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Administratives

Lab 5 available, please prepare in advance, to check this week!
Lab 6 released!

HW 3 available, ddl April 1st, start early!
Proj 1.1 ddl TODAY, Mar. 27th!

Proj 1.2 will be released.

Discussion this week on digital circuits.



Mid-term |

Midterm |
— April 10th 8:00 am - 10:00 am
 We start sharp at 8:00 am!
* Arrive 7:45 am to check-in (Venue: TBD on your egate
system; Seat: TBD on-site)
* Arrive later then 8:30 am will get 0 mark.
Contents:
— Everything till April 8th lecture

Switch cell phones off!!! (not silent mode)
— Put them in your bags.

Bags in the front. On the table: nothing but pen, exam paper,
1 drink, 1 snack, your student ID card and your cheat sheet!




Mid-term | requirements

You can bring a cheatsheet (handwritten only). 1-page A4,
double-sided (2-page for the mid-term Il and 3-page for the
final). Put it on your desk at exam. Cheatsheet that does not
apply to the rules would be taken away.

Greencard shown on the course website is provided with the
exam papetr.

No other electronic devices are allowed!
— No ear plugs, music, smartwatch, calculator, computer...
Anybody touching any electronic device will FAIL the course!

Anybody found cheating (copy your neighbors answers,
additional material, ...) will FAIL the course!



https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2024/lecture_notes/riscvcard.pdf
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Cheat Sheet

1 A4 Cheat Sheet allowed (double sided)
— Midterm |l: 2 pages
— Final: 3 pages

* Rules:
— Hand-written — not printed/photocopied!

— Your name in pinyin on the top!

— Cheat Sheets not complying to this rule will be
confiscated!
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( SIFT REFERENCE GUIDE (V.1.1) — CREATING TIMELINES WITH THE SIFT WORKSTATION j l.". GOMPUTER

anal INCIDENT EESFRHEE

E FURPMOSE OF THIS REFERENCE

[Lmhup:ﬂm-ﬁramhnmm.wﬂwﬂﬁmmj — [ 2.B00TSIFTVM | »

