W W
St School of Information Science and Technology

) BRI SRR

CS 110

Computer Architecture
RISC-V Il

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/3/1

Administrative

HW?2, due Mar. 17th

_ab 3 check this week; lab 4 will be released today, to check
next week

Proj.1.1 released! Start early! DDL Mar. 27th

Discussion this week on RISC-V assembly by TA Dagian Cao at
teaching center 301; also cover some of the (RISC-V) questions
from previous exams; at teaching center 301

Outline

Encoding of RISC-V instructions
* R-type

* |-type arithmetic and logic

* |-type load
« S-type store
« B-type

« J-type

« U-type

CALL (compiler, assembler, linker & loader)

Where are we?

High Level Language
Program (e.g., C)

temp
v [k]

Compiler Ww t0, 0(s2)
Assembly Language W T 2082
Program (e_g., RlSC'V) za E%' 2&23;

Assembler

Machine Language
Program (RISC-V)

We are here!

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

RV32l Instruction Encoding

~ High Bit ~ Low Bit
31 30 25 24 21 20 19 15 14 1211 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type
imm[11:5] rs2 rsl funct3 imm|[4:0] opcode | S-type
imm(12] | imm[10:5] rs2 rsl funct3 |imm[4:1] | imm[11] | opcode | B-type
imm|31:12] rd opcode | U-type
imm 20 imm|10:1] imm |11] imm|19:12] rd opcode | J-type

« All 32-bit in length (not the case in RVC)
« Generally, fields are aligned if present (rs1, rs2, rd, funct3, funct?,

opcode)

« Different number/type of operands/result

R-type encoding

31

30

25 24 21

R-Format

20

19

Field’'s bit position

15 14

12 11

A

7

funct7

rs2

rsl

funct3

opcode | R-type

5

5

3 /5 /
|

Name of field

Assembly: Operation rd,

rsi,

Number of bits

rs2

rd, rsl, rs2 unsigned numbers, represent No. of regs.

R-type encoding

R-Format

Field’s bit position

31 30 25 24 21 20 19 15 14 12 11 8 T 6/ \J

funct7 rs2 rsl funct3 opcode | R-type

7 5 5 3 7
|

/rd
5

Name of field Number of bits

Assembly: Operation rd, rsl, rs2

funct7/funct3/opcode fields:

« opcode: 0b0110011 for RV32l R-format arithmetic/logic
operations

 funct7/funct3 together decide the type of operation

R-type encoding

31

30

R-Format Example

25 24 21 20 19 15 14

12 11 8 T 6 0

funct7 rs2 rsl funct3 rd opcode | R-type
Assembly: add x2,x0, x1
0000000 00001 00000 000 00010 0110011

S

Look up the green card

/

See the bottom part of course homepage
Resources: RISC-V Green Card: pdf

Machine code: concatenate all fields
0000 0000 0001 0000 0000 0001 0011 0011
0x00100133

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2024/lecture_notes/riscvcard.pdf

R-type encoding

R-Format— All Instructions

Assembly: Operation rd,rsl,rs2

0000000 rs2 rsl 000 rd 0110011 ADD
0100000 rs2 rsl 000 rd 0110011 SUB
0000000 rs2 rsl 001 rd 0110011 SLL
0000000 rs2 rsl 010 rd 0110011 SLT
0000000 rs2 rsil 011 rd 0110011 SLTU
0000000 rs2 rsl 100 rd 0110011 XOR
0000000 rs2 rsil 101 rd 0110011 SRL
0100000 rs2 rsl 101 rd 0110011 SRA
0000000 rs2 rsl 110 rd 0110011 OR
0000000 rs2 rsl 111 rd 0110011 AND

funct?/7/funct3 together decide the operation

I-type encoding

I-Format Arithmetic & Logic

opcode | R-type

31 30 25 24 21 20 19 15 14 12 11 8 6 0
funct7 rs2 rsl funct3 rd
7 5 5 3 5 7
imm|[11:0] rsl funct3 rd
12

Register-immediate type

Assembly: Operation rd,rsl,imm

e imm: 12 bits, hold values for [-2048,2047]

opcode | I-type

e 1mm sign-extended before operations (sign-extension done in

hardware)

