T AR SRR

";,.:-u & School of Information Science and Technology

CS 110
Computer Architecture
Datapath

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2024/3/25

Administratives

Lab 5 available, please prepare in advance, to check this week!
Lab 6 released!

HW 3 available, ddl April 1st, start early!
Proj 1.1 ddl TODAY, Mar. 27th!

Proj 1.2 will be released.

Discussion this week on digital circuits.

Mid-term |

Midterm |
— April 10th 8:00 am - 10:00 am
 We start sharp at 8:00 am!
* Arrive 7:45 am to check-in (Venue: TBD on your egate
system; Seat: TBD on-site)
* Arrive later then 8:30 am will get 0 mark.
Contents:
— Everything till April 8th lecture

Switch cell phones off!!! (not silent mode)
— Put them in your bags.

Bags in the front. On the table: nothing but pen, exam paper,
1 drink, 1 snack, your student ID card and your cheat sheet!

Mid-term | requirements

You can bring a cheatsheet (handwritten only). 1-page A4,
double-sided (2-page for the mid-term Il and 3-page for the
final). Put it on your desk at exam. Cheatsheet that does not
apply to the rules would be taken away.

Greencard shown on the course website is provided with the
exam papetr.

No other electronic devices are allowed!
— No ear plugs, music, smartwatch, calculator, computer...
Anybody touching any electronic device will FAIL the course!

Anybody found cheating (copy your neighbors answers,
additional material, ...) will FAIL the course!

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2024/lecture_notes/riscvcard.pdf

DAVID A. PATTERSON
JOHN L HENNESSY

Cheat Sheet

1 A4 Cheat Sheet allowed (double sided)
— Midterm |l: 2 pages
— Final: 3 pages

* Rules:
— Hand-written — not printed/photocopied!

— Your name in pinyin on the top!

— Cheat Sheets not complying to this rule will be
confiscated!

FUNLTIONS OF SEVBRAL VARABLES | 2= 0w) o= £0ru, 3 1] Pommne: alioned (i) | (n0g,2) RMIGES: Z500%

| LEVE L CURVES dr* [| FUNCTION OF N vARIABLES £-4 DEFiRITow WMM1W
—E._H._,i_k_...= '# o 5
o ROMET. | 2o flenkan- - e PFEN=C-FH SN DK o COMTBR rq.n EvLEpT POLSIBY
COMTOME MAPS (2= mﬂ — R, SWAY Toieac F= On- "ol B e, W, THEN (i Wi
D= £ 204 B2 ke = COMNST] 1, by Futnckion ‘“““""_':‘*ﬁm'i‘:vl:_f;‘ :-.,,1-,..1.1. L
BUEFACE LAERS (3-p) |3 ' o Fumcties F asingly plovmtas (o0, o) 1T E9R BEVERY WE 70 , THEZES & mmuﬁ-
3. ke @ buushinn of 4 Siagls mdes viv, Focm ol # 70 BF. H(mul-L|CF

IF Trsl usdiT bS A FRiTlon kPP B Pen T
fay et hlOME Twe MFFERBWT PATHs 15 waT

F.‘fr.-p i g hg:.,,‘o- Holes FOR FBNCIOK | THE SAME] THE LMIT B HOT Bas T ©
by O TR e h—*’ _|-- VAR el 18 coMTHABUS AT (a8) & Te LT
%“ MELES F [eil) hg cp.,lih—hrl..k\ ExgTs.

MPOETE FuMETions oF CouTibmous Fudimag

SEConB vmmr.. =) VATIVES |CLARAUTS
; TrEoreM] LTS
o f‘,‘[g\}=§ﬁ= S (I Sy Mm F MUE CoraTipndd s | bg MM»I:‘:‘H-M

8o
A E BOT TS o ftmg) (3 (e, oy B) BVNERTED ATA POINT

Frg=
; 4 b-: (ﬁ}' aaax q.;m g},fﬁ'} Frg (0012 Fyselai®) | 33,2 £, (%00 (et 1 i, e) (94=a)
Y= = = l:’ j PARTIAL BIFPTF. EGL | ToraL SirEeRENTIAL | (dy= Fuadx SRHE D
ahqa-.! A PLRCE 5 E QT
a"(g{;} 'a"'a':! o § " Tdas Frlxog)dn *“:sf“ﬂ:ﬂd'j z g_ﬂ‘-l’ 4 é i‘j

fuue B (aE. 22 o022 . D ooy Bt Bzo st
1= 5485) 2™ 3 %‘:%)Embmmwgﬂ gmhldﬁ-d‘

THE CHAIN RULE [Ssots iBMILE 4=F), =gl Ie y= Ha) 'EIF £,n, ARE coumibaous bp Eda
1!#]-*@*!']-3’(*‘] - L™ i b v o (A2 " m clusag T bk
wu- fazy

