T AR SRR

";,.:-u & School of Information Science and Technology

CS 110
Computer Architecture
Datapath

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/3/27

Administratives

Lab 6 available.
HW 3 ddl April 1st!

Proj. 1.1 DDL today! It will be checked during Apr. 7th-11th Lab
sessions.

Proj. 1.2 to be release today, dd| April 17th.

Discussion (teaching center 301) schedule
 Mar. 31st & April 11th on datapath Yutong Wang
* April 7th on mid-term | review by Yizhou Wang.

Mid-term |

Midterm |
— April 10th 8:00 am - 10:00 am
 We start sharp at 8:00 am!
* Arrive 7:45 am to check-in (three classrooms likely and
seat table will be determined on-site)
* Arrive later then 8:30 am will get 0 mark.
Contents:
— Everything till April 8th lecture

Switch cell phones off!!! (not silent mode)
— Put them in your bags.

Bags in the front. On the table: nothing but pen, exam paper,
1 drink, 1 snack, your student |ID card and your cheat sheet!

One of teaching center 301/303, check on Egate.

3

Mid-term | requirements

You can bring a cheatsheet (handwritten only). 1-page A4,
double-sided (2-page for the mid-term Il and 3-page for the
final). Put it on your desk at exam. Cheatsheet that does not
apply to the rules would be taken away.

Greencard shown on the course website is provided with the
exam papetr.

No other electronic devices are allowed!
— No ear plugs, music, smartwatch, calculator, computer...
Anybody touching any electronic device will FAIL the course!

Anybody found cheating (copy your neighbors answers,
additional material, ...) will FAIL the course!

https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2024/lecture_notes/riscvcard.pdf

Outline

« Datapath

* Add building blocks and control signals for different types of
instructions, one type at a time

* Design of the controller

* Timing analysis

Controller & Datapath

A CPU that support RV32I can have so many states

Processor

Control

Datapath
PC

— Recdisters——

~J

« Consider the 32 registers alone
« X0 always 0
« Each bit in the other registers can be 0 or 1
* Not practical to enumerate all the state transitions
* Top-down design: build small modules and then
connect them as needed
* Most digital systems can be divided into datapth and
controller
« Datapath contains data processing and storage
« Controller controls data flow and state change
(still can be modeled as FSM)
* Recall the execution of an instruction

* Our Goal: Implement a RISC-V processor
as a synchronous digital system (SDS).

 Each RV32l instruction can be done
within 1 clock cycle (single-cycle CPU).

Multiplexer

* N-to-1 multiplexer symbol

Sel

Processor

Control

Datapath
PC

— Recdisters—

~J

ADD
SUB
SLL
| SLT|
SLTU
| XOR|
SRL
SRA
OR

AND

ALU

 An ALU should be able to execute all the arithmetic and logic operations

ADDI

SLTI
SLTIU

XORI
ORI

ANDI

XOR gates b\
LT~ AND gates 1
Operand 1 1
¢ 0
| -
Operand 2 —I
¢+— Rightshifter 5
¢ (arithmetic)
Part Of SUb/adder %
an ALU I
add/sub sel

Note that all the signals expect the
selection signals are 32-bit.

 ALU design that supports R-/I-arithmetic
and logic operations completed

of the microprocessor

Register file

* The register file is the component that contains all the general purpose registers

* Aregqister file should provide data given the register numbers
* Aregqister file should be able to change the stored value

Some
Nruemgbiesl:c eorf — function [—
block

!

(Address) decoder
or
demultiplexer

* Reg. file design completed

« How do we change values of a specific reg.?

Extra
control
signal
with
one-hot
code

Input

LN

1

Output

Duplicate to
access two regs.
simultaneously

O — X

clk —

50

sel[4:0]

We have covered PC register previously

« Synchronous digital circuit can have feedback, e.g., iterative accumulator

— e.g. PC = PC + 4 without considering branch or jump
reset

PC’
v ﬂr «

N =
32

32
4 —~—>

[

* Timing diagram

reset \

PCc X o X 4 X 8 X _c XOx10

PC’” X 4 X 8 X c X oxto)Y ox14

10

Useful building blocks-Memory

 Memory similar to register file except that the basic cell design is different
* Requires refresh for DRAM

* For ease of implementation, we only use its behavior model

DRAM memory symbol

addr. —
memory

Bitline Bitline Bitline Bitline
Wordline
—— data p— p— — 1
T T T T
Wordline
T T T T

