
CS 110
Computer Architecture

Digital Circuits and Systems
Instructors:

Chundong Wang, Yuan Xiao & Siting Liu
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/3/18

Administratives

2

• HW3 to release TODAY!

• Be on time! Only those submissions before ddl will receive
marks, otherwise you got 0. So START EARLY!

• Make sure you submit the correct activated version!

• Lab 5 available, please prepare in advance, check next week!
Lab 4 to check this week.

• Proj1.1 released, ddl Mar. 27th.

• Discussion this week on calling convention & proj. 1.1 Q&A,
covered by TA Kunchang Guo at teaching center 301.

Outline

3

• Digital system
• Combinational logics
 From transistors to basic logic gates
 From logic gates to combinational circuits

 Boolean algebra
 Boolean expression
 Truth table

• State elements
• Useful building blocks

Where are we?

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

4

We are here!

Bottom-up

Hardware (HW) Design
• Next several weeks: how a modern processor is built,

starting with basic elements (transistors) as building blocks
• Why study hardware design?

– Understand capabilities and limitations of HW in general and
processors in particular

– What processors can do fast and what they can’t do fast
(avoid slow things if you want your code to run fast!)

– Background for more in-depth HW courses (Digital
circuit/VLSI/AI computing system, etc.)

– There is only so much you can do with standard processors: you
may need to design own custom HW for extra performance
– Even some commercial processors today have customizable hardware!
– E.g. Google Tensor Processing Unit (TPU)

5

6

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory
Interface

I/O-Memory
Interfaces

Program

Data

%0
%1
%2
…

Components of Computers

Arithmetic & logic
Decision making

A Z

Switches: Basic Element of Physical
Implementations

• Implementing a simple circuit (arrow shows action
if wire changes to “1” or is asserted):

Z  A

A
Z

7

On-switch (if A is “1” or asserted)
turns-on light bulb (Z)

Off-switch (if A is “0” or unasserted)
turns-off light bulb (Z)

Digital system Transistors → logic gates Logic gates → combinational circuits

AND

OR

Z  A and B

Z  A or B

A B

A

B

Switches

• Compose switches into more complex ones (Boolean
functions):

8

Digital system Transistors → logic gates Logic gates → combinational circuits

• 0 and 1 (binary digit or bit, unit of information entropy)

• Decided by the characteristic of semiconductor devices (bi-stable
states)

• They can also be considered as voltage-controlled switches

• Resilient to noise (threshold)

• Supported by Boolean algebra theory (George Boole, 1854)

• Basic operations: ^, |, ~ (Universal set)

Revisit: Binary System

9

Digital system Transistors → logic gates Logic gates → combinational circuits

Binary Representation of Signals
• High voltage (Vdd) represents 1, or true

– In modern microprocessors, core Vdd ~ 1.0 Volt
• Low voltage (0 Volt or Ground) represents 0, or

false
• Digital: discretize signal/voltage to a 0 or a 1

– This removes noise as signals propagate – a big
advantage of digital systems over analog
systems

– Circuits to discriminate between two possible
inputs are simple to implement and have scaled
well with Moore’s Law.

• If one switch can control another switch with digital
signal, we can build a computer!

• Our switches: CMOS transistors

10

Digital system Transistors → logic gates Logic gates → combinational circuits

Logic “High” (1)
range

1 V

0 V

Logic “Low” (0)
range

Intermediate
undefined

n-channel transitor
off when voltage at Gate is low

on when:
voltage (Gate) > voltage (Threshold)

(High resistance when gate voltage Low,
Low resistance when gate voltage High)

p-channel transistor
on when voltage at Gate is low

off when:
voltage (Gate) > voltage (Threshold)

(Low resistance when gate voltage Low,
High resistance when gate voltage High)

NMOS & PMOS Transistors
• Three terminals: source, gate, and drain

– Basic model

Gate

Source Drain

Gate

Source Drain

11

Circle symbol
indicates “NOT”
or “complement”