* Opcode 0b0010011 for I-type arithmetic/logic operations

I-type encoding

I-Format Example |

12 5 3 5 7
imm|[11:0] rsl funct3 rd opcode
Assembly: addi x2,x0,1234
010011010010 00000 000 00010 0010011

Machine code:

/

Look up the green card

concatenate all fields

0100_1101_0010_0000_0000_0001_0001_0011
0x4d200113

I-type

I-type encoding

I-Format Example ||

12 5 3 5 /
imm|[11:0] rsl funct3 rd opcode
Assembly: add1i x2, x0, -1234
101100101110 00000 000 00010 0010011

2’s complement

Machine code: concatenate all fields

/

Look up the green card

1011_0010_1110_0000_0000_0001_0001_0011
0xb2e00113

I-type

I-type encoding

I-Format
imm|[11:0] rsl funct3 rd opcode
12 5 3 5 7

I-type

0000000 shamt [4:0] 0@1@@11 SLLI
0000000 shamt [4:0]

0100000 shamt [4:0]

Register-immediate type

Src

dest
101 dest

0010011 SRLI
0010011 SRAI

« imm: 12 bits, hold values for [-2048,2047] Not for shift operations

« shamt not sign-extended before operations for shifts

* Opcode 0b0010011 for I-type arithmetic/logic operations

- Shift is specialized, since shift more than 31 bits is meaningless

13

I-type encoding

I-Format Arithmetic & Logic

imm|[11:0] rsl funct3 rd opcode
12 5 3 5]
' Src 011 dest 0010011
SIrc 100 dest 0010011
' Src 111 dest 0010011
0000000 shamt [4:0] Src 001 dest 0010011
0000000 shamt [4:0] Src 101 dest 0010011
0100000 shamt [4:0] SIrc 101 dest 0010011
Same as

corresponding

R-type funct3

I-type

ADDI
SLTI
SLTIU
XORI
ORI
ANDI

SLLI
SRLI
SRAI

14

I-type encoding

l-Format Load

imm|[11:0] rsl funct3 rd opcode
12 5 3 5 7
Assembly: lw/ lhu/lh/lb/1lbu rd, (imm)rsl

* Opcode: 0b0000011 for RV32I I-format load operations
funct3:

-irst bit indicates signed(0)/unsigned(1)

_ast 2 bits indicates w(10)/h(01)/b(00)

I-type

I-type encoding

l-Format Load

imm|[11:0] rsl funct3 rd opcode | I-type

12 5 3 5 7/
Assembly: lw/ lhu/lh/1lb/1lbu rd, imm(rsl)

imm Src 000 dest 0000011 LB
imm Src 001 dest 0000011 LH
imm Src 010 dest 0000011 LW
Lmm Src 100 dest 0000011 LBU
imm Src 101 dest 0000011 BHU

2’s complement

16

I-type encoding

I-Format Load Example

imm|[11:0] rsl funct3 rd opcode | I-type

12 5 3 5 7/
Assembly: lw/ lhu/lh/1lb/1lbu rd, imm(rs1)

Lm Src 000 dest 0000011 LB
imm SIrc 001 dest 0000011 LH
imm Src 010 dest 0000011 LW
imm Src 100 dest 0000011 LBU
imm SIc 101 dest 0000011 BHU

2’s complement
Assembly: lTbu x18, -1(x17)
FFF 10001 100 10010 0000011

Machine code
1111 1111 1111 1000_1100 1001 0000 0011
OxFFF8c903 17

S-type encoding

S-Format Store

31 30 25 24 21 20 19 15 14 12 11 8 6 0
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode
12 5 3 5 /
imm[11:5] rs2 rsl funct3 imm [4:0] opcode
7 5

Assembly: sw/sh/sb rs2,imm(rs1)

* Opcode: 0b0100011 for RV32l S-format store operations

 funct3:
« Last 2 bits indicates w(10)/h(01)/b(00)

 First

bit O

R-type

I-type

S-type

18

S-type encoding

S-Format Store Instructions

5 3 5 7

imm|[11:5] rs2 rsl funct3 imm [4:0)] opcode | S-type

7/ 5
Assembly: sw/sh/sb rs2,imm(rs1)
imm[11:5. rs2 rsil 000 imm[4:0] 0100011 SB

imm[11:5] rs2 rsil 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rsi 010 imm[4:0] 0100011 SW