CABEL | 2=Flriy) « ¥2400, y=wie) te F=Fiain), mia)) m = Flasbobeby) - £iam) "

| Twropem |
'iria'i ga or wige§ "aj g:f %ﬂlm A% 5 b (ab)bn by (a,b) By + BB 4 B2 AY Ll

c.m 9.| 2= 4w}, W= gla), Us s, b le a--\‘{f;.n WiggY) :;ml-m-h 0' "::f“"'h"‘a';ﬁ:{f ‘“bns oy =1
1 t&
|.‘1"|

g Eg ﬁ% [ﬁ %235 E:ﬁ] _,,“.,;;E,l."“ => £ I8 DIFFERENTINRLE (= (a.8) Jor &= Fix
" : : . -

: -E-r-uh.,n. - e T,
Tou cmn Soive for Worp B MM“‘“ P e e L
E.'E,‘I‘: B2, -5y -Fa| THE GRADENT VECTOR | 2=£my) Wb
: F ﬁ T 5‘1 E '_ﬁvﬂi'qi g’mﬂ."p'&"-ﬂ\ (‘h |“"1“!| (ﬁ ﬁﬁj
Fhaylea yske Fle Flegae0 _'_EJ-H e 1EECTIoNK] DERIVATINES | DIF W=raw)

Mw._w*?n. T Ton. Vasleel B £ lmrq= £ 0, : EAME For
Fgf:—ki"l-l-F.jl!'ﬁ Yala ¥y (B3-Z270 nl“-ﬂ.‘m‘?‘ =0 i ‘hﬂ “*;‘l("' T’bg Vﬁ-:lk‘lLES

D7 Flxy) = WFmaw) o 0

‘NORsAL-LINE To A LEVEL SUREE iy
I > SRk O end DEE maow OCouvS wbism 76 ts b dad 5 dea Dir, a5 0
"E!"’;“!l%.g‘.— Ffﬂ-l!..ﬂifﬁnai 220 msmm;n-u BEE =067 = (el Tl cacs = lwp| EN=1=ms0)
PLIE
TN Fae =1 V= (o dy 1) add SHCERS #-30 sty (4= |G THE GEADIENT YECToR POINTS 1o THE ©|RECTION

of STEEPEST ASLENT OR DESCENT (an
ToR 15 O THBpo WAL
LEVEL CugvEs OF A SulFhoe

T HNS AT CapaParEdTs ps H.t‘E .
INDEFERPEMT VARAWBLES, 1" [o~)i
OFINE TAE Wolaf [A LTE o TALGENT

To A euFACE, LET THAT CuRFAE BE “THE
LEVEL SET F SomB HipWweER DiMESIGNA
Furs CTlowy . THEN THE SEADIENT OF THE
HigBe = FupcTias 15 L T foun L E

MATMUM AN MM UM VALUES 2=£0=y)
£xlami=o #,:-.ﬂm V() (o, 0)
HeT BUF FLEBENT 10 SusRamiTEE A Max. 0% M.
(BB Tu sl oo Sawd For Cvilica) Phe, My deds [5,57708
THEM KPPLY THE D DERIVATIVE TEST Rl e by,

Fun oy 2eb70 , ben 70 LOChL BN,
b= { ”h = Frackyy - fhy) abPo , Fenco Losal pbae
+BC0 SADOLEPT. Do e
§
1. Mmts-ﬁ#ummmlpl-u ok § inD

1. Flnd Has Scbyopas volugs of [o e Boudang oF B

3. Tha lamest vaiun fimu 4,3, 15 fu ABS. AW, ea Seantisd TH 4o wo ezl LebWannfiet-L

wiamipgte d I THE LEvEL 3FT WSO

B VR = (7w By 1237 15 A MO VESTOR TOTHE
F=p STHERE w2yl 493=1

AN IMTG AND MINIMI ZING " Sctog 6 Foncren of Fwo
Varlabliy of s Sorin B2 Fracu) ead #eih Dot Usual Bedlng

"fq_'\--u;‘,

a‘-".ﬂuﬂ Wit p

ﬁ:a 'ﬂg' e}
7. A ooy ot
S

£

N _@'_M
A:rmmmrr u’
r Ay and

B ey) ”""""’

fi* 53y

LET T

ontant if e et
T mer o (bekarced).

yﬂwwmtb
gy DTP NI AN s pofh 1R

M/rmmmﬂ' AL

nembér rmf .H‘M?

