
CS 110
Computer Architecture

RISC-V III
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/3/11

Administrative

2

• HW2, due Mar. 17th
• Lab 3 check this week; lab 4 will be released today, to check

next week
• Proj.1.1 released! Start early! DDL Mar. 27th
• Discussion this week on RISC-V assembly by TA Daqian Cao at

teaching center 301; also cover some of the (RISC-V) questions
from previous exams; at teaching center 301

Outline

3

• Encoding of RISC-V instructions
• R-type
• I-type arithmetic and logic
• I-type load
• S-type store
• B-type
• J-type
• U-type

• CALL (compiler, assembler, linker & loader)

Where are we?

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

4

We
are
here!

RV32I Instruction Encoding

5

~ High Bit ~ Low Bit

• All 32-bit in length (not the case in RVC)
• Generally, fields are aligned if present (rs1, rs2, rd, funct3, funct7,
opcode)

• Different number/type of operands/result

R-Format

6

Assembly: Operation rd, rs1, rs2

Field’s bit position

753557

Number of bitsName of field

rd,rs1,rs2 unsigned numbers, represent No. of regs.

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

R-Format

7

Assembly: Operation rd, rs1, rs2

Field’s bit position

753557

Number of bitsName of field

funct7/funct3/opcode fields:
• opcode: 0b0110011 for RV32I R-format arithmetic/logic

operations
• funct7/funct3 together decide the type of operation

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

R-Format Example

8

Assembly: add x2,x0,x1

0000000 00001 00000 000 00010 0110011

Look up the green card

Machine code: concatenate all fields
0000_0000_0001_0000_0000_0001_0011_0011

0x00100133

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

See the bottom part of course homepage
Resources: RISC-V Green Card: pdf

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2024/lecture_notes/riscvcard.pdf

R-Format—All Instructions

9

Assembly: Operation rd,rs1,rs2

0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

funct7/funct3 together decide the operation

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Arithmetic & Logic

10

Assembly: Operation rd,rs1,imm

753557

12

Register-immediate type
• imm: 12 bits, hold values for [-2048,2047]
• imm sign-extended before operations (sign-extension done in

hardware)
• Opcode 0b0010011 for I-type arithmetic/logic operations

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Example I

11

Assembly: addi x2,x0,1234

753512

010011010010 00000 000 00010 0010011

Look up the green card

Machine code: concatenate all fields
0100_1101_0010_0000_0000_0001_0001_0011

0x4d200113

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Example II

12

Assembly: addi x2, x0, -1234

753512

101100101110 00000 000 00010 0010011

Look up the green card

Machine code: concatenate all fields
1011_0010_1110_0000_0000_0001_0001_0011

0xb2e00113

2’s complement

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format

13

753512

Register-immediate type
• imm: 12 bits, hold values for [-2048,2047]
• shamt not sign-extended before operations for shifts
• Opcode 0b0010011 for I-type arithmetic/logic operations
• Shift is specialized, since shift more than 31 bits is meaningless

0000000 shamt[4:0] src 001 dest 0010011 SLLI
0000000 shamt[4:0] src 101 dest 0010011 SRLI
0100000 shamt[4:0] src 101 dest 0010011 SRAI

Not for shift operations

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Arithmetic & Logic

14

753512

imm src 000 dest 0010011 ADDI
imm src 010 dest 0010011 SLTI
imm src 011 dest 0010011 SLTIU
imm src 100 dest 0010011 XORI
imm src 110 dest 0010011 ORI
imm src 111 dest 0010011 ANDI

0000000 shamt[4:0] src 001 dest 0010011 SLLI
0000000 shamt[4:0] src 101 dest 0010011 SRLI
0100000 shamt[4:0] src 101 dest 0010011 SRAI

Same as
corresponding
R-type funct3

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Load

15

753512

Assembly: lw/lhu/lh/lb/lbu rd, (imm)rs1

• Opcode: 0b0000011 for RV32I I-format load operations
• funct3:

• First bit indicates signed(0)/unsigned(1)
• Last 2 bits indicates w(10)/h(01)/b(00)

