
CS 110
Computer Architecture

Datapath
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2024/3/25

Administratives

2

• Lab 5 available, please prepare in advance, to check this week!
Lab 6 released!

• HW 3 available, ddl April 1st, start early!

• Proj 1.1 ddl TODAY, Mar. 27th!

• Proj 1.2 will be released.

• Discussion this week on digital circuits.

Mid-term I

3

• Midterm I
– April 10th 8:00 am - 10:00 am

• We start sharp at 8:00 am!
• Arrive 7:45 am to check-in (Venue: TBD on your egate

system; Seat: TBD on-site)
• Arrive later then 8:30 am will get 0 mark.

• Contents:
– Everything till April 8th lecture

• Switch cell phones off!!! (not silent mode)
– Put them in your bags.

• Bags in the front. On the table: nothing but pen, exam paper,
1 drink, 1 snack, your student ID card and your cheat sheet!

Mid-term I requirements

4

• You can bring a cheatsheet (handwritten only). 1-page A4,
double-sided (2-page for the mid-term II and 3-page for the
final). Put it on your desk at exam. Cheatsheet that does not
apply to the rules would be taken away.

• Greencard shown on the course website is provided with the
exam paper.

• No other electronic devices are allowed!
‒ No ear plugs, music, smartwatch, calculator, computer…

• Anybody touching any electronic device will FAIL the course!
• Anybody found cheating (copy your neighbors answers,

additional material, ...) will FAIL the course!

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2024/lecture_notes/riscvcard.pdf

5

6

7

8

Cheat Sheet

• 1 A4 Cheat Sheet allowed (double sided)
– Midterm II: 2 pages
– Final: 3 pages

• Rules:
– Hand-written – not printed/photocopied!
– Your name in pinyin on the top!
– Cheat Sheets not complying to this rule will be

confiscated!

9

10

11

12

13

Outline

14

• Useful building blocks
• ALU design
• Register file
• Memory considerations

• Datapath
• Design of the controller

Warm-up

15

• A classic problem: sequence detection for “010” (non-overlapping)

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function (we ignore
the initialization)

• Step 2: Define/assign binary numbers to represent the states, the
inputs and the outputs

• Step 3: Write down the truth table (enumerate input/previous state
(and current state) and their corresponding current state (and output))

• Step 4: Use template and decide the combinational block for state
transition and output logic

Warm-up

16

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function

Detected Undetected

detect 01
The next
bit is 0 detect 10 detect 0

detect 101 detect 1

• A classic problem: sequence detection for “010” (non-overlapping)

Warm-up

17

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function

Detected Undetected

detect 01
The next
bit is 0 detect 0

The next
bit is 1

No 0 detected

The next
bit is 0

• A classic problem: sequence detection for “010” (non-overlapping)

Warm-up

18

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function

Detected

detect 01
The next
bit is 0 detect 0

The next
bit is 1

No 0 detected

The next
bit is 0

• A classic problem: sequence detection for “010” (non-overlapping)

Warm-up

19

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function

Detected

detect 01
The next
bit is 0 detect 0

The next
bit is 1

No 0 detected
The next
bit is 0

• A classic problem: sequence detection for “010” (non-overlapping)

The next
bit is 1

Warm-up

20

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function

Detected

detect 01
The next
bit is 0 detect 0

The next
bit is 1

No 0 detected
The next
bit is 0

• A classic problem: sequence detection for “010” (non-overlapping)

The next
bit is 1

The next
bit is 0

The next
bit is 1

Warm-up

21

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function

Detected

detect 01
The next
bit is 0 detect 0

The next
bit is 1

No 0 detected
The next
bit is 0

• A classic problem: sequence detection for “010” (non-overlapping)

The next
bit is 1

The next
bit is 0

The next
bit is 1

The next
bit is 0

The next
bit is 1

Warm-up

22

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 1: Draw finite state machine of the desired function

Detected/1

detect 01/0
0

detect 0/0

1

No 0
detected/0

0

• A classic problem: sequence detection for “010” (non-overlapping)

1

0

10

1

Warm-up

23

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

Detected/1
(11)

detect 01/0
(10)

0
detect 0/0

(01)
1

No 0
detected/0

(00)
0

• A classic problem: sequence detection for “010” (non-overlapping)

1

0

10

1

• Step 2: Define/assign binary numbers to represent the states, the
inputs and the outputs

Warm-up

24

0 1 0 0 1 0 1 0 1 1 0Input:
0 0 0 1 0 0 1 0 0 0 0Output:

• Step 3: Write down the truth table (enumerate input/previous state
(and current state) and their corresponding current state (and output))

Detected/1
(11)

detect 01/0
(10)

0
detect 0/0

(01)
1

No 0
detected/0

(00)

0

• A classic problem: sequence detection for “010” (non-overlapping)

1

0

1
0

1
input S[1]

k-1
S[0]
k-1

S[1]
k

S[0]
k

output

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Previous state Current state

Warm-up

25

• Step 4: Use template and decide the combinational block for state
transition and output logic

Detected/1
(11)

detect 01/0
(10)

