
CS 110
Computer Architecture

CALL
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University 

2025/3/13



Administrative

2

• HW2, due Mar. 17th
• Lab 4 available, please prepare in advance!
• Lab 5 released and will be checked next week
• Proj.1.1 released, ddl Mar. 27th
• Discussion next week on CALL and kickstart session for Proj. 1.1, 

covered by TA Kunchang Guo at teaching center 301;  



Outline

3

• CALL (compiler, assembler, linker & loader)
• Compiler
• Assembler
• Linker
• Loader



C Compilation Simplified Review

4

main.c

Pre-processing

main.o

Linker lib.o

main.out

C source files (text)

Machine code object files (.o)

Pre-built object 
file libraries

Machine code executable file (.out)

Parsing & Semantic 
Analysis

Code generation & 
Optimization

Assembler

Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Translate AST to lower level intermediate representation 
(LLVM IR) and then generate assembly (.s)

Translate assembly to machine code (binary)

Introduction to C How C works? C review C memory management



CALL Overview

5

main.c

Pre-processing

main.o

Linker lib.o

main.out

C source files (text)

Machine code object files (.o)

Pre-built object 
file libraries

Machine code executable file (.out)

Parsing & Semantic 
Analysis

Code generation & 
Optimization

Assembler Translate assembly to machine code (binary)

Compile, output assembly (.s)

Loader Actual program execution

Compiler Assembler Linker Loader



Where are we?

lw   t0, 0(s2)
lw   t1, 4(s2)
sw   t1, 0(s2)
sw   t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly  Language 
Program (e.g., RISC-V)

Machine  Language 
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams) 

Compiler

Assembler

Machine 
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110 
1100 0110 1010 1111 0101 1000 0000 1001 
0101 1000 0000 1001 1100 0110 1010 1111 

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture 
Implementation

6

We are here!



7

Summary



8



9

CS110



Assembler

10

• Input: assembly language code (generated by compiler, usually 
contains pseudo-instructions)

• Output: object code, information tables
− Object file header: size/position of other pieces of the object file
− Text segment: machine code
− Data segment: static data
− Symbol table: list of files’ labels, static data can be referenced 

by other programs
− Relocation table: Code to be fixed later (by linker)
− Debugging info.

• Reads and uses directives
• Replace pseudo-instructions
• Produce machine language
• Creates object file

Compiler Assembler Linker Loader



Assembler

11

• Input: assembly language code (generated by compiler, 
usually contains pseudo-instructions)

• Output: object code, information tables
• Reads and uses directives
• Replace pseudo-instructions
• Produce machine language
• Creates object file

Compiler Assembler Linker Loader



Directives

12

• Give directions to assembler, but do not produce machine 
instructions directly, e.g., 
− .text: Subsequent items put in user text segment 

(instructions)
− .data: Subsequent items put in user data segment (binary 

rep of data in source file)
− .globl sym: declares sym global and can be referenced 

from other files
− .asciiz str: Store the string str in memory and null-

terminate it
− .word w1,...,wn: Store the n 32-bit quantities in 

successive memory words
− .align [int]: align to power of 2
− .option: specify options such as arch, rvc

Compiler Assembler Linker Loader



Directive Examples

13

Compiler Assembler Linker Loader

.text
memcpy_general:
    add     a5,a1,a2
    beq     a1,a5,.L2
    add     a2,a0,a2
    mv      a5,a0
.L3:
    addi    a1,a1,1
    addi    a5,a5,1
    lbu     a4,-1(a1)
    sb      a4,-1(a5)
    bne     a5,a2,.L3
.L2:
    ret

More at https://github.com/riscv-non-isa/riscv-asm-manual/blob/master/riscv-asm.md
Note that not all directives are supported by venus



Assembler

14

• Input: assembly language code (generated by compiler, 
usually contains pseudo-instructions)

• Output: object code, information tables
• Reads and uses directives
• Replace pseudo-instructions
• Produce machine language
• Creates object file

Compiler Assembler Linker Loader



Pseudo-instruction Examples

15

Pseudo-instructions Real instructions
nop addi x0, x0, 0

not rd, rs xori rd, rs, -1
beqz rs, offset beq rs, x0, offset 

bgt rs1, rs2, offset blt rs2, rs1, offset
j offset jal x0, offset

ret jalr x0, x1, offset

call offset (too big to jal) auipc x6, offset[31:12]
jalr x1, x6, offset[11:0]

tail offset (too far to j) auipc x6, offset[31:12]
jalr x0, x6, offset[11:0]

li/la rd imm/label lui rd <hi20bits> (too large)
addi rd, x0, <low12bits>

mv rs1, rs2 addi rs1, rs2, 0

Assembler

Compiler Assembler Linker Loader



Tail Call

16

• Simple example

 int foo(int x){
   return bar(x * 2);
 }

foo: slli x10,x10,1
     [prologue]
    call bar
   [epilogue]
 ret
bar: ...
    ret

