) [EENESRAER

o, i, & School of Information Science and Technology

CS 110

Computer Architecture
CALL

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/3/13



Administrative

HW?2, due Mar. 17th

_ab 4 available, please prepare in advance!

Lab 5 released and will be checked next week
Proj.1.1 released, ddl Mar. 27th

Discussion next week on CALL and kickstart session for Proj. 1.1,
covered by TA Kunchang Guo at teaching center 301;




Outline

 CALL (compiler, assembler, linker & loader)

« Assembler
 Linker

 |Loader



C Compilation Simplified Review

main.c J C source files (text)

Pre-processing Handle macro expansion, #include, etc.

Check parse errors, generate “Abstract Syntax Tree” (AST)

Parsing & Semantic
Analysis

Translate AST to lower level intermediate representation
(LLVM IR) and then generate assembly (.s)

ode generation &
Optimization

Assembler

Translate assembly to machine code (binary)

main.o J Machine code object files (.0)

@Q po | Prebuilt object
' file libraries

main.out J Machine code executable file (.out)




main.c J

¥

Pre-processing

Parsing & Semantic
Analysis
ode generation &
Optimization

Assembler

main.o J

CALL Overview

C source files (text)

Compile, output assembly (.s)

Translate assembly to machine code (binary)

Machine code object files (.0)

@D po | Prebuilt object
' file libraries

main.out J

< Lo;der>

Machine code executable file (.out)

Actual program execution




Where are we?

High Level Language
Program (e.g., C)
Compiler

Assembly Language
Program (e.g., RISC-V)

Assembler

Machine Language
Program (RISC-V)

temp = vIk];

vIik] = vIk+1];
v[k+1l] = temp;
lw 10, 0(s2)
lw tl, 4(s2)
Sw t1l, 0(s2)
Sw t0, 4(s2)

We are here!

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)




Summary

31 30 25 24 21 20 19 15 14 12 11 8 T 6 0
funct7 rs2 rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode

imm[11:5] rs2 rsl funct3 imm|[4:0] opcode
imm[12] | imm|[10:5] rs2 rsl funct3 |imm[4:1] | imm[11] | opcode
imm(31:12] rd opcode

imm[20] imm|10:1] imm|[11] imm|19:12] rd opcode

R-type



fmm[31:12 rd 0110111

imm|31:12) rd 0010111
fmm|[20[10:1]11]19:12] rd 1101111

imm|11:0] rsl 000 rd 1100111
imm|12|10:5] rs2 rsl 000 | imm|4:1|11] 1100011
imm[12[10:5] rs2 rsl 001 | imm[4:1]11] 1100011
imm[12[10:5] rs2 rsl 100 | imm[4:1[11] | 1100011
imm|[12[10:5) rs2 rsl 101 | imm|4:1|11] 1100011
imm|[12(10:5 rs2 rsl 110 | imm[4:1|11 1100011
imm|[12(10:5] rs2 rsl 111 | imm[4:1]11 1100011
imm|11:0] rsl 000 rd 0000011
imm[11:0 rsl 001 rd 0000011
imm|[11:0] rsl 010 rd 0000011
imm|[11:0 rsl 100 rd 0000011
imm|[11:0 rsl 101 rd 0000011
imm|11:5 rs2 rsl 000 imm 4:0] 0100011
imm|11:5] rs2 rsl 001 imm |4:0] 0100011
imm|11:5 rs2 rsl 010 imm [4:0] 0100011
imm|[11:0 rsl 000 rd 0010011
imm|[11:0] rsl 010 rd 0010011
imm|[11:0 rsl 011 rd 0010011
imm|[11:0] rsl 100 rd 0010011
imm|11:0] rsl 110 rd 0010011
imm|[11:0] rsl 111 rd 0010011