S-type encoding

S-Format Store Example

5 3 5 7
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode
7 5
Assembly: sw x20,-31(x21)
1111111 10100 10101 010 00001 0100011

Machine code:
1111 1111 0100 1010 1010 0000 1010 0011

OxFF4aa0a3

S-type

20

B-type encoding

B-Format Conditional Branch

5 3 5 7/
imm|[11:5] rs2 rsl funct3 imm [4:0] opcode | S-type
/ 5
imm(12] | imm[10:5] rs2 rsl funct3 |imml4:1] | imm[11] | opcode | B-type

Assembly: bne/beq/blt/bltu/beg/bequ rsl,rs2, label

 Opcode: 0b1100011 for RV32] B-format branch operations

 How to represent label?

21

B-type encoding

Branching Instruction Usage

« Branches typically used for loops (1f—else, while, for)
* Loops are generally small (< 50 instructions)

* Recall: Instructions stored in a localized area of memory
(Code/Text)

» Largest branch distance limited by size of code

» Address of current instruction stored in the program counter
(PC)

B-type encoding

C Loop Mapped to RISC-V

Assembly

int A[20]: # Assume x8 holds pointer to A

int sum = 0; # Assign x10@=sum
for (int i=0; i < 20; i++) ado , X8, x0 #
sum += A[i]; add x10, x0, x0 #
add x11, x0, x0 #
addi x13,x0, 20 #
Loop:
bge x11,x13,Done
w x12, 0(<9) #
add x10,x10,x12 #
add1i , 4 #
addi x11,x11,1 #
] Loop
Done:

=GA[0]
sum=0
1=0
x13=20

x12=A[1]
SuUm-+=
SA[i+1]
i++

23

B-type encoding

PC-Relative Addressing

* PC-relative addressing: use the immediate field as a two’s-
complement offset to PC

« Branches generally change the PC by a small amount

« (Can specify + 21 ‘unit’ addresses from the PC Disassembly of section

e Recall 0000000000000000 <1tmp@
0:|ff c3 00 dl
° ' I ' - I - I 4:|fd 7b 02 a9
Each instruction is 4-byte wide (4-byte aligned) o [T 52 22
. « ” :108 00 80 52
« Address is multiple of 4, least significant 2 bits “00 10:| e8 of 00 b9
. . 14:|bf c3 1f b8
e Can use bits [13:2] for imm 18: (48 9a 80 52
1c: a8 83 1f b8

» Can specify + 213 ‘unit’ addresses from the PC = gl

- But, to support RVC (16-bit/2-byte instruction) extension, [12:1]
for imm/offset, can specify + 212 ‘unit’ addresses from the PC

* QOpposite to it, absolute addressing (use full address)

B-type encoding

B-Format Conditional Branch

7

5

5

3

5

7/

imm|12]

imm|[10:5]

rs2

rsl

funct3

imm 4:1]

imm|11]

opcode | B-type

Assembly: bne/beq/blt/bltu/beg/bequ rsl,rs2, label

« Opcode: 0b1100011 for RV32I B-format branch operations

 Label: PC-relative addressing, concatenate imm[12],

imm[11], then imm[10:5] and imm[4:1] as offset (sign-
extended)

B-type encoding

B-Format Conditional Branch
Example

/ 5 5 3 5 7
imm|[12] | imm|10:5] rs2 rsl funct3 | imm[4:1] | imm[11] | opcode | B-type
rs1 = 01011 # Assume x8 holds pointer to A

Assign x10=sum
rs2 = 01101 adc , X8, x0 # x9=GA[0]

add x10, x0, x0 # sum=0
opcode = 1100011 add x11, x0, x0 # 1=0
funct3 = 101 addi x13,x0, 20 # x13=20
Loop:
imm/offset PC — bge x11,x13,Done
= 6 instructions w x12, 0(x9) # x12=A[1]
= 24 bytes add x10,x10,x12 # sum+=
1 addi , ,4 # QA[i+1]
@pp@@@@@hlgq@ ?CCl x11,x11,1 # 1++
Bit 12 Bit ©) Loop