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Load

16

753512

Assembly: lw/lhu/lh/lb/lbu rd, imm(rs1)

imm src 000 dest 0000011 LB
imm src 001 dest 0000011 LH
imm src 010 dest 0000011 LW
imm src 100 dest 0000011 LBU
imm src 101 dest 0000011 BHU

2’s complement

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Load Example

17

753512

Assembly: lw/lhu/lh/lb/lbu rd,imm(rs1)

imm src 000 dest 0000011 LB
imm src 001 dest 0000011 LH
imm src 010 dest 0000011 LW
imm src 100 dest 0000011 LBU
imm src 101 dest 0000011 BHU

2’s complement

Assembly: lbu x18, -1(x17)
FFF 10001 100 10010 0000011

Machine code
1111_1111_1111_1000_1100_1001_0000_0011

0xFFF8c903

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

S-Format Store

18

753512

Assembly: sw/sh/sb rs2,imm(rs1)

• Opcode: 0b0100011 for RV32I S-format store operations
• funct3:

• Last 2 bits indicates w(10)/h(01)/b(00)
• First bit 0

7 5

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

S-Format Store Instructions

19

7535

7 5

Assembly: sw/sh/sb rs2,imm(rs1)

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB

imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH

imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

S-Format Store Example

20

7535

Assembly: sw x20,-31(x21)

7 5

1111111 10100 10101 010 00001 0100011

Machine code:
1111_1111_0100_1010_1010_0000_1010_0011

0xFF4aa0a3

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

B-Format Conditional Branch

21

7535

Assembly: bne/beq/blt/bltu/beg/begu rs1,rs2,label

7 5

• Opcode: 0b1100011 for RV32I B-format branch operations
• How to represent label?

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

Branching Instruction Usage
• Branches typically used for loops (if-else, while, for)

• Loops are generally small (< 50 instructions)
• Recall: Instructions stored in a localized area of memory

(Code/Text)
• Largest branch distance limited by size of code
• Address of current instruction stored in the program counter

(PC)

22

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

C Loop Mapped to RISC-V
Assembly

int A[20];
int sum = 0;
for (int i=0; i < 20; i++)
 sum += A[i];

Assume x8 holds pointer to A
Assign x10=sum
 add x9, x8, x0 # x9=&A[0]
 add x10, x0, x0 # sum=0
 add x11, x0, x0 # i=0
 addi x13,x0, 20 # x13=20
Loop:
 bge x11,x13,Done
 lw x12, 0(x9) # x12=A[i]
 add x10,x10,x12 # sum+=
 addi x9, x9,4 # &A[i+1]
 addi x11,x11,1 # i++
 j Loop
Done:

23

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

• PC-relative addressing: use the immediate field as a two’s-
complement offset to PC
• Branches generally change the PC by a small amount
• Can specify ± 211 ‘unit’ addresses from the PC

• Recall
• Each instruction is 4-byte wide (4-byte aligned)
• Address is multiple of 4, least significant 2 bits “00”
• Can use bits [13:2] for imm
• Can specify ± 213 ‘unit’ addresses from the PC
• But, to support RVC (16-bit/2-byte instruction) extension, [12:1]

for imm/offset, can specify ± 212 ‘unit’ addresses from the PC
• Opposite to it, absolute addressing (use full address)

PC-Relative Addressing
R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

24

B-Format Conditional Branch

25

7535

Assembly: bne/beq/blt/bltu/beg/begu rs1,rs2,label

7 5

• Opcode: 0b1100011 for RV32I B-format branch operations

• Label: PC-relative addressing, concatenate imm[12],
imm[11], then imm[10:5] and imm[4:1] as offset (sign-
extended)

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

B-Format Conditional Branch
Example

26

75357 5

Assume x8 holds pointer to A
Assign x10=sum
 add x9, x8, x0 # x9=&A[0]
 add x10, x0, x0 # sum=0
 add x11, x0, x0 # i=0
 addi x13,x0, 20 # x13=20
Loop:
 bge x11,x13,Done
 lw x12, 0(x9) # x12=A[i]
 add x10,x10,x12 # sum+=
 addi x9, x9,4 # &A[i+1]
 addi x11,x11,1 # i++
 j Loop
Done: # some instruction