_p |4 CONNECT IMAGE TO J '—1 S

- [Z - § sudo su |4 SIFT IDE IS TO WALK THROUGH THE
= — = pad: SIFT Workstation VM Apgpliance 1 1 . 2 | 3 ESS OF BOOTING THE SIFT
1 | - : A * IF..ugm: sansforensics L ‘ Plug hard drive to physical 5 I ORESTATION, CREATING .l'I!'IMEIJHE
. ? w | assword: forensics 3. ELEVATE PRIVS host and attach to SIFT WM 1 SUPER” OR "MICRO™) AND <%
e Workstation Installation () ) i ) . ( -J L ) REVIEWING IT. 4
" log2timeline Pm“g:ﬁﬂ;“ E 5. HARD DRIVE MOUNTING (if you ore using log2timeline-sift and Single DD you con skip to 7-A) j - " HOW TO CALCULATE THE DFFSET
| apache_error - Apache FOR MOUNTING
| file
I "1. ' —
Chiraen file | N -
: mme i fup SINGLE OR SPUT IMAGE (2 options): | T # mount -t ntfs -0 ro,loop,show_sys_files, streams_interface=wing : i 1. Run mmis to query partition layout
| exported fram enr:as.e | | y — | [ offset=#iti# /mnt/ewt/<image> /mnt/windows_mount/ | | # mmis image.E0L
| evt- Windows 2k/XP/2k3 Event Log | — | = ot ewf.py image.E0L fmnt/ewf | w ! | 2. Identify partition and byte offset
| evix - Windows Event Log File [EVTH) Foa T-A -— 3. [Partition byte offset) x (bytes per
| el - Metadata information fram files | : age.E0L fmnt/ewf/ — I' MOUNT TO MOUNT POINT ] seitur} u uﬁm tu-,ui!!! =
| using ExifTool | _ " . | | Example: 63 X 512 = 32756
| H_hahnu'he—f::ﬂm baakrmark file | — | I -
| firefoxt - Firefox 2 browser history SINGLE IV |
| firefox3 - Firefox 3 history file
| hk_dirlisting - C5V file that i | - Z = z z 3 | MNate: If needed, repeat for each
| exported from EH'M‘?E‘&L{ | | k# mount -t ntfs w_sys_files,streams_interfaceswindows, offset=R##4 image.dd [ ) | oxrtitian: Mike feww ronk pamt:
| start with MM DD Hf:emmss ? - S iE,P-L_lT{MﬁGE Zsteppro. 32 Sy e e 4 + # mkdir /mnt/windows_mount2/
| iehistory - index.dat file containg IE ; T
| ESEEE W3C log file (# affuse image.001 fmnt/aff b use ':"EﬂluEmf[] hnk'l?:tlgt all WM ogRe.
| isatut - ISA text export log file . h# mount =t ntfs-3g —o loop,ro,sho ennt/aff<image> /mnt/windows I E -z list
| jp_ntfs_chamge - C3V output file from | - e (P
'JPTNT“CPIME;I'F b ' T 7-A & 7-B
| mactine - Body file in the mactime : - -
format ; ( 7-A: AUTOMATED SUPER TIMELINE CREATION [ 4 NUAL “MICRO" TIMELINE CREATION ) ¢4 — ~
| meafee - Log file ~ s
| maft - NTFS MFT file i logZtimeline-sift -0 =z [TIMEZOME] -p [PARTITION #] -l [IMAGE FILE] OMS] [-f FORMAT] [-z TIMEZOMNE] [-0 OUTPUT MODULE] [-w HELP? OPTIONS? USAGE? )
| o P | 2 . " FILE/LOG_DIR [—] [FORMAT FILE OPTIONS] log2timeline -help
| : DISK IMAGE {prompt for partition, mount, and run}: ;
Frusimibdo ;ﬁﬁ?ﬁﬂ | (e iprompt 2 J METADATA {using log2timeline or fis) g f:ﬁi&*:::*“’
| awml - OpenXML d (i imali 1i k| _, oo A
| m b ke LT A | Xp -h# log2timeline-sift -z ESTSEDT -iimage -} ; dtem data wilog2timeline from mounted file system: " OTHER log2timeline &"‘\
i pdf - n.mlan!-e PDF dacurnent |. WINT :If# Iug!timetlne—sﬂ’t -win? ™ ESTSE{:IE j imagE # Iu N mift -o m;mme =r -z ESTSEDT -wr mu{:]rm‘r ;n;mm’s
przletth - Brefetch directory b e e Nate: Default Output
| "_.,:I!r g FOR Imﬂ" | i licabl ¥, o i i -BeaDaes - Mac 06 X visualizatlon tool
' re 09 - Rﬁl.nrm dn:Hd.l et | I:_ P i ad son d’ n o Extraf:t . P AL SO -CEF - Common Event Forrmat - ArcSight
[ i k) | - e — e # fls -m "* -0 of1s pdd > fis.body CFTL - XML file- CyberFerensics TimeLab
| L} & g 5 5
| sam - SAM regisw XP | # log2timeline-sift ~z ESTSEDT -p 0 -i partig | Convert body file for Lormat wy mactime: wizualizaniodn bood
| security - SECURITY registry file | — ; # mactime ~b fls body 8 SV - comng Separi vk e
I setupap - Setupd Pl log Tile in - eon : b o # -Mactime - Both older and newer version of
\Winsdeas XP | WINT | # log2timeline-sift -win? -z ESTSEDT - _ - = the farmat supported for use by TSK's
| - ARTIFACTS [run 12| on mounted file i plugins recursively rractime
| mﬂ sl - Skvpe Sabace i | i - . SIMILE - 3L file - SIMILE timeline
| & - SOFTWARE registry file  DTHER USAGE EXAMPLES: 4 : . ~ ; .
| sol - sl (LSO or a Flash cockie file % E . (Extract artifacts w/ log2timefine and ru gd file system: mﬁmﬂl “ig?mse
i Hﬁt&*ﬁﬂmﬁ I { Disploy st of avaiiable phy i # log2timeline -f firefox3,chrome -0 macti LEDT TLM - Tab Dedirmited File
| syslog - Linux Sysiog log file I # log2timeline f list web.body /mnt/volume/ Dy
| system - SYSTEM regictry file Run logZtimeline usg Fuse only specific plugins: Convert body file format to C5V format w/ mactime rTUl:Ii-FEmat used by sorme of H Carvey
' mﬂﬁy rﬁﬂm ﬂ;gﬁ; | : |‘|?Ei['-ﬁmﬂ|i”“-" if preftch —z ESTSEDT -1 image.dd . # mactime —b log2timeline.body ~d > log2timeline.csv 10 | tools, expressed as a XML document )
. 4 OGO 000000 0 - o uge e e TS SR
| B ok dheteun file for | ¥ log2timelj J 3- B { 9. FILTER TIMELINE }
. | & link file) ) s Y 2
| WIERPROW - AT O I . S TEr ; "
| xpfirewall - XP Firewall log W (/cases/timeline-output-folder) j * Filter timeline with date range ta include only: 0. CONNECT TO SIFT :}
L o e B s g ) 12t_process -b timeline.csv MM-DD-YYYY.MM-DD-YYYY > filtered.csv
.H.EEFUE: hngmml-;; it l;“:i;;g;ﬁ;fﬂi:grﬁfﬁgmﬁ Filter timeline with keyword list [one term per line in keywords td): i SEJTINGE:‘E"" ?‘I’_IENS -':]Eh-ared
i "AND . BLALD | i z hal, " e 2 i H Wl = il
L PLLIGING 1! A > the timezone thal was wed to call the tool with. 12t_process -b timeline.csv -k keywords.txt > filbered.csv 2 ot