LUI
AUIPC
JAL
JALR
BEQ
BNE
BLT
BGE
BLTU
BGEU
LB
LH
LW
LBU
LHU
SB
SH
SW
ADDI
SLTI
SLTIU
XORI
ORI
ANDI



0000000 shamt rsl 001 rd 0010011
0000000 shamt rsl 101 rd 0010011
0100000 shamt rsl 101 rd 0010011
0000000 rs2 rsl 000 rd 0110011
0100000 rs2 rsl 000 rd 0110011
0000000 rs2 rsl 001 rd 0110011
0000000 rs2 rsl 010 rd 0110011
0000000 rs2 rsl 011 rd 0110011
0000000 rs2 rsl 100 rd 0110011
0000000 rs2 rsl 101 rd 0110011
0100000 rs2 rsl 101 rd 0110011
0000000 rs2 rsl 110 rd 0110011
0000000 rs2 rsl 111 rd 0110011

0000

00000

00000

0001111

000000000000

00000

00000

1110011

000000000001

00000

CSI

CSr

CSTr

000

Not in'CS110-

00000

1110011

1110011

1110011

rd

1110011

CSr

Zzlmm

101

rd

1110011

CSTr

Z1mm

110

1110011

CSTI

zimm

111

1110011

SLLI
SRLI
SRAI
ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND
FENCE
FENCE.I
ECALL
EBREAK
CSRRW
CSRRS
CSRRC
CSRRWI
CSRRSI
CSRRCI



Assembler

Assembler

Input: assembly language code (generated by compiler, usually
contains pseudo-instructions)

Output: object code, information tables

— Object file header: size/position of other pieces of the object file
— Text segment: machine code

— Data segment: static data

- Symbol table: list of files’ labels, static data can be referenced
by other programs

— Relocation table: Code to be fixed later (by linker)
— Debugging info.

Reads and uses directives

Replace pseudo-instructions

Produce machine language

Creates object file

10



Assembler

Assembler

* Reads and uses directives

11



Directives

Give directions to assembler, but do not produce machine
instructions directly, e.qg.,

- . text: Subsequent items put in user text segment
(instructions)

- .data: Subsequent items put in user data segment (binary
rep of data in source file)

- .globl sym: declares sym global and can be referenced
from other files

- .ascliz str: Store the string str in memory and null-
terminate it

- .word wl,...,wn: Store the n 32-bit quantities in
successive memory words

- .align [int]: align to power of 2
- .option: specify options such as arch, rvc

12



Assembler

Directive Examples

. text

memcpy_general:
add ab,al, a2
beq al,ab5,.L2
add a2,ad,a2
mv ab,al

.L3:

addi al,al,1
add1i ab,a5,1

lbu a4,-1(al)

sb ad,-1(a5)

bne a5,a2,.L3
.L2:

ret

More at https://github.com/riscv-non-isa/riscv-asm-manual/blob/master/riscv-asm.md
Note that not all directives are supported by venus

13



Assembler

Assembler

* Replace pseudo-instructions

14



Pseudo-instruction Examples

Assembler

)

Pseudo-instructions
nop
not rd, rs
beqz rs, offset
bgt rsl1l, rs2, offset
] offset
ret

call offset (too big to jal)
tail offset (too far to j)

1li/1la rd imm/label

mv rsl, rs2

Real instructions
addi x0, x0, 0
xorl rd, rs, -1

beq rs, x0, offset

blt rs2, rsl, offset
jal x0, offset

jalr x0, x1, offset

auipc x6, offset[31:12]
jalr x1, x6, offset[11:0]

auipc x6, offset[31:12]
jalr x0, x6, offset[11:0]

lui rd <hi2@bits> (too large)
addi rd, x0, <lowl2bits>

addi rsl, rs2, 0

15



Assembler

Tail Call

+ Simple example » Before optimization
int foo(in’)cd?(/)a{@ main: [prologue]
call/jal foo
return bar(x x 2); m [epﬂggue]
s oo: slli x10,x10,1
. [prologue]
foo: slli x10,x10,1 call bar
, [prologuel], [epilogue]
'call bar ! .
' lepil } mm) ] bar ret
' Lepiloguel bar: ...
ret | ret

bar:

16



Assembler

Tail Call

« After optimization

« Simple example
x10/a0
int foo(int x){

return bar(x x 2);

}

foo: slli x10,x10,1
|[prologueP
‘call bar
l [epiloguel, -
et __ !

bar:

] bar

mailn:

Fa —

foo:

bar:

[prologue]
call/jal foo
[epilogue]
slli x10,x10,1
tail bar

ret

17



Assembler

Tail Call

* Nested procedures

x11l/al x10/a0

int fact (int n, int prod) {
if (n>1) return fact(n-1, prodn);
else return (prod);

fact: addi t0,x0,1
ble x11,t0,Ex1it
mu x10,x10,x11
add1i x11,x11,-1
jalr  x@,fact
Exit: add x10,x0,x10
jalr x0,0(x1)



Assembler

Assembler

* Produce machine language

19



Assembler

Produce machine language

 Instruction encoding
« Simple cases: all the logic and arithmetic operations

* PC-relative branches and jumps:
« e.g. beg/bne/etc. and jal

* Position-independent code (PIC): PC-relative addressing can
be computed

add , X8, x0 # x9=GA[0]
add x10, x0, x0 # sum=0
add x11, x0, x0 # 1=0
addi x13,x0, 20 # x13=20
Loop:
bge x11,x13,Done
lw x12, 0(x9)  # x12=A[1]
add x10,x10,x12 # sum+=
addi , ,4  # &A[1i+1]
addi x11,x11,1 # i++
j Loop
Done.:
ret 20



Assembler

PC-relative addressing: two-pass

* “Foward reference” problem

* Branches, PC-relative jumps can refer to labels that are
“forward” in the program

+ Pass 1: remember positions of labels (in symbol table)
o Pass 2: Use label positions to generate machine code

Pass 2 Pass 1
0 add <9, x8, x0 # «9=&A[0]
4 add x10, x0, x0 # sum=0
8 add x11, x0, x0 # 1=0
c addi x13,x0, 20 # x13=20
v M 10 Loop:
bge x11,x13,Done

14 lw x12, 0(x9)  # x12=A[1i]
18 add x10,x10,x12 # sum+=

1c addi 9, ,4  # GA[i+1]
¥ 20 addi x11,x11,1 # 1i++

Loop label known 24 j Loop
28 Done:
Record Done label
ret




Assembler

Assembler

Input: assembly language code (generated by compiler,
usually contains pseudo-instructions)

Output: object code, information tables
Reads and uses directives

Replace pseudo-instructions

Produce machine language

Creates object file

22



¢

¢

Other References Missing

Function call (multiple files, library, etc.)
Static data (global)

Assembler jots them down in symbol table and relocation
records

Linker will handle these

Symbol table Relocation record
Labels “TODO items” whose address
.globl directive this file still needs
. data section + Any external label jumped to:
Information for debugger + External label (including lib)

etc. s eftc.

23



Assembler

Compiler/Assembler Example

gcc —03 =S main.c main.s

#include <stdio.h>
#include "add.h"
#include "max.h"
int main(void)

{
int d=add(1234,4321);
int m=max(1234,4321);
printf("Result is %d\n",d+m);
y return 0;

int add(int x,int vy)
{return x+y;}

int max(int x,int vy)
{return x>y?x:y;}

24



Compiler/Assembler Example

gcc -03 -c main.c add.c max.c objdump -d main.o (-x for symbol
table & relocation records)
main.o: file format elf64-1littleriscv

Disassembly of section .text.startup:
0000000000000000 <main>:

#include <stdio.h>
#include "add.h"

#inc lude "max.h"

%nt main(void)
int d=add(1234,4321);
int m=max(1234,4321);
printf("Result is

%sd\n'",d+m) ;