0
detect 0/0

(01)
1

No 0
detected/0

(00)

0

1

0

1
0

1
input S[1]

k-1
S[0]
k-1

S[1]
k

S[0]
k

output

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Previous state Current state

Combinational
functional block

for state transition
A=f(B,input)

Reg.

input
Combinational

functional block
for output, g(B)

output

Sk

A=f(B,input)
output=g(B)

Sk

Sk-1

output=S[1]kS[0]k

Warm-up

26

• Step 4: Use template and decide the combinational block for state
transition and output logic

Detected/1
(11)

detect 01/0
(10)

0
detect 0/0

(01)
1

No 0
detected/0

(00)

0

1

0

1
0

1
input S[1]

k-1
S[0]
k-1

S[1]
k

S[0]
k

output

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Previous state Current state

Combinational
functional block

for state transition
A=f(B,input)

Reg.

input
Combinational

functional block
for output, g(B)

output

Sk

A=f(B,input)
output=g(B)

Sk

Sk-1

S[1]k=S[1]k-1S[0]k-1input+

S[1]k-1S[0]k-1input

Warm-up

27

• Step 4: Use template and decide the combinational block for state
transition and output logic

Detected/1
(11)

detect 01/0
(10)

0
detect 0/0

(01)
1

No 0
detected/0

(00)

0

1

0

1
0

1
input S[1]

k-1
S[0]
k-1

S[1]
k

S[0]
k

output

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Previous state Current state

Combinational
functional block

for state transition
A=f(B,input)

Reg.

input
Combinational

functional block
for output, g(B)

output

Sk

A=f(B,input)
output=g(B)

Sk

Sk-1

S[1]k=S[1]k-1S[0]k-1input+

S[1]k-1S[0]k-1input

S[0]k=input

output=S[1]kS[0]k

Warm-up

28

• Step 4: Use template and decide the combinational block for state
transition and output logic

Detected/1
(11)

detect 01/0
(10)

0
detect 0/0

(01)
1

No 0
detected/0

(00)

0

1

0

1
0

1
input S[1]

k-1
S[0]
k-1

S[1]
k

S[0]
k

output

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Previous state Current state

DFF

input

output

S[0]

S[1]k=S[1]k-1S[0]k-1input+

S[1]k-1S[0]k-1input

S[0]k=input

output=S[1]kS[0]k

DFF
S[1]

input

S[0]
S[1]
input
S[0]
S[1]

Controller & Datapath
• A CPU that support RV32I can have so many states

29

• Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).

• Each RV32I instruction can be done
within 1 clock cycle (single-cycle CPU).

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

• Consider the 32 registers alone
• x0 always 0
• Each bit in the other registers can be 0 or 1

• Not practical to enumerate all the state transitions
• Top-down design: build small modules and then

connect them as needed
• Most digital systems can be divided into datapth and

controller
• Datapath contains data processing and storage
• Controller controls data access (still can be

modeled as FSM)
• Recall the execution of an instruction

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Controller & Datapath
• A CPU that support RV32I can have so many states

30

• Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).

• Each RV32I instruction can be done
within 1 clock cycle (single-cycle CPU).

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

• Datapath

• Start with basic building blocks

• Add building blocks to the digital system with
added supported instructions

• Controller

• Can be considered as an FSM

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks
• An ALU should be able to execute all the arithmetic and logic operations

31

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND

ADDI
SLTI
SLTIU
XORI
ORI
ANDI

• AND as an example
• 2 32-bit inputs A and B
• 1 32-bit output C

A[31] B[31]

C[31]

A[30] B[30]

C[30]

A[0] B[0]

C[0]

... ...

• Our Goal: Implement a RISC-V processor
as a synchronous digital system.

• Each RV32I instruction can be done
within 1 clock cycle.

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks
• An ALU should be able to execute all the arithmetic and logic operations

32

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND

ADDI
SLTI
SLTIU
XORI
ORI
ANDI

• AND as an example
• 2 32-bit inputs A and B
• 1 32-bit output C

A B

C

32

32

32

A simplified AND
gate array symbol

A B

C

32

32

32

OR

A B
3232

C
32

XOR

• Our Goal: Implement a RISC-V processor
as a synchronous digital system.

• Each RV32I instruction can be done
within 1 clock cycle.

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful Combinational Circuits

Multiplexer (2-to-1)

B

A

Sel

0

1
C

• Multiplexer (2n-to-1)

B

A

Sel0

0

1

D

C

Sel0

0

1
Sel1

0

1
O

Tree structure

• Multiplexer (2-to-1)

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Control through selection

Sel0

0

1

Sel1

0

1
O

• 32-bit Multiplexer and logic gates to support some logic instructions
A

B 32

32

32

AN
D

A
B 32 32

32

OR

A
B 32

32

32 XO
R

Sel0

0

1

32

32

32

• More layers of multiplexer to select from more inputs

• Regard (Sel1Sel0)2 as an
unsigned number

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Multiplexer

Sel

0

1

• N-to-1 multiplexer symbol

...

?
n

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Multiplexers used for shifter
• Left shift a single bit -> left shift multiple single bits
• Other shifter designs such as barrel shifter

Sel

0

1

O[31]...