Drain
Gate

Source

Digital system Transistors → logic gates Logic gates → combinational circuits

NMOS & PMOS Transistors: Clarifications

12

Digital system Transistors → logic gates Logic gates → combinational circuits

• Transistors can be modeled by resistors and capacitors, i.e.,
they can have non-ideal effects such as leakage and delay

Planar → FinFET → GAAFET

From Utmel.com

• Recent trend of transistors • Real stuff: AMD Zen 2

475M-transistor core slice is 7.83mm 2 with a
0.5MB L2 cache and 4MB of shared L3 cache

Synchronous Digital System (SDS)
• A system that processes digital signals (0s and 1s)
• Synchronous digital systems consist of two basic types of

circuits.
– Combinational logic circuits (this lecture)

• The outputs sorely depend on the input
• No way to store information

– State Elements (next lecture)
• Circuits that store information
• E.g., registers and memory

• CPU cores are SDS’s

13

Digital system Transistors → logic gates Logic gates → combinational circuits

• Our Goal: Implement a RISC-V processor
as a synchronous digital system.

• This SDS should have the capabilities to
execute RISC-V instructions.

From Transistors to Logic Gates
• Complementary MOS (CMOS)

14

Digital system Transistors → logic gates Logic gates → combinational circuits

AND Z  A and BA B

Similarly

1V

Logic “High” (1)
range

Logic “Low” (0)
range

Intermediate
undefined

• N-type transistors (NMOS) pass weak 1 (Vdd - Vth) and strong 0
• P-type transistors (PMOS) pass weak 0 (Vth) and strong 1
• Pairs of N/P-type transistors to pass strong 0 and strong 1

The Simplest CMOS Circuits
• Inverter/Not gate

15

A

Vdd/power supply/logic 1
Assume 1.0 V

O = not A

Ground/logic 0
0.0 V

O

Digital system Transistors → logic gates Logic gates → combinational circuits

NAND Gate

16

A

B
NMOS

network

A B PMOS
network

A B O
0 0 1
0 1 1
1 0 1
1 1 0

Truth table

What about 3-input NAND?

Digital system Transistors → logic gates Logic gates → combinational circuits

O

What about 2-input AND?

17

A B O
0 0 1
0 1 0
1 0 0
1 1 0

What about 3-input NOR?

Truth table

NOR Gate

A

B
PMOS

network

A B NMOS
network

O

Digital system Transistors → logic gates Logic gates → combinational circuits

General CMOS Logic Gates

18

Vdd/power supply/logic 1
Assume 1.0 V

PMOS
network

NMOS
network

Ground/logic 0
0.0 V

O

A
B
C
… …

Digital system Transistors → logic gates Logic gates → combinational circuits

Basic Symbols

19

• Standard symbols for logic gates

–Buffer, NOT

–AND, NAND

–OR, NOR

OA

A
B O

OA
B

- Universal sets
–NOT, AND, OR

Can be combined to
implement any logics

–NAND

–NOR

Through Boolean algebra!

Digital system Transistors → logic gates Logic gates → combinational circuits

From Logic Gates to Building Blocks

20

Digital system Transistors → logic gates Logic gates → combinational circuits

• Method 1: through boolean expressions (sum-of-minterm)
• Method 2: Karnauph Map

Boolean Algebra
• Use plus “+” for OR

– “logical sum” 1+0=0+1=1 (True); 1+1=2 (True); 0+0=0 (False)
• Use product for AND (a•b or implied via ab)

– “logical product” 0•0 = 0•1 = 1•0 = 0 (False); 1•1 = 1 (True)
• “Bar” to mean complement (NOT)
• Thus

ab + a + c
= a•b + a + c
= (a AND b) OR a OR (NOT c)

21

Digital system Transistors → logic gates Logic gates → combinational circuits

Build Combinational Circuits with
Basic Logic Gates

• Combinational circuits: the ones that the output of the
digital circuits depends solely on its inputs; usually
built with logic gates without feedback
• Step 1: Write down truth table of the desired logic