Done: # some 1nstruction

26

B-type encoding

B-Format Conditional Branch

Example
7 5 5 3 5 7/
imm([12] | imm|10:5] rs2 rsl funct3 |imm[4:1] | imm(11] | opcode | B-type
rsl = 01011 0 000000 01101 01011 101 1100 0 1100011
rs2 = 01101

Machine code

opcode = 1100011

funct3d = 101

imm/offset

0x00d5dc63

6 1nstructions
24 bytes

l

@pp@@@@@h1@q@

Bit 12

Bit 0

7

5

B-type encoding

B-Format Branch Instructions

5

3

5

7/

imm|[12]

imm[10:5]

rs2

rsl

funct3

imm|[4:1]

imm|[11]

opcode | B-type

Assembly: bne/beq/blt/bltu/beg/begu

imm
imm
imm
imm

imm

(12 |10:
[12]10:
[12|10:
[12(10:
[12(10:

imm

(12]10:

Oor OO OO U1 U1 Ui

rs2
rs2
rs2
rs2
rs2
rs2

rsl
rsl
rsl
rsl
rsl
rsl

000
001
100
101
110
111

rsl,rs2,1mm/offset

imm[4:
imm
imm
imm

imm

A A DM D DD
T O o S S =

imml|4:

11]
11]
11]
11]
11]
11]

1100011 BEQ
1100011 BNE
1100011 BLT
1100011 BGE
1100011 BLTU
1100011 BGEU

B-type encoding

Further on Conditional Branch

* To support RVC (16-bit/2-byte instruction) extension, [12:1] for
imm/offset, can specify + 212 ‘unit’ addresses from the PC

« Equivalent to = 210 32-bit instructions

 What if jump to farther away?

beq x10, x0, far bne x10, x0, next
] far
next:

] gets 20-bit imm

1

J-Format Jump Instruction

10

1

8

J-type encoding

5

imm|[20)]

imm|10:1]

imm |(11]

imm|19:12]

rd

opcode

 Store PC+4 to rd as return address

Assembly: jal rd, label

Recall jal does 2 things:

» Jump to label= PC + offset(imm)

« Label translated by assembler to a 20-bit offset (encoded
similar to Branch offset)

e (Can access + 220 ‘unit’ addresses from the PC

e + 218 32-bit instructions

J-type

30

I-type encoding

l-Format Jump Instruction

imm[11:0]

rsl

funct3

rd

opcode

- Unlike JAL, include the last 0 using I-format

12

Assembly: jalr rd,rsl, imm

Recall jal does 2 things:

5

3

 Store PC+4 to rd as return address

« Jumpto label=rs + offset(imm)

imm can hold values between [-2048,2047]

5

7

I-type

J-type encoding

True or False

 |If we move all of code, the branch immediate field does not change.

True

Because it utilizes PC-relative addressing/offset

Processor

32

U-type encoding

U-Format (Something New)

20

5

7

imm([31:12]

rd

opcode | U-type

imm[20) imm|10:1] imm|11]

imm|19:12]

rd

opcode | J-type

Load upper immediate: lui rd, imm
rd =

imm<<1?2

Can be used to create long immediates to registers along with add 1

Previously, it was 12-bit, e.g., add1i x1, x0, 2047

luli x5, 0OxABCDE

+

addi x5, x5, 0x123

-
11 x5, 0xABCDE123

Registers

0xABCDEQQO

OxABCDE123

A pseudo-instruction

X5

X5

33

Corner Cases
20

U-type encoding

imm(31:12]

rd opcode

L1 x5,0xDEADBEEF

U-type

This is automatically
handled by L1 without

considering the details

Registers

lui x5, OxDEADB

addi x5, x5, OxEEF

lui x5, OxDEADC

addi x5, x5, OxEEF

oeom
- O

34

U-type encoding

U-Format
20 5 14
imm|31:12] rd opcode | U-type
imm|20) imm|10:1] imm |(11] imm|19:12] rd opcode | J-type