Datapath

Processor

Enable?
Read/Write

Processor-Memory
Interface

12

Datapath

PC’ DRAM memory symbol
4 ——> A
+ > PC PC
B >Reg.
r> addr. — ——data/instruction
memory
' Input
rieg. fie | xLrd] Reg. file symbol
Number of S Req.
register P ? {Et:§ rd —
(I‘d) | DReg 1 X[I"d]—‘ X[rS].]
5-32 Reg. file [X[rs2]
Decoder pyutput
rsl —
Duplicate to rs2 —_'>
access two regs.
simultaneously

v

| Reg. ‘?{A)
c Lk [4:0] 13

(rsl or rs2)

Datapath for R-type

 We have all the building blocks to execute R-type instructions

Reg. file symbol

D(C | |
4 — N RPC e | INstruction Instruction g
€g. memory
> 9 rsi x[rs1]
rs2
Reg. file | X[rs2] ALU
x[rd] |
XOR gates }\ |
l > ALU_ctrl
{1 1 AND gates 1
Operand 1 - T ~
o Output Decided by v,
+—{Rightshifter ‘_ instruction

Operand 2 — (arithmetic)
1T subtractor 9

adder }?/
fAF_ct ri

Datapath for R-type

 We have all the building blocks to execute R-type instructions

0000000 rs2 rsl 000 rd 0110011 ADD

XOR gates b\ 0100000 rs2 rsl 000 rd 0110011 SUB
1T~ AND gates 1 0000000 rs2 rsl 001 rd 0110011 SLL
1 0000000 rs2 rsl 010 rd 0110011 SLT
t T . | Output 0000000 rs2 rsl 011 rd 0110011 SLTU

_I'_F(‘;?.'i‘iﬁméﬁtiﬁ)r - [0000000 rs2 rsl 100 rd 0110011 XOR
)| 0000000 rs2 rsl 101 rd 0110011 SRL
l subtractor 0
0100000 rs2 rsl 101 rd 0110011 SRA
adder }?/ 0000000 rs2 rsl 110 rd 0110011 OR
sel 0000000 rs2 rsl 111 rd 0110011 AND
\

ALU ctrl

Datapath for R-type

We have all the building blocks to execute R-type instructions
8 7 6 0

31 30 25 24 21 20 19 15 14 12 11
funct7 rs2 rsl funct3 rd opcode | R-type
instrul11:7]
PC | e
4 — N PC Instruction Instruction py
Reg. memory
= e rsl x[rsi]
= ¢ Irs2
instru[19:15] :" Reg. file | xLrs2] | ~ALU
instrul[24:20] » x[rd] |
> ALU_ctrl