,‘}'ﬁ ﬁ dnmd ara
X3.6
—
-+ 3.6

m/S

zrce;r i
/h

< T S

v-j.n -

iy g Ty pE
Jr-‘ra-l"un-

ow A "

Al &

BIWRSG N

+ Fihy
I'UJ'F J' i .' "f”"r.l..,...

Y puu!ruﬂul el TR
- (11

__{_"3__ AEAEA

-'7-(TrLie ey :l{

A L et W

'r
FLTE urf'u'. Irrgrdey ini

U 08 P
fwrAi 2 el |

-
freme R T

ey e W
oy Fieknr
rr-wpar SR TR TR
:E-J.Hm
N s

© Wraerf ICoron JUFRETe
FFIERAE LN LA
Farh W ey

hatrd s Mhgds COFroLE-S e
i

5 —- . differcreg of 1 magnitudd = 25ids

"-‘FWﬂ’h.w " THEE E'N!;!H'l-ﬁ OF L BT
ARG UPD HUTACLES ANP THROUOH
AFERTURES

‘;P;‘LS.IUE doern 't alitw | :c}'r" o
- ajiow Mt hght 1o pats
< TRANSPAREN ”m‘r L GHGPM

TEANTLUCENT : JNowd

Ag naferial can all

gt To palts THTde

Q; ﬂ‘:r le-

Lidrririd II'.!;#IE total af-
Lore
mmpqu a iy Jdecand.
e hotler the Jfor The grearer B

LN T

b the dtar (curface, ro
,ﬁ%ﬂe fumineud

Gﬂ'h iy ard Jtam that ve

brigninedl aver WMJU[
.F.I"ﬁpl-'fud'& range: G

old Ffid &
paLT i

blr the image .
s 100 of Intidem
1.

7. m 4
s

jwe povas The Pndagriiuc

THEtI'HN AN Y &2 4STAR
FLIHON
4H — 1e% + 2V +ana
Energy i when Two u,ﬂm
aong Tide TofoMing rieavh
F. F"Htﬂ” ener gg’ When
Qg nuiclédr forg

undql‘rm(’ fain reguent ke
e ks ihen xpe

L___,__

Uy TR R
LA ST e §

- |
—
—

1 3

II' 2 | U ol
]
*En.
. iy

-

il
i:,nn:ﬁ as el

& oy Hi":)‘ l.

aurs 1t
s

iy

paip

ol b
L r-drn..

T

A
hﬁkntmmnrmm i""“
“‘{"' ﬂm*shwiﬁ,rw:.m
Locality: fasr-mrmmne o0 fuct
kvﬁﬁﬂ;&wmarmﬂhr

........ : Fm
fﬂ!fw?u-'hmrmfm.ﬁ.c -...e.,.;
W_ ey via oy -
T e ke
'?.L?-r,"f..ll-:
iy

~ it oy ;6_,,,
it dwamn Al

il e A7
mairo (hng) B2
perkintance of i AZLS L bl , | : e
epeert denots B35 | ey AR A T Tl 1

iefreseat Hont [EEEXY B2 .
epeent Hoaling pint=FP 22118
oAt Hacten S5 |
B mmmw
SLEHL ng
foh pLERIENE CHintn

i

w

ARG

i

12

(SIFT REFERENCE GUIDE (V.1.1) — CREATING TIMELINES WITH THE SIFT WORKSTATION j l.". GOMPUTER

anal INCIDENT EESFRHEE

E FURPMOSE OF THIS REFERENCE

[Lmhup:ﬂm-ﬁramhnmm.wﬂwﬂﬁmmj — [2.B00TSIFTVM | »