PC

rs1 = 01011

rs2 = 01101

opcode = 1100011

funct3 = 101

imm/offset
= 6 instructions
= 24 bytes

0000000011000
Bit 12 Bit 0

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

27

rs1 = 01011

rs2 = 01101

opcode = 1100011

funct3 = 101

imm/offset
= 6 instructions
= 24 bytes

0000000011000
Bit 12 Bit 0

0 000000 01101 01011 101 1100 0 1100011

Machine code

0x00d5dc63

B-Format Conditional Branch
Example

75357 5

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

B-Format Branch Instructions

28

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

75357 5

Assembly: bne/beq/blt/bltu/beg/begu rs1,rs2,imm/offset

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

Further on Conditional Branch

29

• To support RVC (16-bit/2-byte instruction) extension, [12:1] for
imm/offset, can specify ± 212 ‘unit’ addresses from the PC

• Equivalent to ± 210 32-bit instructions
• What if jump to farther away?

beq x10, x0, far
next instruction

bne x10, x0, next
j far
next: # next instruction

j gets 20-bit imm

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

J-Format Jump Instruction

30

7581 10

Assembly: jal rd, label

1

• Recall jal does 2 things:
• Store PC+4 to rd as return address
• Jump to label = PC + offset(imm)

• Label translated by assembler to a 20-bit offset (encoded
similar to Branch offset)

• Can access ± 220 ‘unit’ addresses from the PC
• ± 218 32-bit instructions

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

I-Format Jump Instruction

31

Assembly: jalr rd,rs1,imm

• Recall jal does 2 things:
• Store PC+4 to rd as return address
• Jump to label = rs + offset(imm)

• imm can hold values between [-2048,2047]

753512

• Unlike JAL, include the last 0 using I-format

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

True or False

32

• If we move all of code, the branch immediate field does not change.

True

Because it utilizes PC-relative addressing/offset

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory

Bytes

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

33

7520

Load upper immediate: lui rd,imm
rd = imm<<12

• Can be used to create long immediates to registers along with addi
• Previously, it was 12-bit, e.g., addi x1, x0, 2047

lui x5, 0xABCDE 0xABCDE000

Registers
x5

addi x5, x5, 0x123 0xABCDE123 x5

li x5, 0xABCDE123 A pseudo-instruction

U-Format (Something New)
R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

Corner Cases

34

7520

li x5,0xDEADBEEF

lui x5, 0xDEADB 0xABCDE000

Registers

x5

addi x5, x5, 0xEEF x5

lui x5, 0xDEADC

addi x5, x5, 0xEEF

This is automatically
handled by li without
considering the details

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

U-Format

35

7520

Add upper immediate PC: auipc rd,imm

• rd = PC + (imm. << 12)

auipc x5, 0xABCDE 0xABCDE000 + PC x5

• lui opcode: 0b0110111

• auipc opcode: 0b0010111

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

• Call function with 32-bit absolute address
lui x5, <hi20bits>

jalr ra, x5, <lo12bits>

LUI and AUIPC

36

• Jump PC-relative with 32-bit offset
auipc x5, <hi20bits>

jalr ra, x5, <lo12bits>

• Store/load with PC-relative 32-bit offset/32-bit absolute address
auipc x5,<hi20bits>/lui x5,<hi20bits>

sw/lw rd, (<lo12bits>)x5

• Obtain PC value
auipc x5, 0

R-type encoding I-type encoding S-type encoding B-type encoding J-type encoding U-type encoding

• Given an instruction in binary, how to interpret
• Reverse the procedure translating an instruction to machine code

• Look up opcode/funct3/funct7 to identify type &
operation

• Find out rs1/rs2/rd/imm value, whichever presents
• More in hardware design

Instruction Decoding

37

38

Summary

39

40

CS110

