar. 27th; start early!

• Discussion this week on memory management & valgrind (useful
for your labs/HWs/projects) by TA Yizhou Wang at teaching
center 301 on Monday/Friday

• Discussion next week on RISC-V assembly by TA Daqian Cao at
teaching center 301, flipped class, view the video in advance!

• Play with venus to understand better about RISC-V assembly

 https://venus.cs61c.org/

Outline

3

• Assembly instructions in RISC-V (RV32I)
• R-type
• I-type arithmetic and logic
• I-type load
• S-type store
• Desicion-making instructions

• Branch (B-type)
• Function call

• Unconditional jump (J-type)
• Calling convention
• Managing the stack

Computer Decision Making—Branch
• Normal operation: execute instructions in sequence
• In C: if/while/for-statement; function call
• RISC-V provides conditional branch (B-type) & unconditional jump

(J-type)

• RISC-V: similar to if-statement instruction
beq rs1, rs2, L(imm/label)

meaning: go to statement labeled if (value in rs1) == (value in rs2);
otherwise, go to next statement

• beq stands for branch if equal
• Similarly, bne for branch if not equal

4

B-type Branch Function call

Computer Decision Making—Branch
• Example:

beq rs1, rs2, L(imm/label)

• C code

5

• Assembly

int main(void) {
 int i=5;
 if (i!=6){
 i++;
 }
 else i--;
 return 0;
}

addi x2, x0, 5
addi x3, x0, 6
bne x2, x3, L1 #imm = 8
beq x2, x3, L2

L1:addi x2, x2, 1
ret #kind of jump, psuedo-

instruction
L2:addi x2, x2, -1

ret

• Label can also point to data (more in discussion)

Compile

assembler

B-type Branch Function call

Computer Decision Making—Branch

6

• Assembly (real stuff in ARM64)
 mov w8, #5
Ltmp3:

.loc1 10 9 is_stmt 0
subs w8, w8, #6
b.eq LBB0_2
b LBB0_1

LBB0_1:
Ltmp4:

.loc1 11 10 is_stmt 1
ldr w8, [sp, #8]
add w8, w8, #1
str w8, [sp, #8]
.loc1 12 5
b LBB0_3

Ltmp5:
LBB0_2:

.loc1 13 11
ldr w8, [sp, #8]
subs w8, w8, #1
str w8, [sp, #8]
b LBB0_3

Ltmp6:
LBB0_3:

.loc1 0 11 is_stmt 0
mov w0, #0
.loc1 14 5 is_stmt 1
add sp, sp, #16
ret

• Example:

beq rs1, rs2, L(imm/label)

• C code
int main(void) {
 int i=5;
 if (i!=6){
 i++;
 }
 else i--;
 return 0;
}

B-type Branch Function call

Computer Decision Making—Branch

7

B-type Branch Function call

C Loop Mapped to RISC-V Assembly
int A[20];
int sum = 0;
for (int i=0; i < 20;
i++)
 sum += A[i];

Assume x8 holds pointer to A
Assign x10=sum
 add x9, x8, x0 # x9=&A[0]
 add x10, x0, x0 # sum=0
 add x11, x0, x0 # i=0
 addi x13,x0, 20 # x13=20
Loop:
 bge x11,x13,Done
 lw x12, 0(x9) # x12=A[i]
 add x10,x10,x12 # sum+=
 addi x9, x9,4 # &A[i+1]
 addi x11,x11,1 # i++
 j Loop
Done:
 ret

8

B-type Branch Function call

Optimization
• The simple translation is

sub-optimal!
• Inner loop is now 4

instructions rather than 7
• And only 1 branch/jump

rather than two: Because
first time through is
always true so can move
check to the end!