Add upper immediate PC: auipc rd, imm

e rd = PC + (imm. << 12)

auipc x5, OxABCDE OxABCDEQQOO + PC X5

« lul opcode: 0b0110111
 aulpc opcode: 0b0010111

35

U-type encoding

LUI and AUIPC

« (Call function with 32-bit absolute address

lui x5, <hi20bits>

jalr ra, x5, <lol2bits>

« Jump PC-relative with 32-bit offset « Obtain PC value

auipc x5, <hi20bits> auipc x5, 0

jalr ra, x5, <lol2bits>

« Store/load with PC-relative 32-bit offset/32-bit absolute address

auipc x5,<hi20bits>/1lui x5,<hi20@bits>
sw/lw rd, (<lol2bits>)x5

Instruction Decoding

* @Given an instruction in binary, how to interpret
* Reverse the procedure translating an instruction to machine code

 Look up opcode/funct3/funct? to identify type &
operation

 Find out rsl/rs2/rd/imm value, whichever presents
* More Iin hardware design

Summary

31 30 25 24 21 20 19 15 14 12 11 8 T 6 0
funct7 rs2 rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode

imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
imm[12] | imm|[10:5] rs2 rsl funct3 |imm[4:1] | imm[11] | opcode
imm(31:12] rd opcode

imm[20] imm|10:1] imm|[11] imm|19:12] rd opcode

R-type

38

fmm[31:12 rd 0110111

imm|31:12) rd 0010111
fmm|[20[10:1]11]19:12] rd 1101111

imm|11:0] rsl 000 rd 1100111
imm|12|10:5] rs2 rsl 000 | imm|4:1|11] 1100011
imm[12[10:5] rs2 rsl 001 | imm[4:1]11] 1100011
imm[12[10:5] rs2 rsl 100 | imm[4:1[11] | 1100011
imm|[12[10:5) rs2 rsl 101 | imm|4:1|11] 1100011
imm|[12(10:5 rs2 rsl 110 | imm[4:1|11 1100011
imm|[12(10:5] rs2 rsl 111 | imm[4:1]11 1100011
imm|11:0] rsl 000 rd 0000011
imm[11:0 rsl 001 rd 0000011
imm|[11:0] rsl 010 rd 0000011
imm|[11:0 rsl 100 rd 0000011
imm|[11:0 rsl 101 rd 0000011
imm|11:5 rs2 rsl 000 imm 4:0] 0100011
imm|11:5] rs2 rsl 001 imm |4:0] 0100011
imm|11:5 rs2 rsl 010 imm [4:0] 0100011
imm|[11:0 rsl 000 rd 0010011
imm|[11:0] rsl 010 rd 0010011
imm|[11:0 rsl 011 rd 0010011
imm|[11:0] rsl 100 rd 0010011
imm|11:0] rsl 110 rd 0010011
imm|[11:0] rsl 111 rd 0010011

LUI
AUIPC
JAL
JALR
BEQ
BNE
BLT
BGE
BLTU
BGEU
LB
LH
LW
LBU
LHU
SB
SH
SW
ADDI
SLTI
SLTIU
XORI
ORI
ANDI

39

0000000 shamt rsl 001 rd 0010011
0000000 shamt rsl 101 rd 0010011
0100000 shamt rsl 101 rd 0010011
0000000 rs2 rsl 000 rd 0110011
0100000 rs2 rsl 000 rd 0110011
0000000 rs2 rsl 001 rd 0110011
0000000 rs2 rsl 010 rd 0110011
0000000 rs2 rsl 011 rd 0110011
0000000 rs2 rsl 100 rd 0110011
0000000 rs2 rsl 101 rd 0110011
0100000 rs2 rsl 101 rd 0110011
0000000 rs2 rsl 110 rd 0110011
0000000 rs2 rsl 111 rd 0110011

0000

00000

00000

0001111

000000000000

00000

00000

1110011

000000000001

00000

CSI

CSr

CSTr

000

Not in'CS110-

00000

1110011

1110011

1110011

rd

1110011

CSr

Zzlmm

101

rd

1110011

CSTr

Z1mm

110

1110011

CSTI

zimm

111

1110011

SLLI
SRLI
SRAI
ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND
FENCE
FENCE.I
ECALL
EBREAK
CSRRW
CSRRS
CSRRC
CSRRWI
CSRRSI
CSRRCI

40