, return 0;

int add(int x,int vy)
{return x+y;}

int max(int x,int vy)
{return x>y?x:y;}

11101
:e426
: 6485
:0e148593
:4d200513
:ec0o6
:e822
: 00000097

add sp,sp,—32

sd s1,8(sp)

lui sl,@xl

add al,sl1,225 # 10el <main+0x10el>
11 a0,1234

sd ra,24(sp)

sd s0,16(sp)

auipc ra, 0x0

Y (B
OIINSOD VAIRANS

:000080e7

jalr ra # 12 <main+0x12>

8423
10148593
:4d200513
100000097

mv s0,a0
addal,sl1,225
11 a0,1234
auipc ra,0x0

:000080e7

jalr ra # 24 <main+0x24>

: 00a405bb

addw al,s0,a0

: 00000537
: 00050513

lui a0, 0x0
mv a0,al

38:00000097

auipc ra, 0x0

: 000080e7/

jalr ra # 38 <main+0x38>

:60e?2
16442
:64a2
14501
16105
: 8082

ld ra,24(sp)
1d s0,16(sp)
1d s1,8(sp)
11 a0,0

add sp,sp,32

25
ret



Assembler

Compiler/Assembler Example

gcc -03 -c main.c add.c max.c

#include <stdio.h>
#include "add.h"
#inc lude "max.h"
int main(void)

{

int d=add(1234,4321);
int m=max(1234,4321);

printf("Result is
%d\n",d+m);

return 0;
}

int add(int x,int vy)
{return x+y;}

int max(int x,int y)
{return x>y?x:y;}

objdump -d max.o

max.o: file format elf64-littleriscv
Disassembly of section .text:

0000000000000000 <max>:

0:87ae mv ab,al
2:00a5d363 bge al,a0,8 <.L2>
6:87aa mv a5, a0

000000000000 0008 <.L2>:
8:0007851b sext.w a0,ab
c:8082 ret

26



Assembler

Compiler/Assembler Example

gcc -03 -c main.c add.c max.c

#include <stdio.h>
#include "add.h"
#inc lude "max.h"
int main(void)

{

int d=add(1234,4321);
int m=max(1234,4321);

printf("Result is
%d\n",d+m);

return 0;
}

int add(int x,int vy)
{return x+y;}

int max(int x,int y)
{return x>y?x:y;}

objdump -d add.o

add.o:

file format elfed4-1littleriscv

Disassembly of section .text:

0000000000000000 <add>:

0:9d2d
2:8082

addw a0, a0,al
ret

27



Summary: Object File Format

object file header: size and position of the other pieces of the
object file

text segment: the machine code

data segment: binary representation of the static data in the
source file

relocation information: identifies lines of code that need to be
fixed up later (by linker)

symbol table: list of this file’s labels and static data that can be
referenced

debuqgqging information

A standard format is ELF (except MS)
http://www.skyfree.org/linux/references/ELF_Format.pdf




Linker (1/3)

Input: object code files, information tables (e.g., <your C code>.o,
libc.o for RISC-V)

Output: executable code (e.g., a.out for RISC-V)
Combines several object (.0) files into a single executable
(“linking”)
Enable separate compilation of files
« Changes to one file do not require recompilation of the whole
program
* Linux source > 20 M lines of code!

« Old name “Link Editor” from editing the “links” in jump and link
iInstructions

29



Linker (2/3)

.0 file 1

30



Linker (3/3)

Step 1: Take text segment from each .o file and put them
together; Take data segment from each .o file, put them together,
and concatenate this onto end of text segments

Step 2: Determine the addresses of data and instruction labels
Step 3: Resolve references

* Go through relocation records; handle each entry

 Thatis, fill in all absolute addresses



Three Types of Addresses

« PC-Relative Addressing (beq, bne, jal)

* Never need to relocate (PIC: position independent code)
« External Function Reference (usually jal)