5
31

I[31]

I[30]

...

I[0]

Sel

0

1

O[30]...

5
31

I[30]

I[29]

...

30I[0]
’0’

Sel

0

1

O[29]...

5
31

I[30]

I[29]
...

30’0’
’0’

I[0] 29

...

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks
• An ALU should be able to execute all the arithmetic and logic operations

37

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND

ADDI
SLTI
SLTIU
XORI
ORI
ANDI

• Our Goal: Implement a RISC-V processor
as a synchronous digital system.

• Each RV32I instruction can be done
within 1 clock cycle.

XOR gates

AND gates

OR gates

Left shifter

Rightshifter
(logic)

Operand 1

Operand 2

Rightshifter
(arithmetic)

sel

0

1

Part of
an ALU

O

Note that all the signals expect the
selection signals are 32-bit.

2

3

4

5

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Adder & subtractor
• An adder design

38

FAFA…FAFA

A[0]
B[0]

S[0]

‘0’

c[0]c[1]

S[1]S[30]S[31]

A[1]
B[1]

A[30]
B[30]

A[31]
B[31]

A 32-bit adder

• A smart subtractor design
– Recall that subtracting a number is equivalent to adding its negative version

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

A smart subtractor design

39

A - B = A + (-B) = A + B + 1 (mod 2N-1)

… …FA

s[31]c[31]

FA

s[30]c[30]

FA

s[1]c[1]

A[31] A[30] A[1] A[0]

FA

s[0]c[0]

B[31] B[30] B[1] B[0]

‘1’

FAFA…FAFA

A[0]
B[0]

S[0]

‘0’

c[0]c[1]

S[1]S[30]S[31]

A[1]
B[1]

A[30]
B[30]

A[31]
B[31]

A 32-bit adder

A 32-bit subtractor
• Recall XOR gate

1
A A

0
A A

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks
• An ALU should be able to execute all the arithmetic and logic operations

40

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND

ADDI
SLTI
SLTIU
XORI
ORI
ANDI

• ALU design that supports R-/I-arithmetic
and logic operations completed

XOR gates

AND gates

Rightshifter
(arithmetic)

Operand 1

Operand 2

Sub/adder

sel

0

1

Part of
an ALU

O

Note that all the signals expect the
selection signals are 32-bit.

.

.

.

5

6

.

.

.

add/sub

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks-Register file
• The register file is the component that contains all the general purpose registers

of the microprocessor
• A register file should provide data given the register numbers
• A register file should be able to change the stored value

41

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

Register

Input

Output

Clock

An n-bit
signaln

n

• Recall we have registers that store values

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks-Register file
• The register file is the component that contains all the general purpose registers

of the microprocessor
• A register file should provide data given the register numbers
• A register file should be able to change the stored value

42

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

Reg.

Input

Output

32

• Recall we have registers that store values

Reg.

Input

Output

32

Reg.

Input

Output

32

... ...

32 32-bit registers

• How to select one to output? Multiplexer

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks-Register file
• The register file is the component that contains all the general purpose registers

of the microprocessor
• A register file should provide data given the register numbers
• A register file should be able to change the stored value

43

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

• Recall we have registers that store values

Reg.

... ...

Multiplexer

Reg.

Reg.
sel[4:0]

0

1

Output.
.
.

31

x0

x1

x31

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks-Register file
• The register file is the component that contains all the general purpose registers

of the microprocessor
• A register file should provide data given the register numbers
• A register file should be able to change the stored value

44

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

• How do we change values of a specific reg.?

Reg.

... ...

Reg.

Reg.
sel[4:0]

0

1

Output.
.
.

31

clk

• Recall that clk is
used to control the
change of the state

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

Useful building blocks-Register file
• The register file is the component that contains all the general purpose registers

of the microprocessor
• A register file should provide data given the register numbers
• A register file should be able to change the stored value

45

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

• How do we change values of a specific reg.?

Reg.

... ...

Reg.

Reg.
sel[4:0]

0

1

Output.
.
.

31

clk

... ...

Extra
control
signal
with

one-hot
code

Number of
register

Some
function
block

(Address) decoder
or

demultiplexer

• Reg. file design completed

Input

Duplicate to
access two regs.
simultaneously

We have covered PC register previously

46

• Synchronous digital circuit can have feedback, e.g., iterative accumulator
– e.g. PC = PC + 4 without considering branch or jump

+
A

B

4
32

32

• Timing diagram

clk

reset

+
A

B
Reg.

4
32

reset

PC
PC’

PC’

PC 0 4

4 8

8

c

c

0x10

0x10

0x14

Digital system D lip-flop & registers Synchronous circuits, FSM Timing constraints

Useful building blocks-Memory
• Memory similar to register file except that the basic cell design is different
• Requires refresh for DRAM

47

Useful building blocks-ALU Useful building blocks-Reg. Useful building blocks-Mem. Datapath

memory

Bitline
Wordline

Bitline Bitline Bitline

Wordline

DRAM memory symbol

addr. data