FMACE meaning of the fields, comp w/ mactime format What sources are in your timeline? /2. SIFT Desktop > VNware-Shared-Drive

BY DAVID NIDES r‘wlsf_gg_]ij ‘3_::;, te: Saurce short namsa |I.e regi:.lr",' Enlfies are REG:' awk=F fh '{pri“t 55:}" timeline _{!'ull grep=v sm[ml:ﬂl sart I U“h:l

< Ou : Dese of the source {“Internet Explorer” instead of WEBHIST) ! . i : ;
Kgﬂfﬂiﬁgsm s i ﬂpmmp tybe (L& “Latt Accesied”. 'Pusul'.'ri:un"] Find all LMK files that !'eher_ence E Drive J ﬁ;ﬁsafézgé_gq'lmﬂfmme
EMAIL: ONIDES@KPMG. CC ? -user: Lsernarme associated with the entry, if one is availabde. grep”Shortout LNK” timeline.csv| grep"E:” ®
IS TO: ED GOINGS, ROB "'_sh“:_;_"'rw‘m_""e‘“m LR WALTL EILE CIRMY, TN o Bt FiindMountPoints2 entries that reference E Drive * i1
CREDI s _ : Containg less text than the full description field. ,, : 1 L
KRISTINN GUIVONSSON, KPMG & -desc: where majority info is stored, the actual parsed desc of the entry. grep“MountPoints2 key” timeline.csv} | grep”E drive”
QUESTIONS/FEEDBACK-CONTACT US) -wersion: Version number of the timestamp object, greplISB timeline.csv| grep”SetupAPILog”
pe " _iﬂmn‘fem;géenant;ﬁ;r::e{[rllbiqnh that {.rsﬂained the entry T [ 11. REVIEW TIMELINE ]
[ KEY | node: inode num & file being parsed. — .
| Red teut - image/source -notes: Some inpul madules insert additisnal information in the farm of a rﬂ?::iﬁm : e :E - EE: 3 A | Review timelines using:
Blue text — mount point note, which comes here. Or it can be used during the review. / L L2 G N/, - Open, Soft, Filter with Excel
Purple text — autput file Aformat: Input module name wed to parse the file. FAT Written Accessed  NfA . Created - ':--g - Impaort into SPLUMNE
Green e — log2timeline pligins -extra: Aoditional inforrmation parsed is joined together and pit here. MNTF5 File Modified #Acpessed  MFT Modified Created SIMILE
{ Brown text - TimeZone - L UF5 Modified Accessed  Changed N/A B, Fepestry



Outline

» Useful building blocks
* ALU design
* Regqister file
 Memory considerations

« Datapath

* Design of the controller
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Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

10101180

10010000

« Step 1: Draw finite state machine of the desired function (we ignore
the initialization)

« Step 2: Define/assign binary numbers to represent the states, the
Inputs and the outputs

« Step 3: Write down the truth table (enumerate input/previous state
(and current state) and their corresponding current state (and output))

« Step 4: Use template and decide the combinational block for state
transition and output logic

15



Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

21010110
10010000

« Step 1: Draw finite state machine of the desired function

[ Detected ] [ Undetected ]
A
e ~
The next\r Y ( Y ( ~
bit is O L detect 01 Il detect 10 I detect O J

detect 101/ | detect1 || ...