* Always relocate
« Static Data Reference (often auipc/ lul and addi)

* Always relocate

* RISC-V uses auipc so that a big block of stuff can be further
relocated as long as it is fixed relative to the pcC




Absolute Addresses in RISC-V

* Which instructions need relocation editing?
« J-format: jump and link: ONLY for external jumps

PO 00 0000000000000 0004 rd JAL

 |-,S- Format: Loads and stores to variables in static area, relative to
global pointer

XXXXXXX | rs2 gp funct3 | xxxxx |STORE

XXXXXXX | XXXXX | gp funct3 rd LOAD

« What about conditional branches?
* Do not need editing
« PC-relative addressing preserved even if code moves



Resolving References (1/2)

* Linker knows:
* Length of each text and data segment
* QOrdering of text and data segments

* Linker calculates:

* Absolute address of each label to be jumped to and each
piece of data being referenced



Resolving References (2/2)

* To resolve references:
« search for reference (data or label) in all “user” symbol tables

 if not found, search library files
(for example, printf, malloc)

 once absolute address is determined, fill in the machine code
appropriately
« Qutput of linker: executable file containing text and data (plus
header)



Static vs. Dynamic Linking

 What we’ve described is the traditional way: statically-linked
approach

* The library is now part of the executable, so if the library

updates, we don’t get the fix (have to recompile if we have
source)

* Itincludes the entire library even if not all of it will be used
* Executable is self-contained

* An alternative is dynamically linked libraries (DLL), common on
Windows (.dll) & UNIX (.so) & MacOS (.dylib) platforms



Dynamically linked libraries

« Space/time issues
« + Storing a program requires less disk space
* + Sending a program requires less time

* + Executing two programs requires less memory (if they share
a library)

« — At runtime, there’s time overhead to do link
 Upgrades

* + Replacing one file (libXYZ.s0) upgrades every program that
uses library “XYZ”

« — Having the executable isn’t enough anymore

 Thus "containers": We hate dependencies, so we are just
going to ship around all the libraries and everything else as
part of the 'application’

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and
operating system. However, it provides many benefits that often outweigh these

37



Loader Basics

Input: Executable Code
(e.g., a.out for RISC-V)

Output: (program run)
Executable files are stored on disk

When one is run, loader’s job is to load it into memory and start
it running

In reality, loader is the operating system (OS)
* |oading is one of the OS tasks



Loader ... what does it do?

Reads executable file’s header to determine size of text and data
segments

Creates new address space for program large enough to hold
text and data segments, along with a stack segment

Copies instructions and data from executable file into the new
address space

Copies arguments passed to the program onto the stack
Initializes machine registers

* Most registers cleared, but stack pointer assigned address of
1st free stack location

Jumps to start-up routine that copies program’s arguments from
stack to registers & sets the PC

 If main routine returns, start-up routine terminates program
with the exit system call



Question

At what point in process are all the machine code bits
generated for the following assembly instructions:

1) add x6, x7, x8
2) jal x1, fprintf

A: 1) & 2) After compilation

B: 1) After compilation, 2) After assembly
C: 1) After assembly, 2) After linking
D: 1) After assembly, 2) After loading
E:

1) After compilation, 2) After linking



Answer

At what point in process are all the machine code bits
determined for the following assembly instructions:

1) add x6, x7, x8
2) jal x1, fprintf

C: (1) After assembly, (2) After linking



In Conclusion...

Compiler converts a single HLL file
Into a single assembly language file.

Assembler removes pseudo-
Instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.

= Does 2 passes to resolve addresses,
handling internal forward references

Linker combines several .o files and
resolves absolute addresses.

= Enables separate compilation, libraries
that need not be compiled, and resolves
remaining addresses

Loader loads executable into
memory and begins execution.

main.c J

Pre-processing

Parsing & Semantic
Analysis
ode generation &
Optimization

Assembler

Compile

main.o J

@D ib.o J

main.out J

< Loader >

42