Compiler Assembler Linker Loader

x10/a0

j bar

ra →    

main:[prologue] 
     call/jal foo
    [epilogue]
foo: slli x10,x10,1
    [prologue]
    call bar
   [epilogue]
 ret
bar: ...
    ret

• Before optimization



Tail Call

17

• Simple example

 int foo(int x){
   return bar(x * 2);
 }
foo: slli x10,x10,1
    [prologue]
    call bar
   [epilogue]
 ret
bar: ...
    ret

Compiler Assembler Linker Loader

x10/a0

j bar

ra →    

main:[prologue] 
     call/jal foo
    [epilogue]
foo: slli x10,x10,1
    tail bar
bar: ...
    ret

• After optimization



18

• Nested procedures

    int fact (int n, int prod) {
        if (n>1) return fact(n-1, prod*n);
        else return (prod);
    }

fact: addi   t0,x0,1
      ble  x11,t0,Exit

   mul  x10,x10,x11
      addi   x11,x11,-1

   jalr   x0,fact
Exit: add  x10,x0,x10
      jalr   x0,0(x1)

x11/a1 x10/a0

Tail Call

Compiler Assembler Linker Loader



Assembler

19

• Input: assembly language code (generated by compiler, 
usually contains pseudo-instructions)

• Output: object code, information tables
• Reads and uses directives
• Replace pseudo-instructions
• Produce machine language
• Creates object file

Compiler Assembler Linker Loader



Produce machine language

20

• Instruction encoding
• Simple cases: all the logic and arithmetic operations
• PC-relative branches and jumps:

• e.g. beq/bne/etc. and jal 
• Position-independent code (PIC): PC-relative addressing can 

be computed

Compiler Assembler Linker Loader

  add x9, x8, x0  # x9=&A[0]
  add x10, x0, x0 # sum=0
  add x11, x0, x0 # i=0
  addi x13,x0, 20 # x13=20
Loop:
  bge x11,x13,Done
  lw x12, 0(x9)   # x12=A[i]
  add x10,x10,x12 # sum+=
  addi x9, x9,4   # &A[i+1]
  addi x11,x11,1  # i++
  j Loop
Done: 
  ret 



PC-relative addressing: two-pass

21

• “Foward reference” problem
• Branches, PC-relative jumps can refer to labels that are 

“forward” in the program
 Pass 1: remember positions of labels (in symbol table)
 Pass 2: Use label positions to generate machine code

Compiler Assembler Linker Loader

  add x9, x8, x0  # x9=&A[0]
  add x10, x0, x0 # sum=0
  add x11, x0, x0 # i=0
  addi x13,x0, 20 # x13=20
Loop:
  bge x11,x13,Done
  lw x12, 0(x9)   # x12=A[i]
  add x10,x10,x12 # sum+=
  addi x9, x9,4   # &A[i+1]
  addi x11,x11,1  # i++
  j Loop
Done: 
  ret 

0
4
8
c
10

14
18
1c
20
24
28

Done label unknown
Record Loop label

Loop label known

Pass 1Pass 2

Done label known

Record Done label



Assembler

22

• Input: assembly language code (generated by compiler, 
usually contains pseudo-instructions)

• Output: object code, information tables
• Reads and uses directives
• Replace pseudo-instructions
• Produce machine language
• Creates object file

Compiler Assembler Linker Loader



Other References Missing

23

• Function call (multiple files, library, etc.)
• Static data (global)
• Assembler jots them down in symbol table and relocation 

records
• Linker will handle these

Compiler Assembler Linker Loader

Symbol table Relocation record
 Labels
 .globl directive
 .data section
 Information for debugger
 etc.

“TODO items” whose address 
this file still needs
 Any external label jumped to:

 External label (including lib)
 etc.