22

A B O
0 0 0
0 1 1
1 0 1
1 1 0

For example build an XOR
with AND/OR/NOT

Digital system Transistors → logic gates Logic gates → combinational circuits

Build Combinational Circuits with
Basic Logic Gates

• Combinational circuits: the ones that the output of the
digital circuits depends solely on its inputs; usually
built with logic gates without feedback
• Step 2: Pick the lines with 1 as the output; write

them down in Sum of Minterms (Product) form;

23

A B O
0 0 0
0 1 1
1 0 1
1 1 0

For example build an XOR
with AND/OR/NOT Minterms

��
��
��
��

�0

�1

�2

�3

Digital system Transistors → logic gates Logic gates → combinational circuits

Build Combinational Circuits with
Basic Logic Gates

• Combinational circuits: the ones that the output of the
digital circuits depends solely on its inputs; usually
built with logic gates without feedback
• Step 3: Simplify using Laws of Boolean algebra;

24

Digital system Transistors → logic gates Logic gates → combinational circuits

A B O
0 0 0
0 1 1
1 0 1
1 1 0

For example build an XOR
with AND/OR/NOT Minterms

��
��
��
��

�0

�1

�2

�3

O = m1 + m2

X+X = 1
X+1 = 1
X+0 = X
X+X = X
X+Y = Y+X

(X+Y)+Z = X+(Y+Z)
X+YZ = (X+Y)(X+Z)

(X+Y)X = X
X+Y = XY

Laws of Boolean Algebra

25

XX = 0
X0 = 0
X1 = X
XX = X
XY = YX

(XY)Z = X(YZ)
X(Y+Z) = XY+XZ

XY+X = X
XY = X+Y

Complementarity
Laws of 0’s and 1’s

Identities
Idempotent Laws

Commutativity
Associativity
Distribution
Absorption

DeMorgan’s Law

AND form OR form

Digital system Transistors → logic gates Logic gates → combinational circuits

Your turn!

26

• Build a half adder:
• Sum Carry
• 0 + 0 = 0 0
• 0 + 1 = 1 0
• 1 + 0 = 1 0
• 1 + 1 = 0 1

• Build a 2-bit adder:
• Sum Carry
• 00 + 00 = 00 0
• 00 + 01 = 01 0
• 00 + 10 = 10 0
• 00 + 11 = 11 0
• 01 + 00 = 01 0
• 01 + 01 = 10 0
• 01 + 10 = 11 0
• 01 + 11 = 00 1

 Sum Carry
10 + 00 = 10 0
10 + 01 = 11 0
10 + 10 = 00 1
10 + 11 = 01 1
11 + 00 = 11 0
11 + 01 = 00 1
11 + 10 = 01 1
11 + 11 = 10 1

AB CD

Digital system Transistors → logic gates Logic gates → combinational circuits

Another Method—Karnauph Map
(optional)

27

AB

CD
1

1 1 1

1 1

00 01 11 10

00

01

11

10

Each cell corresponds to a minterm

Gray coded

Gray
coded

Online Karnauph map solver: http://www.32x8.com/index.html

Digital system Transistors → logic gates Logic gates → combinational circuits

Representations of Combinational Logic

Truth Table

Gate DiagramBoolean
Expression

Sum of minterms
or Karnauph map

Enumerate
Inputs

Enumerate
Inputs

Use equivalency
between boolean

operators and gates

Digital system Transistors → logic gates Logic gates → combinational circuits

Build Larger Blocks—like LEGO®

01010101
+ 01110011

Build a full adder (FA): truth table
Carry in A B Sum Carry out

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

FAFA…FAFA

Digital system Transistors → logic gates Logic gates → combinational circuits

Exercise
Digital system Transistors → logic gates Logic gates → combinational circuits

• Recall beq instruction. Build a comparator that makes
the decision. 1 indicates “equal”, 0 indicates “not equal”

Other Useful Combinational Circuits

Multiplexer (2-to-1)

B

A

Sel

0

1
C

• Multiplexer (2n-to-1)

B

A

Sel0

0

1

D

C

Sel0

0

1
Sel1

0

1
O

Tree structure

Digital system Transistors → logic gates Logic gates → combinational circuits

