
CS 110
Computer Architecture

Datapath
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/3/27

Administratives

2

• Lab 6 available.
• HW 3 ddl April 1st!
• Proj. 1.1 DDL today! It will be checked during Apr. 7th-11th Lab

sessions.
• Proj. 1.2 to be release today, ddl April 17th.

• Discussion (teaching center 301) schedule
• Mar. 31st & April 11th on datapath Yutong Wang
• April 7th on mid-term I review by Yizhou Wang.

Mid-term I

3

• Midterm I
– April 10th 8:00 am - 10:00 am

• We start sharp at 8:00 am!
• Arrive 7:45 am to check-in (three classrooms likely and

seat table will be determined on-site)
• Arrive later then 8:30 am will get 0 mark.

• Contents:
– Everything till April 8th lecture

• Switch cell phones off!!! (not silent mode)
– Put them in your bags.

• Bags in the front. On the table: nothing but pen, exam paper,
1 drink, 1 snack, your student ID card and your cheat sheet!

• One of teaching center 301/303, check on Egate.

Mid-term I requirements

4

• You can bring a cheatsheet (handwritten only). 1-page A4,
double-sided (2-page for the mid-term II and 3-page for the
final). Put it on your desk at exam. Cheatsheet that does not
apply to the rules would be taken away.

• Greencard shown on the course website is provided with the
exam paper.

• No other electronic devices are allowed!
‒ No ear plugs, music, smartwatch, calculator, computer…

• Anybody touching any electronic device will FAIL the course!
• Anybody found cheating (copy your neighbors answers,

additional material, ...) will FAIL the course!

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2024/lecture_notes/riscvcard.pdf

Outline

5

• Datapath
• Add building blocks and control signals for different types of

instructions, one type at a time
• Design of the controller
• Timing analysis

Controller & Datapath
• A CPU that support RV32I can have so many states

6

• Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).

• Each RV32I instruction can be done
within 1 clock cycle (single-cycle CPU).

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

• Consider the 32 registers alone
• x0 always 0
• Each bit in the other registers can be 0 or 1

• Not practical to enumerate all the state transitions
• Top-down design: build small modules and then

connect them as needed
• Most digital systems can be divided into datapth and

controller
• Datapath contains data processing and storage
• Controller controls data flow and state change

(still can be modeled as FSM)
• Recall the execution of an instruction

Datapath Controller Timing analysis

Multiplexer

Sel

0

1

• N-to-1 multiplexer symbol

...

?
n

Datapath Controller Timing analysis

ALU
• An ALU should be able to execute all the arithmetic and logic operations

8

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND

ADDI
SLTI
SLTIU
XORI
ORI
ANDI

• ALU design that supports R-/I-arithmetic
and logic operations completed

XOR gates

AND gates

Rightshifter
(arithmetic)

Operand 1

Operand 2

Sub/adder

sel

0

1

Part of
an ALU

O

Note that all the signals expect the
selection signals are 32-bit.

.

.

.

5

6

.

.

.

add/sub

Datapath Controller Timing analysis

Register file
• The register file is the component that contains all the general purpose registers

of the microprocessor
• A register file should provide data given the register numbers
• A register file should be able to change the stored value

9

• How do we change values of a specific reg.?

Reg.

... ...

Reg.

Reg.
sel[4:0]

0

1

Output.
.
.

31

clk

... ...

Extra
control
signal
with

one-hot
code

Number of
register

Some
function
block

(Address) decoder
or

demultiplexer

• Reg. file design completed

Input

Duplicate to
access two regs.
simultaneously

Datapath Controller Timing analysis

We have covered PC register previously

10

• Synchronous digital circuit can have feedback, e.g., iterative accumulator
– e.g. PC = PC + 4 without considering branch or jump

+
A

B

4
32

32

• Timing diagram

clk

reset

+
A

B
Reg.

4
32

reset

PC
PC’

PC’

PC 0 4

4 8

8

c

c

0x10

0x10

0x14

Digital system D lip-flop & registers Synchronous circuits, FSM Timing constraintsDatapath Controller Timing analysis

Useful building blocks-Memory
• Memory similar to register file except that the basic cell design is different
• Requires refresh for DRAM
• For ease of implementation, we only use its behavior model

11

memory

Bitline
Wordline

Bitline Bitline Bitline

Wordline

DRAM memory symbol

addr. data

Datapath Controller Timing analysis

Datapath

12

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

Memory

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory
Interface

Program

Data

Datapath Controller Timing analysis

Datapath

13

memory

DRAM memory symbol

addr. data/instruction

+
A

B
PC

Reg.
4 PC

PC’

Reg.