16



Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

21010110
10010000

« Step 1: Draw finite state machine of the desired function

[ Detected ] [ Undetected ] [No 0 detected]
The next TQ; ir;e(;(t
bitis O detect 01 Nd/emt 0 ]
The next

bit is 1

17



Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

21010110
10010000

« Step 1: Draw finite state machine of the desired function

[ Detected ] [ No O detected ]
The next TQ.? .ne(>)<t
bitis O detect 01 tho ] 1S
The next

bit is 1

18



Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 021001010110
OQutput: 0 0 061 0 0 1 0 0 0 @
Th t
« Step 1: Draw finite state machine of the desired function bi? ir;e1x
[ Detected ] [NoOd@
he next
Thle nex bit is O
bit I 0\( detect 0 Nd/etectO ]
The next

bit is 1

19



Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 01 0010101120
OQutput: 0 0 061 0 0 1 0 0 0 @
« Step 1: Draw finite state machine of the desired function Tgﬁ ir;e;( t

The next

[ Detected ] bit is *[ No O detected

he next

The nex /r/bit is 0
The next

e The next
bit is 1 bit is O

20



Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 010201010110
Qutput: 0 0 061 0 01 0 0 0 0
The next
. . Dit is 1 The next
« Step 1: Draw finite state?ehme desired functio bit is 1
The next
o The next
[ Detected bit is O bit is 1 %[NoOdetected

he next
bit is O
The next

e The next
bit is 1 bit is O

The nex
it is O detect 01

21




Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

« Step 1: Draw finite state machine of the desired function

1
/ No O
Detected/1 *[ detected/0
0 ’//6
detect 01/0 detect 0/0
0




Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 01001010110
Output: 0 0 0 100 100 0 0

« Step 2: Define/assign binary numbers to represent the states, the
Inputs and the outputs

/ No 0
[ Detected/1 detected/O
y

(11)
0

\_

p/_/

detect 0/0
(01)

detect 01/0
(10)




Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 1001010110
Output: 2 0 0 100100 0 0

« Step 3: Write down the truth table (enumerate input/previous state
(and current state) and their corresponding current state (and output))

4 Previous state Current state
1 \
1 — —_

k k
Detected/1 | O detected/0 0 o o o 1 0
[ (11) 09 © o 1 o 1 0
1 0 0 1 0 1 1 1
’ detect 0/0 0 ' - 0 - 0
\[ detect 01/0 (01) 1 0 0 0 0 0
(10) 1 ) 1 1 0 0
1 1 0 0 0 0
o4 1 1 1 0 0 0



functional block
for state transition

Combinational
functional block
for output, g (B)

A=f (B, input)

output=g(B)

output=S[1],S[0],

output

« Step 4: Use template and decide the combinational block for state
transition and output logic

o

|

Detected/1 0
(11)

0

?

\[ detect 01/0
(10)

\_

detected/0

J

(00)
\0

detect 0/0

(01)

25

Previous state Current state
S[1] SI[0]

input S[11 S0

0

B R R RO

k-1

0

P S S T~ R S S

k-1

0

R O R O R O B

S O r ©O &0 r &© ©

S ©O ©O O Fr P P rx

output

O ©O © ©O & r & O




S[1],=S[1],,SI[0],_ ;input+

OfelpleolNEUONEIN output S[1],.,S[0], input
functional block
for output, g(B)

functional block
for state transition

— output=g(B)
A=f (B, 1nput)

« Step 4: Use template and decide the combinational block for state
transition and output logic

4 Previous state Current state
/ (\Ngﬁ input S[11 S[01 S[11 ST01 | outpyt
] _ _

Detected/1 | O detected/0 0 o ©o o 1 0
(11) . (00) 0 0 1 0 1 0
1 \0 0 1 o 1 1 1
0 T 0 1 1 o 1 0

etec
detect 01/0 (01) 1 0 0 0 0 0
(10) 1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0




Warm'up output=S[1],SI[O],

S[1].=SI[1],.,S[0], ;input+

STelnlelREUONEIN oyutput S[1],.,S[0], input
functional block
for output, g (B)

functional block
for state transition

S[o] —=1nput

— output=g(B)
A=f (B, 1nput)

« Step 4: Use template and decide the combinational block for state
transition and output logic