_p |4 CONNECT IMAGE TO J '—1 S

- [Z - § sudo su |4 SIFT IDE IS TO WALK THROUGH THE
= — = pad: SIFT Workstation VM Apgpliance 1 1 . 2 | 3 ESS OF BOOTING THE SIFT
1 | - : A * IF..ugm: sansforensics L ‘ Plug hard drive to physical 5 I ORESTATION, CREATING .l'I!'IMEIJHE
. ? w | assword: forensics 3. ELEVATE PRIVS host and attach to SIFT WM 1 SUPER” OR "MICRO™) AND <%
e Workstation Installation ()) i) . (-J L) REVIEWING IT. 4
" log2timeline Pm“g:ﬁﬂ;“ E 5. HARD DRIVE MOUNTING (if you ore using log2timeline-sift and Single DD you con skip to 7-A) j - " HOW TO CALCULATE THE DFFSET
| apache_error - Apache FOR MOUNTING
| file
I "1. ' —
Chiraen file | N -
: mme i fup SINGLE OR SPUT IMAGE (2 options): | T # mount -t ntfs -0 ro,loop,show_sys_files, streams_interface=wing : i 1. Run mmis to query partition layout
| exported fram enr:as.e | | y — | [offset=#iti# /mnt/ewt/<image> /mnt/windows_mount/ | | # mmis image.E0L
| evt- Windows 2k/XP/2k3 Event Log | — | = ot ewf.py image.E0L fmnt/ewf | w ! | 2. Identify partition and byte offset
| evix - Windows Event Log File [EVTH) Foa T-A -— 3. [Partition byte offset) x (bytes per
| el - Metadata information fram files | : age.E0L fmnt/ewf/ — I' MOUNT TO MOUNT POINT] seitur} u uﬁm tu-,ui!!! =
| using ExifTool | _ " . | | Example: 63 X 512 = 32756
| H_hahnu'he—f::ﬂm baakrmark file | — | I -
| firefoxt - Firefox 2 browser history SINGLE IV |
| firefox3 - Firefox 3 history file
| hk_dirlisting - C5V file that i | - Z = z z 3 | MNate: If needed, repeat for each
| exported from EH'M‘?E‘&L{ | | k# mount -t ntfs w_sys_files,streams_interfaceswindows, offset=R##4 image.dd [) | oxrtitian: Mike feww ronk pamt:
| start with MM DD Hf:emmss ? - S iE,P-L_lT{MﬁGE Zsteppro. 32 Sy e e 4 + # mkdir /mnt/windows_mount2/
| iehistory - index.dat file containg IE ; T
| ESEEE W3C log file (# affuse image.001 fmnt/aff b use ':"EﬂluEmf[] hnk'l?:tlgt all WM ogRe.
| isatut - ISA text export log file . h# mount =t ntfs-3g —o loop,ro,sho ennt/aff<image> /mnt/windows I E -z list
| jp_ntfs_chamge - C3V output file from | - e (P
'JPTNT“CPIME;I'F b ' T 7-A & 7-B
| mactine - Body file in the mactime : - -
format ; (7-A: AUTOMATED SUPER TIMELINE CREATION [4 NUAL “MICRO" TIMELINE CREATION) ¢4 — ~
| meafee - Log file ~ s
| maft - NTFS MFT file i logZtimeline-sift -0 =z [TIMEZOME] -p [PARTITION #] -l [IMAGE FILE] OMS] [-f FORMAT] [-z TIMEZOMNE] [-0 OUTPUT MODULE] [-w HELP? OPTIONS? USAGE?)
| o P | 2 . " FILE/LOG_DIR [—] [FORMAT FILE OPTIONS] log2timeline -help
| : DISK IMAGE {prompt for partition, mount, and run}: ;
Frusimibdo ;ﬁﬁ?ﬁﬂ | (e iprompt 2 J METADATA {using log2timeline or fis) g f:ﬁi&*:::*“’
| awml - OpenXML d (i imali 1i k| _, oo A
| m b ke LT A | Xp -h# log2timeline-sift -z ESTSEDT -iimage -} ; dtem data wilog2timeline from mounted file system: " OTHER log2timeline &"‘\
i pdf - n.mlan!-e PDF dacurnent |. WINT :If# Iug!timetlne—sﬂ’t -win? ™ ESTSE{:IE j imagE # Iu N mift -o m;mme =r -z ESTSEDT -wr mu{:]rm‘r ;n;mm’s
przletth - Brefetch directory b e e Nate: Default Output
| "_.,:I!r g FOR Imﬂ" | i licabl ¥, o i i -BeaDaes - Mac 06 X visualizatlon tool
' re 09 - Rﬁl.nrm dn:Hd.l et | I:_ P i ad son d’ n o Extraf:t . P AL SO -CEF - Common Event Forrmat - ArcSight
[i k) | - e — e # fls -m "* -0 of1s pdd > fis.body CFTL - XML file- CyberFerensics TimeLab
| L} & g 5 5
| sam - SAM regisw XP | # log2timeline-sift ~z ESTSEDT -p 0 -i partig | Convert body file for Lormat wy mactime: wizualizaniodn bood
| security - SECURITY registry file | — ; # mactime ~b fls body 8 SV - comng Separi vk e
I setupap - Setupd Pl log Tile in - eon : b o # -Mactime - Both older and newer version of
\Winsdeas XP | WINT | # log2timeline-sift -win? -z ESTSEDT - _ - = the farmat supported for use by TSK's
| - ARTIFACTS [run 12| on mounted file i plugins recursively rractime
| mﬂ sl - Skvpe Sabace i | i - . SIMILE - 3L file - SIMILE timeline
| & - SOFTWARE registry file DTHER USAGE EXAMPLES: 4 : . ~ ; .
| sol - sl (LSO or a Flash cockie file % E . (Extract artifacts w/ log2timefine and ru gd file system: mﬁmﬂl “ig?mse
i Hﬁt&*ﬁﬂmﬁ I { Disploy st of avaiiable phy i # log2timeline -f firefox3,chrome -0 macti LEDT TLM - Tab Dedirmited File
| syslog - Linux Sysiog log file I # log2timeline f list web.body /mnt/volume/ Dy
| system - SYSTEM regictry file Run logZtimeline usg Fuse only specific plugins: Convert body file format to C5V format w/ mactime rTUl:Ii-FEmat used by sorme of H Carvey
' mﬂﬁy rﬁﬂm ﬂ;gﬁ; | : |‘|?Ei['-ﬁmﬂ|i”“-" if preftch —z ESTSEDT -1 image.dd . # mactime —b log2timeline.body ~d > log2timeline.csv 10 | tools, expressed as a XML document)
. 4 OGO 000000 0 - o uge e e TS SR
| B ok dheteun file for | ¥ log2timelj J 3- B { 9. FILTER TIMELINE }
. | & link file)) s Y 2
| WIERPROW - AT O I . S TEr ; "
| xpfirewall - XP Firewall log W (/cases/timeline-output-folder) j * Filter timeline with date range ta include only: 0. CONNECT TO SIFT :}
L o e B s g) 12t_process -b timeline.csv MM-DD-YYYY.MM-DD-YYYY > filtered.csv
.H.EEFUE: hngmml-;; it l;“:i;;g;ﬁ;fﬂi:grﬁfﬁgmﬁ Filter timeline with keyword list [one term per line in keywords td): i SEJTINGE:‘E"" ?‘I’_IENS -':]Eh-ared
i "AND . BLALD | i z hal, " e 2 i H Wl = il
L PLLIGING 1! A > the timezone thal was wed to call the tool with. 12t_process -b timeline.csv -k keywords.txt > filbered.csv 2 ot