• The compiler will often do
this automatically for
optimization

• See that i is only used as
an index in a loop

Assume x8 holds pointer to A
Assign x10=sum
add x10, x0, x0 # sum=0
add x11, x8, x0 # ptr = A
addi x12,x11, 80 # end = A + 80
Loop:

lw x13,0(x11) # x13 = *ptr
add x10,x10, x13 # sum += x13
addi x11,x11, 4 # ptr++

blt x11, x12, Loop # ptr < end

9

• This optimization is not required

• Line by line translation is good

• Correctness first, performance second

B-type Branch Function call

10

Arrays and Pointers

int i;
int array[10];

for (i = 0; i < 10; i++)
{
 array[i] = …;
}

int *p;
int array[10];

for (p = array; p < &array[10]; p++)
{
 *p = …;
}

These code sequences have the same effect!

B-type Branch Function call

Translate Assembly to C
addi x10, x0, 0x7
add x12, x0, x0
label_a:
andi x14, x10, 1
beq x14, x0, label_b
add x12, x10, x12
label_b:
addi x10, x10, -1
bne x10, x0, label_a

11

x10 = 7
x12 = 0
label_a: x14 = x10 & 1

if (x14!=0)
{x12 = x10+x12;}

label_b: x10 = x10-1;

if (x10!=0)
{go to label_a;}

B-type Branch Function call

Outline

12

• Assembly instructions in RISC-V (RV32I)
• R-type
• I-type arithmetic and logic
• I-type load
• S-type store
• Desicion-making instructions

• Branch (B-type)
• Function call

• Unconditional jump (J-type)
• Calling convention
• Managing the stack

Call a Function—Unconditional Jump
0000000100003f40 <_main>:
100003f40: ff c3 00 d1 sub sp, sp, #48
… …
100003f58: 48 9a 80 52 mov w8, #1234
100003f5c: a8 83 1f b8 stur w8, [x29, #-8]
100003f60: 28 1c 82 52 mov w8, #4321
100003f64: a8 43 1f b8 stur w8, [x29, #-12]
100003f68: a8 83 5f b8 ldur w8, [x29, #-8]
100003f6c: a9 43 5f b8 ldur w9, [x29, #-12]
100003f70: 08 01 09 0b add w8, w8, w9
… …
100003f90: 05 00 00 94 bl 0x100003fa4 <_printf+0x100003fa4>
… …
Disassembly of section __TEXT,__stubs:
0000000100003fa4 <__stubs>:
100003fa4: 10 00 00 b0 adrp
100003fa8: 10 02 40 f9 ldr
100003fac: 00 02 1f d6 br

13

Processor
Control

Datapath
PC

Arithmetic & Logic Unit
(ALU)

Memory

Instruction
Address Program

Data

Increase by 4 each
time an instruction
is executed

Except for
branch/jump/function
call

Read
Instructions

#include <stdio.h>
int main() {//compute 1234 + 4321
 int x = 1234, y = 4321;
 int z = x+y;
 printf("z=%d/n",z);
 return 0;
}

B-type Branch Function call

Registers

Call a Function

14

#include <stdio.h>
int sum_two_number(int a, int b)
{
 int y;
 return y=a+b;
}
int main(int argc, const char * argv[])
{
 int x=4321, y=1234;
 int a=1,b=2,c=3,d=4,e=5,f=6,g=0;
 y = sum_two_number(x,y);
 c = sum_two_number(a,b);
 f = sum_two_number(e,d);
 g = sum_two_number(c,f);
 printf("Sum is %d.\n",y);
 return 0;
}

1. Put parameters in a place
where function can access
them

2. Transfer control to function
(PC jump to sum_two_number)

3. Acquire (local) storage
resources needed for function

4. Perform desired task of the
function

5. Put result value in a place
where calling code can access
it and restore any registers you
used

6. Return control to point of
origin, since a function can be
called from several points in a
program

B-type Branch Function call

RISC-V Function Call Conventions
• Registers faster than memory, so use them as much as possible
• Give names to registers and conventions on how to use them

15

Older version: https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
Latest draft: https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/tag/draft-20230220-

87f4a72d5aeaf048b35a230e0ba5accd1bfcf072
Part of application binary interface (ABI)