Compiler/Assembler Example

24

Compiler Assembler Linker Loader

#include <stdio.h>
#include "add.h"
#include "max.h"
int main(void)
{
    int d=add(1234,4321);
    int m=max(1234,4321);
    printf("Result is %d\n",d+m);
    return 0;
}

int add(int x,int y)
{return x+y;}

int max(int x,int y)
{return x>y?x:y;}

gcc -O3 -S main.c main.s



Compiler/Assembler Example

25

Compiler Assembler Linker Loader

#include <stdio.h>
#include "add.h"
#include "max.h"
int main(void)
{
    int d=add(1234,4321);
    int m=max(1234,4321);
    printf("Result is 
%d\n",d+m);
    return 0;
}

int add(int x,int y)
{return x+y;}

int max(int x,int y)
{return x>y?x:y;}

gcc -O3 -c main.c add.c max.c objdump -d main.o (-x for symbol 
table & relocation records)

main.o:     file format elf64-littleriscv
Disassembly of section .text.startup:
0000000000000000 <main>:
   0:1101      add sp,sp,-32
   2:e426      sd s1,8(sp)
   4:6485      lui s1,0x1
   6:0e148593  add a1,s1,225 # 10e1 <main+0x10e1>
   a:4d200513  li a0,1234
   e:ec06      sd ra,24(sp)
  10:e822      sd s0,16(sp)
  12:00000097  auipc ra,0x0
  16:000080e7  jalr ra # 12 <main+0x12>
  1a:842a      mv s0,a0
  1c:0e148593  adda1,s1,225
  20:4d200513  li a0,1234
  24:00000097  auipc ra,0x0
  28:000080e7  jalr ra # 24 <main+0x24>
  2c:00a405bb  addw a1,s0,a0
  30:00000537  lui a0,0x0
  34:00050513  mv a0,a0
  38:00000097  auipc ra,0x0
  3c:000080e7  jalr ra # 38 <main+0x38>
  40:60e2      ld ra,24(sp)
  42:6442      ld s0,16(sp)
  44:64a2      ld s1,8(sp)
  46:4501      li a0,0
  48:6105      add sp,sp,32
  4a:8082      ret



Compiler/Assembler Example

26

#include <stdio.h>
#include "add.h"
#include "max.h"
int main(void)
{
    int d=add(1234,4321);
    int m=max(1234,4321);
    printf("Result is 
%d\n",d+m);
    return 0;
}

int add(int x,int y)
{return x+y;}

int max(int x,int y)
{return x>y?x:y;}

gcc -O3 -c main.c add.c max.c objdump -d max.o

Compiler Assembler Linker Loader

max.o:     file format elf64-littleriscv

Disassembly of section .text:

0000000000000000 <max>:
   0:87ae      mv a5,a1
   2:00a5d363  bge a1,a0,8 <.L2>
   6:87aa      mv a5,a0
0000000000000008 <.L2>:
   8:0007851b  sext.w a0,a5
   c:8082      ret



Compiler/Assembler Example

27

#include <stdio.h>
#include "add.h"
#include "max.h"
int main(void)
{
    int d=add(1234,4321);
    int m=max(1234,4321);
    printf("Result is 
%d\n",d+m);
    return 0;
}

int add(int x,int y)
{return x+y;}

int max(int x,int y)
{return x>y?x:y;}

gcc -O3 -c main.c add.c max.c objdump -d add.o

Compiler Assembler Linker Loader

add.o:     file format elf64-littleriscv

Disassembly of section .text:

0000000000000000 <add>:
   0:9d2d   addw a0,a0,a1
   2:8082   ret



Summary: Object File Format
• object file header: size and position of the other pieces of the 

object file
• text segment: the machine code
• data segment: binary representation of the static data in the 

source file
• relocation information: identifies lines of code that need to be 

fixed up later (by linker)
• symbol table: list of this file’s labels and static data that can be 

referenced
• debugging information
• A standard format is ELF (except MS)

http://www.skyfree.org/linux/references/ELF_Format.pdf 

28

Compiler Assembler Linker Loader



Linker (1/3)
• Input: object code files, information tables (e.g., <your C code>.o, 

libc.o for RISC-V)
• Output: executable code (e.g., a.out for RISC-V)
• Combines several object (.o) files into a single executable 

(“linking”) 
• Enable separate compilation of files

• Changes to one file do not require recompilation of the whole 
program
• Linux source > 20 M lines of code! 

• Old name “Link Editor” from editing the “links” in jump and link 
instructions

29

Compiler Assembler Linker Loader



.o file 1
text 1
data 1
info 1

.o file 2
text 2
data 2
info 2

Linker

a.out
Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2

Linker (2/3)

30

Compiler Assembler Linker Loader



Linker (3/3)
• Step 1: Take text segment from each .o file and put them 

together; Take data segment from each .o file, put them together, 
and concatenate this onto end of text segments

• Step 2: Determine the addresses of data and instruction labels
• Step 3: Resolve references

• Go through relocation records; handle each entry
• That is, fill in all absolute addresses

31

Compiler Assembler Linker Loader



Three Types of Addresses
• PC-Relative Addressing (beq, bne, jal)

• Never need to relocate (PIC: position independent code)
• External Function Reference (usually jal)

• Always relocate
• Static Data Reference (often auipc/lui and addi)

• Always relocate 
• RISC-V uses auipc so that a big block of stuff can be further 

relocated as long as it is fixed relative to the pc 

32

Compiler Assembler Linker Loader



Absolute Addresses in RISC-V
• Which instructions need relocation editing?