FMACE meaning of the fields, comp w/ mactime format What sources are in your timeline? /2. SIFT Desktop > VNware-Shared-Drive

BY DAVID NIDES r‘wlsf_gg_]ij ‘3_::;, te: Saurce short namsa |I.e regi:.lr",' Enlfies are REG:' awk=F fh '{pri“t 55:}" timeline _{!'ull grep=v sm[ml:ﬂl sart I U“h:l

< Ou : Dese of the source {“Internet Explorer” instead of WEBHIST) ! . i : ;
Kgﬂfﬂiﬁgsm s i ﬂpmmp tybe (L& “Latt Accesied”. 'Pusul'.'ri:un"] Find all LMK files that !'eher_ence E Drive J ﬁ;ﬁsafézgé_gq'lmﬂfmme
EMAIL: ONIDES@KPMG. CC ? -user: Lsernarme associated with the entry, if one is availabde. grep”Shortout LNK” timeline.csv| grep"E:” ®
IS TO: ED GOINGS, ROB "'_sh“:_;_"'rw‘m_""e‘“m LR WALTL EILE CIRMY, TN o Bt FiindMountPoints2 entries that reference E Drive * i1
CREDI s _ : Containg less text than the full description field. ,, : 1 L
KRISTINN GUIVONSSON, KPMG & -desc: where majority info is stored, the actual parsed desc of the entry. grep“MountPoints2 key” timeline.csv} | grep”E drive”
QUESTIONS/FEEDBACK-CONTACT US) -wersion: Version number of the timestamp object, greplISB timeline.csv| grep”SetupAPILog”
pe " _iﬂmn‘fem;géenant;ﬁ;r::e{[rllbiqnh that {.rsﬂained the entry T [11. REVIEW TIMELINE]
[KEY | node: inode num & file being parsed. — .
| Red teut - image/source -notes: Some inpul madules insert additisnal information in the farm of a rﬂ?::iﬁm : e :E - EE: 3 A | Review timelines using:
Blue text — mount point note, which comes here. Or it can be used during the review. / L L2 G N/, - Open, Soft, Filter with Excel
Purple text — autput file Aformat: Input module name wed to parse the file. FAT Written Accessed NfA . Created - ':--g - Impaort into SPLUMNE
Green e — log2timeline pligins -extra: Aoditional inforrmation parsed is joined together and pit here. MNTF5 File Modified #Acpessed MFT Modified Created SIMILE
{ Brown text - TimeZone - L UF5 Modified Accessed Changed N/A B, Fepestry

Outline

» Useful building blocks
* ALU design
* Regqister file
 Memory considerations

« Datapath

* Design of the controller

14

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

10101180

10010000

« Step 1: Draw finite state machine of the desired function (we ignore
the initialization)

« Step 2: Define/assign binary numbers to represent the states, the
Inputs and the outputs

« Step 3: Write down the truth table (enumerate input/previous state
(and current state) and their corresponding current state (and output))

« Step 4: Use template and decide the combinational block for state
transition and output logic

15

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

21010110
10010000

« Step 1: Draw finite state machine of the desired function

[Detected] [Undetected]
A
e ~
The next\r Y (Y (~
bit is O L detect 01 Il detect 10 I detect O J

detect 101/ | detect1 || ...