1 Previous state Current state
/ 1 rm input Sk[i] sk[_?] 5[k1] S[kG] output
Detected/1 | O detected/0 0 o o | o | 1 0
[ (11) 09 o o 1| 0| 1 0
1 0 0 1 0 1 1 1
’ detect 0/0 ? - " 0 - 0
\[ detect 01/0 (01) 1 b 0 0 0 0
(10) 1 ) 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0




Warm-up

lSnFGU]t—_;.— output=S[1],S[0],
S [1]

S [1] k=S [1] k—1S [0] k_1inpUt+

S

iwtj._m output

g%?} —P W’r S[1]k_1S[0]k_1input
S[o]

input

S[0],=input

« Step 4: Use template and decide the combinational block for state

transition and output logic
Previous state Current state

Kk k
Detected/1 | O detected/0 0 o o o 1 0
[ (11) 09 © o 1 o 1 0
1 0 0 1 0 1 1 1
’ detect 0/0 0 ' - 0 - 0
\[ detect 01/0 (01) 1 0 0 0 0 0
(10) 1 ) 1 1 0 0
1 1 0 0 0 0
28 1 1 1 0 0 0



Useful building blocks-ALU

Controller & Datapath

« A CPU that support RV32| can have so many states

« Consider the 32 registers alone
« X0 always 0
« Each bit in the other registers can be 0 or 1
Control * Not practical to enumerate all the state transitions
* Top-down design: build small modules and then
connect them as needed

Processor

Datapath * Most digital systems can be divided into datapth and
controller
PC « Datapath contains data processing and storage
« Controller controls data access (still can be
—Registers—— modeled as FSM)
* Recall the execution of an instruction

* Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).

« Each RV32| instruction can be done
within 1 clock cycle (single-cycle CPU).




Useful building blocks-ALU

Controller & Datapath

« A CPU that support RV32| can have so many states

« Datapath
Processor P
« Start with basic building blocks
Control
* Add building blocks to the digital system with
! added supported instructions
Datapath
« Controller
PC
« Can be considered as an FSM
—Reqgisters——
* Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).
 Each RV32l instruction can be done

within 1 clock cycle (single-cycle CPU).
30



Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

Processor ADD ADDI  AND as an example
SUB SLTI o 2 32-bit inputs A and B
Control s L  SLTIU « 1 32-bit output C
stT  |[XORLl  A[311BI31] Al30] BI30] Alo] Blo]
g ORI
Datapath SLTU | | | | | |
YOR ANDI
P || B/ 1 | ] ...
SRL
—Registers— S CI31] C[30] clol
OR
AND * Our Goal: Implement a RISC-V processor
as a synchronous digital system.
 Each RV32l instruction can be done
within 1 clock cycle.
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Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

Processor ADD ADDI  AND as an example
SUB SLTI o 2 32-bit inputs A and B
Control s L  SLTIU « 1 32-bit output C
SLT  |XORI A B A B A B
. ORI 32 32 32 32 32 3
Datapath SLTU X 1 S
YOR AND I
PC
SRL \:[% 25 3
— Registers—— SRA C C C
A simplified AND
OR gate array symbol OR XOR
AND
- e QOur Goal: Implement a RISC-V processor
as a synchronous digital system.
 Each RV32l instruction can be done

within 1 clock cycle.
32



Useful building blocks-ALU

Useful Combinational Circuits

» Multiplexer (2-to-1)

T~
0
T

Sel

* Multiplexer (2"-to-1)

\
0

T

A—10 "
B—1
T
Sel0
c—0 "
D— l B
Sel0

Seld

Tree structure



Useful building blocks-ALU

Control through selection

« 32-bit Multiplexer and logic gates to support some logic instructions

Regard (Sel1Sel0), as an

n o N
\n:)/ =4 0\
32
< —4 / e
3 1 —
o o 32
m % /r N O
74 Se|0 -1
A N T~ /r
> 0 32
~ N Sel
o ™ ~ 05
) < — 1
il

1

Sel0

unsigned number

* More layers of multiplexer to select from more inputs



Useful building blocks-ALU

Multiplexer

* N-to-1 multiplexer symbol

Sel



Useful building blocks-ALU

Multiplexers used for shifter

« Left shift a single bit -> left shift multiple single bits
« Other shifter designs such as barrel shifter

I[31] \B\\\ I[30] \B\\\ I130] \B\\\

I[30] 1 [29] 1 [29] 1
Oo[B1] - 0[30] | O[29)]
0] 29
0] 30 0 30

1[O] 31 "0’ 31 "0’ 31

Sel Sel Sel



Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

ADDI
SLTI
SLTIU

XORI
ORI
ANDI

Processor ADD
SUB

Control SLL
SLT
Datapath SLTU
BC XOR

SRL

— Registers—— SRA

OR

XOR gates
LT~ AND gates
Operand 1 T
l OR gates
T _|Left shifter|
Operand 2 —I
¢+—Rightshifter
¢ (logic)
Rightshifter
Part of (arithmetic)
an ALU

sel

Note that all the signals expect the

selection signals are 32-bit.

e QOur Goal: Implement a RISC-V processor
as a synchronous digital system.