• J-format: jump and link: ONLY for external jumps

• I-,S- Format: Loads and stores to variables in static area, relative to 
global pointer

• What about conditional branches?
• Do not need editing
• PC-relative addressing preserved even if code moves 

33

Compiler Assembler Linker Loader

xxxxxxxxxxxxxxxxxxxx rd JAL

xxxxxxx rs2 gp funct3 xxxxx STORE

xxxxxxx xxxxx gp funct3 rd LOAD



Resolving References (1/2)
• Linker knows:

• Length of each text and data segment
• Ordering of text and data segments

• Linker calculates:
• Absolute address of each label to be jumped to and each 

piece of data being referenced

34

Compiler Assembler Linker Loader



Resolving References (2/2)
• To resolve references:

• search for reference (data or label) in all “user” symbol tables
• if not found, search library files 

(for example, printf, malloc)
• once absolute address is determined, fill in the machine code 

appropriately
• Output of linker: executable file containing text and data (plus 

header)

35

Compiler Assembler Linker Loader



Static vs. Dynamic Linking

36

• What we’ve described is the traditional way: statically-linked 
approach
• The library is now part of the executable, so if the library 

updates, we don’t get the fix (have to recompile if we have 
source)

• It includes the entire library even if not all of it will be used
• Executable is self-contained

• An alternative is dynamically linked libraries (DLL), common on 
Windows (.dll) & UNIX (.so) & MacOS (.dylib) platforms

Compiler Assembler Linker Loader



Dynamically linked libraries
• Space/time issues

• + Storing a program requires less disk space
• + Sending a program requires less time   
• + Executing two programs requires less memory (if they share 

a library)
• – At runtime, there’s time overhead to do link

• Upgrades
• + Replacing one file (libXYZ.so) upgrades every program that 

uses library “XYZ”
• – Having the executable isn’t enough anymore
• Thus "containers": We hate dependencies, so we are just 

going to ship around all the libraries and everything else as 
part of the 'application' 

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and 
operating system.  However, it provides many benefits that often outweigh these

en.wikipedia.org/wiki/Dynamic_linking

37

Compiler Assembler Linker Loader



Loader Basics
• Input: Executable Code

(e.g., a.out for RISC-V)
• Output: (program run)
• Executable files are stored on disk
• When one is run, loader’s job is to load it into memory and start 

it running
• In reality, loader is the operating system (OS) 

• loading is one of the OS tasks

38

Compiler Assembler Linker Loader



Loader … what does it do?
• Reads executable file’s header to determine size of text and data 

segments
• Creates new address space for program large enough to hold 

text and data segments, along with a stack segment
• Copies instructions and data from executable file into the new 

address space
• Copies arguments passed to the program onto the stack
• Initializes machine registers

• Most registers cleared, but stack pointer assigned address of 
1st free stack location

• Jumps to start-up routine that copies program’s arguments from 
stack to registers & sets the PC
• If main routine returns, start-up routine terminates program 

with the exit system call

39

Compiler Assembler Linker Loader



Question
At what point in process are all the machine code bits 
generated for the following assembly instructions:

1) add x6, x7, x8
2) jal x1, fprintf

A: 1) & 2) After compilation
B: 1) After compilation,  2) After assembly
C: 1) After assembly,       2) After linking
D: 1) After assembly,      2) After loading
E: 1) After compilation,  2) After linking

40

Compiler Assembler Linker Loader



Answer

At what point in process are all the machine code bits 
determined for the following assembly instructions:

1) add x6, x7, x8
2) jal x1, fprintf

 
 
C: (1) After assembly, (2) After linking

41

Compiler Assembler Linker Loader



In Conclusion…
▪ Compiler converts a single HLL file 

into a single assembly language file.
▪ Assembler removes pseudo-

instructions, converts what it can to 
machine language, and creates a 
checklist for the linker (relocation 
table).  A .s file becomes a .o file.

▫ Does 2 passes to resolve addresses, 
handling internal forward references

▪ Linker combines several .o files and 
resolves absolute addresses.

▫ Enables separate compilation, libraries 
that need not be compiled, and resolves 
remaining addresses

▪ Loader loads executable into 
memory and begins execution.

42

main.c

Pre-processing

main.o

Linker lib.o

main.out

Parsing & Semantic 
Analysis

Code generation & 
Optimization

Assembler

Loader

Compile