16

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

21010110
10010000

« Step 1: Draw finite state machine of the desired function

[Detected] [Undetected] [No 0 detected]
The next TQ; ir;e(;(t
bitis O detect 01 Nd/emt 0]
The next

bit is 1

17

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

21010110
10010000

« Step 1: Draw finite state machine of the desired function

[Detected] [No O detected]
The next TQ.? .ne(>)<t
bitis O detect 01 tho] 1S
The next

bit is 1

18

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 021001010110
OQutput: 0 0 061 0 0 1 0 0 0 @
Th t
« Step 1: Draw finite state machine of the desired function bi? ir;e1x
[Detected] [NoOd@
he next
Thle nex bit is O
bit I 0\(detect 0 Nd/etectO]
The next

bit is 1

19

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 01 0010101120
OQutput: 0 0 061 0 0 1 0 0 0 @
« Step 1: Draw finite state machine of the desired function Tgﬁ ir;e;(t

The next

[Detected] bit is *[No O detected

he next

The nex /r/bit is 0
The next

e The next
bit is 1 bit is O

20

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 010201010110
Qutput: 0 0 061 0 01 0 0 0 0
The next
. . Dit is 1 The next
« Step 1: Draw finite state?ehme desired functio bit is 1
The next
o The next
[Detected bit is O bit is 1 %[NoOdetected

he next
bit is O
The next

e The next
bit is 1 bit is O

The nex
it is O detect 01

21

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

« Step 1: Draw finite state machine of the desired function

1
/ No O
Detected/1 *[detected/0
0 ’//6
detect 01/0 detect 0/0
0

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 01001010110
Output: 0 0 0 100 100 0 0

« Step 2: Define/assign binary numbers to represent the states, the
Inputs and the outputs

/ No 0
[Detected/1 detected/O
y

(11)
0

_

p/_/

detect 0/0
(01)

detect 01/0
(10)

Warm-up

* A classic problem: sequence detection for “010” (non-overlapping)

Input: 1001010110
Output: 2 0 0 100100 0 0

« Step 3: Write down the truth table (enumerate input/previous state
(and current state) and their corresponding current state (and output))

4 Previous state Current state
1 \
1 — —_

k k
Detected/1 | O detected/0 0 o o o 1 0
[(11) 09 © o 1 o 1 0
1 0 0 1 0 1 1 1
’ detect 0/0 0 ' - 0 - 0
\[detect 01/0 (01) 1 0 0 0 0 0
(10) 1) 1 1 0 0
1 1 0 0 0 0
o4 1 1 1 0 0 0

functional block
for state transition

Combinational
functional block
for output, g (B)

A=f (B, input)

output=g(B)

output=S[1],S[0],

output

« Step 4: Use template and decide the combinational block for state
transition and output logic

o

|

Detected/1 0
(11)

0

?

\[detect 01/0
(10)

_

detected/0

J

(00)
\0

detect 0/0

(01)

25

Previous state Current state
S[1] SI[0]

input S[11 S0

0

B R R RO

k-1

0

P S S T~ R S S

k-1

0

R O R O R O B

S O r ©O &0 r &© ©

S ©O ©O O Fr P P rx

output

O ©O © ©O & r & O

S[1],=S[1],,SI[0],_ ;input+

OfelpleolNEUONEIN output S[1],.,S[0], input
functional block
for output, g(B)

functional block
for state transition

— output=g(B)
A=f (B, 1nput)

« Step 4: Use template and decide the combinational block for state
transition and output logic

4 Previous state Current state
/ (\Ngﬁ input S[11 S[01 S[11 ST01 | outpyt
] _ _

Detected/1 | O detected/0 0 o ©o o 1 0
(11) . (00) 0 0 1 0 1 0
1 \0 0 1 o 1 1 1
0 T 0 1 1 o 1 0

etec
detect 01/0 (01) 1 0 0 0 0 0
(10) 1 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Warm'up output=S[1],SI[O],

S[1].=SI[1],.,S[0], ;input+

STelnlelREUONEIN oyutput S[1],.,S[0], input
functional block
for output, g (B)

functional block
for state transition

S[o] —=1nput

— output=g(B)
A=f (B, 1nput)