B-type Branch Function call

RISC-V Function Call Conventions
• a0–a7 (x10-x17): eight argument registers to pass parameters

and return values (a0-a1)
• ra: one return address register to return to the point of origin (x1)
• Also s0-s1 (x8-x9) and s2-s11 (x18-x27): saved registers

16

B-type Branch Function call

Call a Function

17

#include <stdio.h>
int sum_two_number(int a, int b)
{
 int y;
 return y=a+b;
}
int main(int argc, const char * argv[]) {
 int x=4321, y=1234;
 int a=1,b=2,c=3,d=4,e=5,f=6,g=0;
 y = sum_two_number(x,y);
 c = sum_two_number(a,b);
 f = sum_two_number(e,d);
 g = sum_two_number(c,f);
 printf("Sum is %d.\n",y);
 return 0;
}

Processor

Control

Datapath
PC

Arithmetic & Logic Unit
(ALU)

Memory

x and y are function arguments;
Can be put in registers a0-a7

y is returned function argument;
Can be put in registers a0-a1

• a0–a7 (x10-x17): eight argument registers to pass parameters
and return values (a0-a1)

B-type Branch Function call

Program

Data

Registers

Call a Function

18

#include <stdio.h>
int sum_two_number(int a, int b)
{
 int y;
 return y=a+b;
}
int main(int argc, const char * argv[]) {
 int x=4321, y=1234;
 int a=1,b=2,c=3,d=4,e=5,f=6,g=0;
 y = sum_two_number(x,y);
 c = sum_two_number(a,b);
 f = sum_two_number(e,d);
 g = sum_two_number(c,f);
 printf("Sum is %d.\n",y);
 return 0;
}

 Start:
 0x1000 //one instruction
 0x1004 //another instruction
 0x1008 //a third instruction
 0x100c //PC jump to 0x2000 (call function
sum_two_number)
 0x1010 //next instruction… …
 … …

 Func_called:
 0x2000 //one instruction
 0x2004 //another instruction
 … … //need jump back to main()

Save this
value to
register ra

• ra: one return address register to return to the point of origin (x1)

B-type Branch Function call

Call a Function—J-type
• JAL: Jump & Link, jump to function
• Unconditional jump (J-type)

jal rd label
• Jump to label (imm+PC, explain later) and save return address

(PC+4) to rd;
• rd is x1 (ra) by convention; sometimes can be x5.
• When rd is x0, it is simply unconditional jump (j) without

recording PC+4.

19

B-type Branch Function call

Return—JALR
• JALR: Jump & Link Register
• Unconditional jump (I-type encoding)

jalr rd rs1 label
• Jump to label (imm+rs1)&~1 and save return address (PC+4) to

rd
• rs1 can be the return address we just saved to ra
• When rd is x0, it is simply unconditional jump (j) without

recording PC+4.

20

B-type Branch Function call

Unconditional Jump
—jal rd offset —jalr rd rs offset

• Jump and Link (jal)
• Add the immediate value to the current address in the program (the

“program counter”), go to that location
• The offset is 20 bits, sign extended and left-shifted one (not two)

• At the same time, store into rd the value of PC+4
• So we know where it came from (need to return to)

• jal offset == jal x1 offset (pseudo-instruction; x1 = ra =
return address)

• j offset == jal x0 offset (jump is a pseudo-instruction in RISC-V)
• Two uses:

• Unconditional jumps in loops and the like
• Calling other functions

21

B-type Branch Function call

Jump and Link Register
• The same except the destination

• Instead of PC + immediate it is [value in rs] + immediate
• Same immediate format as I-type: 12 bits, sign extended

• Again, if you don’t want to record where you jump to…
• jr rs == jalr x0 rs

• Two main uses
• Returning from functions (which were called using Jump and Link)
• Calling pointers to function