... ...

Reg.

Reg.
sel[4:0]

(rs1 or rs2)

0

1

Output.
.
.

31

clk

Number of
register
(rd)

5-32
Decoder

Input
x[rd]Reg. file

Reg. file

rd
x[rd] x[rs1]

x[rs2]

rs1
rs2

0

1

Output.
.
.

31

Reg. file symbol

Duplicate to
access two regs.
simultaneously

Datapath Controller Timing analysis

Datapath for R-type

14

Instruction
memory

instruction
+ PC

Reg.
4 PC

Reg. file

rd

x[rd]

x[rs1]

x[rs2]

rs1
rs2

Reg. file symbol

• We have all the building blocks to execute R-type instructions

XOR gates

AND gates

Rightshifter
(arithmetic)

Operand 1

Operand 2

adder

sel

0

1

Output
.
.
.

9

10

...

ALU_ctrl

ALU

ALU_ctrl

Decided by
instruction

Datapath Controller Timing analysis

subtractor

Datapath for R-type

15

• We have all the building blocks to execute R-type instructions

XOR gates

AND gates

Rightshifter
(arithmetic)

adder

sel

0

1

Output
.
.
.

9

10

...

ALU_ctrl

Datapath Controller Timing analysis

subtractor

0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

Datapath for R-type

16

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg. file

rd

x[rd]

x[rs1]

x[rs2]

rs1
rs2

• We have all the building blocks to execute R-type instructions

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

Datapath Controller Timing analysis

Datapath for I-type arithmetic and logic

17

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg. file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_srcimm. Gen.instru[31:20]

0
1

Datapath Controller Timing analysis

Example

18

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg. file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru
[31:20]

0x1000: addi x1, x0, -1
0x1004: or x2, x2, x1
0x1008: add x3, x1, x2
0x100c: slt x4, x3, x1
0x1010: sra x5, x3, x4
0x1014: sub x0, x5, x4

Datapath Controller Timing analysis

Datapath for more types ...

19

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg. file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru
[31:20]Data

memory

DRAM memory symbol

addr. data

• lw rd, imm(rs1) : Load word at addr. to register rd
addr.= (number in rs1) + imm

Datapath Controller Timing analysis

Datapath for I-type load

20

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru
[31:20]

Data
memory

addr.
data

• lw rd, imm(rs1) : Load word at addr. to register rd
addr.= (number in rs1) + imm

Datapath Controller Timing analysis

21

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru
[31:20]

Data
memoryaddr.

• lw rd, imm(rs1) : Load word at addr. to register rd
addr.= (number in rs1) + imm

0
1alu

result
wb_src

Datapath for I-type load
Datapath Controller Timing analysis

22

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru
[31:20]

Data
memoryaddr.

• lw rd, imm(rs1) : Load word at addr. to register rd
addr.= (number in rs1) + imm

0
1alu

result
wb_src

Datapath for I-type load

How would you deal
with lb(u)/lh(u)?

Datapath Controller Timing analysis

23

• Recall that in an FSM, only when there is a trigger (clk edge),
the state can change.

• We assume that the change of data memory (memory-write) is also
governed by clk edge.

• Assume behavior model of data memory:
• When we=1 && re=0, at clk rising edge, data[addr.]=d_in; d_out
stays at high-resistance (output nothing)

• When we=re=0, d_out stay at high-resistance (output nothing,
state would not change); we=re=1 is forbidden

• When we=0 && re=1, d_out=data[addr.]

Datapath for S-type store

Data
memoryaddr. d_out

d_in

were
(write
enable)

(read
enable)

Datapath Controller Timing analysis

24

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru
[31:20]

0
1alu

result
wb_src

Datapath for S-type store

Data
memoryaddr. d_out

d_in

were

• sw rs2, imm(rs1): Store word at rs2 to memory addr.
addr.= (number in rs1) + imm

Datapath Controller Timing analysis

25

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru
[31:20]

0
1alu

result
wb_src

Datapath for S-type store

Data
memoryaddr. d_out

d_in

were

• sw rs2, imm(rs1): Store word at rs2 to memory addr.
addr.= (number in rs1) + imm

Datapath Controller Timing analysis

26

imm. Gen.
instru
[31:20]

Imm. Gen.