« Step 4: Use template and decide the combinational block for state
transition and output logic

1 Previous state Current state
/ 1 rm input Sk[i] sk[_?] 5[k1] S[kG] output
Detected/1 | O detected/0 0 o o | o | 1 0
[(11) 09 o o 1| 0| 1 0
1 0 0 1 0 1 1 1
’ detect 0/0 ? - " 0 - 0
\[detect 01/0 (01) 1 b 0 0 0 0
(10) 1) 1 1 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Warm-up

lSnFGU]t—_;.— output=S[1],S[0],
S [1]

S [1] k=S [1] k—1S [0] k_1inpUt+

S

iwtj._m output

g%?} —P W’r S[1]k_1S[0]k_1input
S[o]

input

S[0],=input

« Step 4: Use template and decide the combinational block for state

transition and output logic
Previous state Current state

Kk k
Detected/1 | O detected/0 0 o o o 1 0
[(11) 09 © o 1 o 1 0
1 0 0 1 0 1 1 1
’ detect 0/0 0 ' - 0 - 0
\[detect 01/0 (01) 1 0 0 0 0 0
(10) 1) 1 1 0 0
1 1 0 0 0 0
28 1 1 1 0 0 0

Useful building blocks-ALU

Controller & Datapath

« A CPU that support RV32| can have so many states

« Consider the 32 registers alone
« X0 always 0
« Each bit in the other registers can be 0 or 1
Control * Not practical to enumerate all the state transitions
* Top-down design: build small modules and then
connect them as needed

Processor

Datapath * Most digital systems can be divided into datapth and
controller
PC « Datapath contains data processing and storage
« Controller controls data access (still can be
—Registers—— modeled as FSM)
* Recall the execution of an instruction

* Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).

« Each RV32| instruction can be done
within 1 clock cycle (single-cycle CPU).

Useful building blocks-ALU

Controller & Datapath

« A CPU that support RV32| can have so many states

« Datapath
Processor P
« Start with basic building blocks
Control
* Add building blocks to the digital system with
! added supported instructions
Datapath
« Controller
PC
« Can be considered as an FSM
—Reqgisters——
* Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).
 Each RV32l instruction can be done

within 1 clock cycle (single-cycle CPU).
30

Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

Processor ADD ADDI AND as an example
SUB SLTI o 2 32-bit inputs A and B
Control s L SLTIU « 1 32-bit output C
stT |[XORLl A[311BI31] Al30] BI30] Alo] Blo]
g ORI
Datapath SLTU | | | | | |
YOR ANDI
P || B/ 1 |] ...
SRL
—Registers— S CI31] C[30] clol
OR
AND * Our Goal: Implement a RISC-V processor
as a synchronous digital system.
 Each RV32l instruction can be done
within 1 clock cycle.

31

Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

Processor ADD ADDI AND as an example
SUB SLTI o 2 32-bit inputs A and B
Control s L SLTIU « 1 32-bit output C
SLT |XORI A B A B A B
. ORI 32 32 32 32 32 3
Datapath SLTU X 1 S
YOR AND I
PC
SRL \:[% 25 3
— Registers—— SRA C C C
A simplified AND
OR gate array symbol OR XOR
AND
- e QOur Goal: Implement a RISC-V processor
as a synchronous digital system.
 Each RV32l instruction can be done

within 1 clock cycle.
32

Useful building blocks-ALU

Useful Combinational Circuits

» Multiplexer (2-to-1)

T~
0
T

Sel

* Multiplexer (2"-to-1)

\
0

T

A—10 "
B—1
T
Sel0
c—0 "
D— l B
Sel0

Seld

Tree structure

Useful building blocks-ALU

Control through selection

« 32-bit Multiplexer and logic gates to support some logic instructions

Regard (Sel1Sel0), as an

n o N
\n:)/ =4 0\
32
< —4 / e
3 1 —
o o 32
m % /r N O
74 Se|0 -1
A N T~ /r
> 0 32
~ N Sel
o ™ ~ 05
) < — 1
il

1

Sel0

unsigned number

* More layers of multiplexer to select from more inputs

Useful building blocks-ALU

Multiplexer

* N-to-1 multiplexer symbol

Sel

Useful building blocks-ALU

Multiplexers used for shifter

« Left shift a single bit -> left shift multiple single bits
« Other shifter designs such as barrel shifter

I[31] \B\\\ I[30] \B\\\ I130] \B\\\

I[30] 1 [29] 1 [29] 1
Oo[B1] - 0[30] | O[29)]
0] 29
0] 30 0 30

1[O] 31 "0’ 31 "0’ 31

Sel Sel Sel

Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

ADDI
SLTI
SLTIU

XORI
ORI
ANDI

Processor ADD
SUB

Control SLL
SLT
Datapath SLTU
BC XOR

SRL

— Registers—— SRA

OR

XOR gates
LT~ AND gates
Operand 1 T
l OR gates
T _|Left shifter|
Operand 2 —I
¢+—Rightshifter
¢ (logic)
Rightshifter
Part of (arithmetic)
an ALU

sel

Note that all the signals expect the

selection signals are 32-bit.

e QOur Goal: Implement a RISC-V processor
as a synchronous digital system.