22

B-type Branch Function call

Call a Function

23

#include <stdio.h>
int sum_two_number(int a, int b)
{
 int y;
 return y=a+b;
}
int main(int argc, const char * argv[])
{
 int x=4321, y=1234;
 int a=1,b=2,c=3,d=4,e=5,f=6,g=0;
 y = sum_two_number(x,y);
 c = sum_two_number(a,b);
 f = sum_two_number(e,d);
 g = sum_two_number(c,f);
 printf("Sum is %d.\n",y);
 return 0;
}

1. Put parameters in a place
where function can access
them (addi/add etc. to copy)

2. Transfer control to function (PC
jump to sum_two_number,
jal/jalr)

3. Acquire (local) storage
resources needed for function

4. Perform desired task of the
function (we have learned this)

5. Put result value in a place
where calling code can access
it and restore any registers you
used (addi/add etc. to copy)

6. Return control to point of
origin, since a function can be
called from several points in a
program (jalr)

int (*p)(void);

B-type Branch Function call

Notes on Functions
• Calling program (caller) puts parameters into registers a0-a7

and uses jal X to invoke (callee) at address labeled X
• PC provides the returning point (PC+4 stored in ra)
• What value does jal X place into ra?
• jr ra puts address inside ra back into PC
• New problem, small # of GPRs

25

#include <stdio.h>
int sum_two_number(int a, int b)
{
 int y;
 return y=a+b;
}
int main(int argc, const char * argv[])
{
 int a=1,b=2,c=3,d=4,e=5,f=6,g=0;
 int h,i,j,k,l,m,n,cs110,cs110p,...;
 y = sum_two_number(x,y);
 ...

3. Acquire (local) storage resources
needed for function

B-type Branch Function call

Where are Old Register Values Saved
to Restore Them after Function Call?

• Need a place to save old values before call function, restore them
when return, and delete; use the big main memory

• Ideal is stack: last-in-first-out queue (e.g., stack of plates)
• Push: placing data onto stack
• Pop: removing data from stack

• Stack in memory, so need register to point to it
• sp is the stack pointer in RISC-V (x2)
• Convention is grow from high to low addresses

• Push decrements sp, Pop increments sp

26

Processor

Control

Datapath
PC

Arithmetic & Logic Unit
(ALU)

Limited
space

B-type Branch Function call

Registers

Stack
• Stack frame may include:

• Return “instruction” address
• Parameters (spill)
• Space for other local variables

• Stack frames contiguous; stack pointer (sp/x2)
tells where bottom of stack frame is

• When procedure/function begins, sp is
decreased to create space; data are stored in
the stack frame (push)

• When procedure ends, stack frame is tossed off
the stack; frees memory for future stack frames;
sp restores (pop)

27

B-type Branch Function call

Memory Address
(32 bits assumed here)

code
static data

heap

stack

~ 0000 0000hex

FFFF FFFFhex

Calling Convention
• Could have saved all variables to main memory
• Calling convention to make things easier
• Callee-saved registers: callee clean the mess

– Callee needs to save old value of s* (and any other callee saved
registers), and makes sure they are not changed after return, and
also sp

28

B-type Branch Function call

Example

int Leaf (int g, int h, int i, int j)
{

int f; f = (g + h) - (i + j);
return f;

}
int main (void){
 int a=1, b=2, c=3, d=4, e, x;
 e = Leaf(a,b,d,c); //call with jal
 // return address in ra(x1)

 return e;
} /*a function called by OS*/

• Parameter variables g,h,i and j in argument registers a1,a2, a3,
and a4, and f in a0 when returned, and assume x in s1

• Assume function Leaf use s1 for intermediate results
• Register ra consideration

29

• Leaf function: a function that calls no function 0
ra
sp
… …
s1
a0
a1
a2
a3
a4
… …

x0/zero
x1
x2

x9
x10
x11
x12
x13
x14

B-type Branch Function call

RISC-V Code for Leaf()