 Each RV32l instruction can be done
within 1 clock cycle.



Useful building blocks-ALU

Adder & subtractor

 An adder design

A[BBl[]31: A[3|3®[]30] A[1B]:1] A[@B][Q]‘Q’
L] L | || ]
-A -A -A -A

‘ |ﬂ } clO] |
S[31] S[30] S[1] S[0]

A 32-bit adder

* A smart subtractor design
— Recall that subtracting a number is equivalent to adding its negative version



Useful building blocks-ALU

A smart subtractor design
A-B=A+(-B)=A + B +1 (mod 2N-1)

B[31] B[30] B[1] B[O]
A[31] A[30] Al1l] AlO]
- l1’
|
FA FA | .. .. FA FA
c[31]s[31] c[30]s[30] cl1l] s[1] «cl[@] sl@l
A 32-bit subtractor
B[31] B[30] B[1] Blo] « Recall XOR gate
A[31] A[30] Al1] Ale]l ‘o’

L L] LT L 5y

1
- A =\ = A A
|ﬂ clo] l 2@7'6‘

S[31] S[30] S[1] S[0]
A 32-bit adder




Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

Processor

Control

Datapath
PC

— Recdisters—

~J

ADD
SUB
SLL
| SLT|
SLTU
| XOR|
SRL
SRA
OR

AND

ADDI

SLTI
SLTIU

XORI
ORI
ANDI

XOR gates b\
LT~ AND gates 1
Operand 1 1
1 Z . O
| -
Operand 2 —I
¢+— Rightshifter 5
¢ (arithmetic)
Part Of SUb/adder %
an ALU I
add/sub sel

Note that all the signals expect the
selection signals are 32-bit.

 ALU design that supports R-/I-arithmetic
and logic operations completed
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Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers
of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor * Recall we have registers that store values

Control

Input An n-bit

Datapath
PC

— Registers— Output

~J

41




Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers

of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor

Control

Datapath
PC

—Recdisters—

~J

Recall we have registers that store values

Input Input Input
32 32

Output Output Output

- J
Y

32 32-bit reqgisters

How to select one to output? Multiplexer

42



Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers

of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor

Control

Datapath
PC

—Recdisters—

~J

Recall we have registers that store values

x31

LN

1

Output

Multiplexer 43



Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers
of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor « How do we change values of a specific reg.?

 Recall that clk is
Control used to control the _m b\
change of the state m 1
Output

PC -

Datapath

—Recdisters—

~J

AT

44




Useful building blocks-Reg.

Useful building blocks-Register file

* The register file is the component that contains all the general purpose registers
of the microprocessor

* Aregqister file should provide data given the register numbers
* Aregqister file should be able to change the stored value

« How do we change values of a specific reg.?

Input
Extra
Some control }%\\
Number of . signal
register — fubnlcotclkon with .
one-hot ®
code

Output

1 -

Duplicate to

(Address) decoder access two regs.
simultaneously

or
demultiplexer m %
o—

clk — sel[4:0]

* Reg. file design completed N



D lip-flop & registers

We have covered PC register previously

« Synchronous digital circuit can have feedback, e.g., iterative accumulator

— e.g. PC = PC + 4 without considering branch or jump
reset

PC’
v ﬂr «

N =
32

32
4 —~—>

[

* Timing diagram

reset \

PCc X o X 4 X 8 X _c  XOx10

PC’” X 4 X 8 X c X oxto )Y ox14

46



Useful building blocks-Mem.

Useful building blocks-Memory

 Memory similar to register file except that the basic cell design is different
* Requires refresh for DRAM

itli itli itli Bitline
DRAM memory symbol | Bitline Bitline Bitline
Wordline
addr. — —— data — — 1 i
memory I I I I
Wordline

|
|
|
|