 Each RV32l instruction can be done
within 1 clock cycle.

Useful building blocks-ALU

Adder & subtractor

 An adder design

A[BBl[]31: A[3|3®[]30] A[1B]:1] A[@B][Q]‘Q’
L] L | ||]
-A -A -A -A

‘ |ﬂ } clO] |
S[31] S[30] S[1] S[0]

A 32-bit adder

* A smart subtractor design
— Recall that subtracting a number is equivalent to adding its negative version

Useful building blocks-ALU

A smart subtractor design
A-B=A+(-B)=A + B +1 (mod 2N-1)

B[31] B[30] B[1] B[O]
A[31] A[30] Al1l] AlO]
- l1’
|
FA FA | FA FA
c[31]s[31] c[30]s[30] cl1l] s[1] «cl[@] sl@l
A 32-bit subtractor
B[31] B[30] B[1] Blo] « Recall XOR gate
A[31] A[30] Al1] Ale]l ‘o’

L L] LT L 5y

1
- A =\ = A A
|ﬂ clo] l 2@7'6‘

S[31] S[30] S[1] S[0]
A 32-bit adder

Useful building blocks-ALU

Useful building blocks

 An ALU should be able to execute all the arithmetic and logic operations

Processor

Control

Datapath
PC

— Recdisters—

~J

ADD
SUB
SLL
| SLT|
SLTU
| XOR|
SRL
SRA
OR

AND

ADDI

SLTI
SLTIU

XORI
ORI
ANDI

XOR gates b\
LT~ AND gates 1
Operand 1 1
1 Z . O
| -
Operand 2 —I
¢+— Rightshifter 5
¢ (arithmetic)
Part Of SUb/adder %
an ALU I
add/sub sel

Note that all the signals expect the
selection signals are 32-bit.

 ALU design that supports R-/I-arithmetic
and logic operations completed

40

Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers
of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor * Recall we have registers that store values

Control

Input An n-bit

Datapath
PC

— Registers— Output

~J

41

Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers

of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor

Control

Datapath
PC

—Recdisters—

~J

Recall we have registers that store values

Input Input Input
32 32

Output Output Output

- J
Y

32 32-bit reqgisters

How to select one to output? Multiplexer

42

Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers

of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor

Control

Datapath
PC

—Recdisters—

~J

Recall we have registers that store values

x31

LN

1

Output

Multiplexer 43

Useful building blocks-Reg.

Useful building blocks-Register file

The register file is the component that contains all the general purpose registers
of the microprocessor

A register file should provide data given the register numbers
A register file should be able to change the stored value

Processor « How do we change values of a specific reg.?

 Recall that clk is
Control used to control the _m b\
change of the state m 1
Output

PC -

Datapath

—Recdisters—

~J

AT

44

Useful building blocks-Reg.

Useful building blocks-Register file

* The register file is the component that contains all the general purpose registers
of the microprocessor

* Aregqister file should provide data given the register numbers
* Aregqister file should be able to change the stored value

« How do we change values of a specific reg.?

Input
Extra
Some control }%\\
Number of . signal
register — fubnlcotclkon with .
one-hot ®
code

Output

1 -

Duplicate to

(Address) decoder access two regs.
simultaneously

or
demultiplexer m %
o—

clk — sel[4:0]

* Reg. file design completed N

D lip-flop & registers

We have covered PC register previously

« Synchronous digital circuit can have feedback, e.g., iterative accumulator

— e.g. PC = PC + 4 without considering branch or jump
reset

PC’
v ﬂr «

N =
32

32
4 —~—>

[

* Timing diagram

reset \

PCc X o X 4 X 8 X _c XOx10

PC’” X 4 X 8 X c X oxto)Y ox14

46

Useful building blocks-Mem.

Useful building blocks-Memory

 Memory similar to register file except that the basic cell design is different
* Requires refresh for DRAM

itli itli itli Bitline
DRAM memory symbol | Bitline Bitline Bitline
Wordline
addr. — —— data — — 1 i
memory I I I I
Wordline

|
|
|
|