30

Leaf:
addi sp, sp, -4 # adjust stack for 1 items, callee
saved s1
sw s1, 0(sp) # save callee saved s1 to stack
add s1, a0, a1 # s1 = g + h
add a2, a2, a3 # j = i + j
sub a0, s1, a2 # calculate result (g + h) – (i + j)
 # return value (g + h) – (i + j)
lw s1, 0(sp) # restore register s1 for caller
addi sp, sp, 4 # adjust stack to delete 1 items
jr ra # jump back to caller (pseudo-assembly: ret)

sp

Stack for
main()

Stack
During call

value of s1

B-type Branch Function call

Stack Animation
• Last In, First Out (LIFO) data structure

main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}void d (int p)
{
}

stack

Stack PointerStack
grows
down

31

Pointer Array Pointer arithmetic Memory management

Optimization for Leaf()

32

• Caller-saved registers: caller clean the mess
– Caller needs to save old value of caller-saved registers, and

makes sure they are not changed for further use

B-type Branch Function call

Optimization for Leaf()

33

Leaf:
addi sp, sp, -4 # adjust stack for 1 items, callee
saved s1
sw s1, 0(sp) # save callee saved s1 to stack
add s1, a0, a1 # s1 = g + h
add a2, a2, a3 # j = i + j
sub a0, s1, a2 # calculate result (g + h) – (i + j)
 # return value (g + h) – (i + j)
lw s1, 0(sp) # restore register s1 for caller
addi sp, sp, 4 # adjust stack to delete 1 items
jr ra # jump back to caller (pseudo-assembly: ret)

• Caller-saved registers: caller clean the mess
– Caller needs to save old value of caller-saved registers, and

makes sure they are not changed for further use

t1

t1

B-type Branch Function call

Nested Call

34

int bar(int g,int h,int i,int j)
{
 int f = (g + h) - (i + j);
 return f;
}
int foo(int x)
{
//do stuff
 int x = bar(g, h, i, j);
//g, h, i, j for other use
return (x/2);
}
int main()
{
// do stuff 1
foo(x);// call with jal
// do stuff 2
}

In foo, g, h, i, and
j are in s0-s3

foo:
do stuff (code omitted)
save ra
addi sp, sp, -4
sw ra, 0(sp)
set up argument registers
add a0, s0, x0
add a1, s1, x0
add a2, s2, x0
add a3, s3, x0
jal bar
restore ra
srai a0, a0, 1
lw ra, 0(sp)
addi sp, sp, 4
jr ra

(Prologue)

(Epilogue)

B-type Branch Function call

Nested Call

35

int bar(int g,int h,int i,int j)
{
 int f = (g + h) - (i + j);
 return f;
}
int foo(int x)
{
//do stuff
 int x = bar(g, h, i, j);
//g, h, i, j for other use
return (x/2);
}
int main()
{
// do stuff 1
foo(x);// call with jal
// do stuff 2
}

In foo, g, h, i, and
j are in t0-t3

foo:
do stuff (code omitted)
save ra
addi sp, sp, -4
sw ra, 0(sp)
set up argument registers
add a0, s0, x0
add a1, s1, x0
add a2, s2, x0
add a3, s3, x0
jal bar
restore ra
srai a0, a0, 1
lw ra, 0(sp)
addi sp, sp, 4
jr ra

(Prologue)

(Epilogue)

B-type Branch Function call

Call a Function

36

1. Caller put parameters in a place where function can access
them (a0-a7, or stack when registers not avail.), and then save
caller-saved registers to stack (e.g. ra, a0-a7,t0-t11)

2. Transfer control to callee function (PC jump to function):
jal/jalr, ra is changed to where caller left

3. Acquire (local) storage resources needed for function: change
sp (size decided when compiling);

 Callee push callee-saved registers to stack (e.g., s0-s11)
4. Perform desired task of the function

5. Put result value in a place where calling code can access it (a0,
a1), and restore/pop callee-saved registers (s0-s11, sp)

6. Return control to point of origin, since a function can be called
from several points in a program (jr ra); caller restores caller-
saved registers