• I-type immediate

imm[31:0]

instru
[31:20] imm[11:0]

imm[31:12]

instru[31]

0
1

0

1

Datapath Controller Timing analysis

27

imm. Gen.
instru

[31:20|11:7]

Imm. Gen.

• I-type & S-type immediate

imm[31:0]

instru
[31:25] imm[11:5]

imm[31:12]

instru[31]

0
1

0

1

instru
[24:20]
instru
[11:7]

0
1

imm[4:0]

imm_ctrl

imm_ctrl
Decided by
instruction

Datapath Controller Timing analysis

28

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Datapath for S-type store

Data
memoryaddr. d_out

d_in

were

• sw rs2, imm(rs1): Store word at rs2 to memory addr.
addr.= (number in rs1) + imm

imm_ctrl

Something wrong!
reg_en

Datapath Controller Timing analysis

29

Regfile modification

Reg.

... ...

Reg.

Reg.
sel[4:0]

0

1

Output.
.
.

31

clk

... ...

Extra
control
signal
with

one-hot
code

Number of
register

Some
function
block

(Address) decoder
or

demultiplexer

Input

Extra control
signal reg_en

Datapath Controller Timing analysis

30

Datapath for B-type

• beq rs1,rs2,L(imm/label)
• Go to label if x[rs1] == x[rs2]; otherwise, go to next statement

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]

instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in

were

imm_ctrl

reg_en

Datapath Controller Timing analysis

31

Datapath for B-type

Subtractorop1/x[rs1]
op2/x[rs2]

Result

• beq rs1,rs2,L(imm/label)
• Go to label if x[rs1]==x[rs2]; otherwise, go to next statement
• Recall in ALU

x[rs1]==x[rs2]↔ x[rs1]-x[rs2]==0

... ... Zero
op1

ALU

ALU_ctrl

op2

result

zero

Datapath Controller Timing analysis

32

Datapath for B-type

• beq rs1,rs2,L(imm/label)
• Go to label if x[rs1]==x[rs2]; otherwise, go to next instruction

Instruction
memory

instruction
+ PC

Reg.
4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

zero

PC=PC+4, when zero!=0
PC=PC+imm, when zero=0

reg_en

Datapath Controller Timing analysis

zero

33

Datapath for B-type

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

PC=PC+4, when zero!=0
PC=PC+imm, when zero=0

0
1

imm

Something
wrong!

reg_en

Datapath Controller Timing analysis

zero

34

Datapath for B-type

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

PC=PC+4, when zero!=0
PC=PC+imm, when zero=0

1
0

imm

is_beq_instruction

reg_en

Datapath Controller Timing analysis

35

Datapath for B-type

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ

is_beq_instruction

• Recall beq

Instru[14:12|6:0] is_beq_instruction

000 1100011 1

All the other cases 0

Truth table

is_beq_instruction=i[14]i[13]i[12]i[6]i[5]i[4]i[3]i[2]i[1]i[0]

Datapath Controller Timing analysis

36

Datapath for B-type

imm. Gen.
instru

[31:20|11:7]

• I-type & S/B-type immediate

imm[31:0]

instru[30:25] imm[10:5]
imm[31:12]

instru[31]

0
1

0

1

instru[24:20]

instru[11:8]
0
1

imm[4:1]

imm_ctrl
Decided by
instruction

0
1

instru[31]
instru[7] imm[11]

0
1
2

instru[20]
instru[7] imm[0]

0

imm_ctrl

Datapath Controller Timing analysis

zero

37

Datapath for B-type

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

PC=PC+4, when zero!=0
PC=PC+imm, when zero=0

1
0

imm

is_beq_instruction

reg_en

Datapath Controller Timing analysis

38

Datapath for the other types

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

Decided by
instruction

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

imm

is_beq_instruction

reg_en

Datapath Controller Timing analysis

39

Control signals

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq_instruction

reg_en

pc_src

Control signals

• This is a datapath that supports R-type & I-type arithmetic and logic
operations, lw, sw and beq

Datapath Controller Timing analysis

addi x1,x0,-1

40

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

addi 1 0 0 add I-type 1 1 0

0x0
IF

x1

x0

Datapath Controller Timing analysis

addi x1,x0,-1

41

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

addi 1 0 0 add I-type 1 1 0

0x0
IF

x1

x0

DEC

-1

Datapath Controller Timing analysis

addi x1,x0,-1

42

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

addi 1 0 0 add I-type 1 1 0

0x0
IF

x1

x0

DEC EX

-1

-1

Datapath Controller Timing analysis

addi x1,x0,-1

43

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

addi 1 0 0 add I-type 1 1 0

0x0
IF

x1

x0

DEC EX

WB

-1

-1

-1

Datapath Controller Timing analysis

ori x2,x0,128

44

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

ori 1 0 0 or I-type 1 1 0

0x4
IF

x2

x0

DEC EX

WB

128

128

Datapath Controller Timing analysis

add x3,x1,x2

45

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

add 1 0 0 add X 1 0 0

0x8
IF

x3

x1

DEC EX

WB

128

x2

-1
127

Datapath Controller Timing analysis

sw x3,0(x3)

46

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

sw 0 0 1 add S-type X 1 0

0xc
IF

x3

DEC EX

0

x3

127
127

MEM

0

127

Datapath Controller Timing analysis

lw x5,0(x3)

47

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

lw 1 1 0 add I-type 0 1 0

0x10
IF

x3

DEC EX

0

127
127

MEM

0

x5

WB

Datapath Controller Timing analysis

beq x3,x5,-12

48

Datapath working example

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

reg_en re we alu_ctrl imm_ctrl wb_src op2_src is_beq

beq 0 0 0 X B-type X 0 1

0x14
IF

x3

DEC EX

127

127

-12 WB

-12

x5

0

Datapath Controller Timing analysis

WB

49

Controller

zero

Instruction
memory

instruction
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

Input Output

Instru.

reg_en
re
we

alu_ctrl
imm_ctrl
wb_src
op2_src
is_beq

• Generate control signals guiding the datapath to
execute instructions

• The inputs are instructions, the outputs are the
control signals

• Once the type of instruction is determined, the
control signal is determined

Datapath Controller Timing analysis

50

Controller

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

is_beq

reg_en

pc_src

Controller

is_beq op2_srcreg_en
ALU_ctrl

wb_src

re we
imm_ctrl

• Can be modeled by an FSM 0x0: addi x1, x0, -1
0x4: ori x2, x0, 128
0x8: add x3, x1, x2
0xc: sw x3, 0(x3)
0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12

addi
ori add

swlwbeq

Datapath Controller Timing analysis

51

Controller

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

Controller

is_beqreg_en
re we

• Can be modeled by an FSM

addi
ori add

swlwbeq

• Can be implemented by a
Mealy machine

Datapath Controller Timing analysis

52

Controller

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

Controller

is_beqreg_en
re we

• Can be modeled by an FSM

addi
ori add

swlwbeq

• Can also be implemented by
read-only memory (ROM),
optional

Datapath Controller Timing analysis

53

Full stack explained

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_i
n

were

imm_ctrl

reg_en

pc_src

Controller

is_be
qreg_en

re we

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

54

Datapath timing analysis

R-type datapath

Datapath Controller Timing analysis

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq
Assume the control
signal is fast

55

Datapath timing analysis

I-type arithmetic & logic datapath

Datapath Controller Timing analysis

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

max

56

Datapath timing analysis

I-type load datapath

Datapath Controller Timing analysis

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

max

57

Datapath timing analysis

S-type datapath

Datapath Controller Timing analysis

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

max

58

Datapath timing analysis

B-type datapath

Datapath Controller Timing analysis

zero

 Instruction
memory

instru.
+ PC

Reg.

4

PC

Reg.
file

rd

x[rd]

x[rs1]rs1
rs2

ALU

ALU_ctrl

instru[19:15]
instru[24:20]

instru[11:7]

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.
instru

[31:20|11:7]

0
1alu

result
wb_src

Data
memoryaddr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

max

59

Summary
• We have built a single-cycle CPU
• It supports R-type, I-type arithmetic & logic and load (lw),

S-type sw and beq
• Datapath and controller are built seperately
• Different instruction activates different parts or steps/stages

(IF/DEC/EXE/MEM/WB) of the datapath, thus has different
delays. The longest delay (critical path) is used to estimate
maximum frequency

• Nearly no CPU uses single-cycle design today.