~
~~~~~
~

Decided by ‘}
instruction

16



Datapath for I-type arithmetic and logic

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type
instrul11:7]
PC . . l‘_
4 — N PC Instruction | 1MStruction rq
>Reg - memory e rsi x[rsi]
g ¢ rs2
instru[19:15] ! Reg_ﬁ|ex[rs2®] ALU
instru[24:20] » xlrd] 1 |
> ALU_ctrl
instru[31:20] —|imm. Gen. _ 0p2_src
~1mm “., Decided by ,/
(sign-extended) instruction

17



Example

31 30 25 24 21 20 19 15 14 12 11 N 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type
instru[11:7]
PC | e
4 — N PC Instruction | TNSTruction rq
>Reg. T memory | rsi x[rsil]
= , rs2
4 ! . X[rs2]
instrul[19:15] ! Reg. file 0 ALU
instru[24:20] » xlrd] 1 |
0x1000: addi x1, x0, -1 > ALU ctrl
0x1004: or x2, x2, x1 _‘\\
@X].@@S: add X3’ Xl’ X2 lnstru O ~
0x100c: slt x4, x3, x1 [31:20] —|!mm. Gen. imm opZT\src Decided by ,)
0x1010: sra x5, x3, x4 (sign-extended) ™ instruction
0x1014: sub x0, x5, x4

18



Datapath for more types ...

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type

« lw rd, imm(rsl) :Load word at addr. to register rd

addr.= (number in rsl) + imm |
instrul11:7]
PC | s
4 — . PC | o | Instruction Instruction rq
>Reg. memory | rsi x[rsi]
< / 1rs2
4 ] . X[rs2]
instru[19:15] ! Reg. file ALU
DRAM memory symbol instrul24:20] 4y x[rd] 1 |
> ALU_ctrl
addr. Data |—data Instru . .~ 0p2_Src ™
[31:2@] ) ) imm \ D ided b !
memory | .., Decided by ,
(sign-extended) instruction
19




Datapath for |-type load

31 30 25 24 20 19 15 14 12 11 8 7 6 0
funct7 rs? rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type
« lw rd, imm(rsl) :Load word at addr. to register rd
addr.= (number in rsl) + imm
instru[11:7]
PC | o
4“_'_+ PC | Instruction Instruction rq
>Reg. lnemon// ________ el «[rsi]
| - ¢ rs2 addr.
i Reg X [ FSZ] -
instrul[19:15] | file é] ALU Data data
; ' memory
instru[24:20] ” xlrd] 1 |
> ALU_ctrl
instru | | aeotepe TN N
: imm. Gen. : op2_src \
[31:260] - imm ., Decided by ./
(sign-extended) instruction

20



Datapath for |-type load

31 30 25 24 20 19 15 14 12 11 8 7 6 0
funct7 rs? rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type
« lw rd, imm(rsl) :Load word at addr. to register rd
addr.= (number in rsl) + imm
instru[11:7]
PC | o
4“_'_+ PC | Instruction Instruction rq
>Beg. memow;— -------- rsil x[rsi] Data
~a ¢/ Is2 addr.
f Reg. |x[rs2] ALU memory | %
instru[19:15] ! file 0 | T
: i x[rd] alu 1
instrul24:20] * 1
| result
wb_src
> ALU_ctrl ;
instru | | aolen. T . V4
: imm. Gen. _ op2_src N
[31 . 20] | imm \\\~> Dec ldEd by —'"’,z’
(sign-extended) instruction

21




Datapath for I-type Ioad

31 30 25 24 20 19 15 14 12 11 8 6 0
funct7 rs? rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type

: Load word at addr. to register rd

e lw rd, imm(rsl)
How would you deal

addr.= (number in rsl) + imm
instrul[11:7] with lb(u)/lh(u)?
PC | o
4“_'_+ PC | Instruction Instruction rq
>Beg. memow;— -------- rsil x[rsi] Data
< r s2 addr.
f Reg. |x[rs2] ALU memory | I
instru[19:15] | file 0 | T
- ’ x[rd] alu 1
instru[24:20] ” 1
| result
wb_src
D> ALU_ctrl ;
instru | | aolen. T . V4
: imm. Gen. _ 0p2_src N
[31- 20] | imm \\\~> DECldEd by —' """" s
(sign-extended) instruction

22




Datapath for S- type store

31 25 24 20 19 15 14 12 11
funct? rs2 rsl funct3 rd opcode R-type
imm[11:0] rsl funct3 rd opcode I-type
imm|[11:5] rs2 rsl funct3 | imm|4:0] opcode S-type

« Recall that in an FSM, only when there is a trigger (clk edge),
the state can change.

« We assume that the change of data memory (memory-write) is also
governed by clk edge.

« Assume behavior model of data memory:

« When we=1 && re=0, at clk rising edge, dataladdr.]=d_in; d_out
stays at high-resistance (output nothing)

- When we=re=0, d_out stay at high-resistance (output nothing,
state would not change); we=re=1 is forbidden

« When we=0 && re=1, d_out=dataladdr.]

(read
enable) re we

' Data
addr .| memory | 9-0Ut

> 23

(write
enable)

d in




* SW I'S2,

Datapath for S- type store

12 11

31 25 24 20 19 15 14
funct7 182 rsl funct3 rd opcode
imm([11:0] rsl funct3 rd opcode
imm[11:5] rs2 rsl funct3 | imm|4:0] opcode

addr.= (number in rs1) + imm

PC

Reg.

instrull11l:7]

R—type
I-type

S-type

imm(rs1l): Store word at rs2 to memory addr.

PC | | = re we
Instruction instruction g4 | |
in
| memow’_ -------- rsi x[rs1] - Data |4 ot
Cam P [ ou
4 i rs2 Reg. |Xx|rs2] ALU pddr { memory _@
instru[19:15] f file 0 | T > .
instrul24:20] * xlrd] 1 | aty
| result
wb_src
> ALU_ctrl ;
instru | | amotere TN N //
: — imm. Gen. : op2_src N LS
[31:20] ~ imm ‘.. Decided by ,/ .-~
(sign—-extended) instruction
24



Datapath for S- type store

12 11

31 25 24 20 19 15 14
funct7 182 rsl funct3 rd opcode
imm([11:0] rsl funct3 rd opcode
imm|[11:5] rs2 rsl funct3|| imm|4:0] opcode

e SW I'S2,

addr.= (number in rs1) + imm

instrull11l:7]

R—type
I-type

S-type

imm(rsl) : Store word at rs2 to memory addr.

PC _ _ o re we
4 — PC  Instruction Instruction rq | |
Reg. in
>e9 | memory  I— rs1 «[rsi] _ eta |, t
Cam P [ ou
g ! A Reg. |Xx|rs2] ALU addr{ memory T3
instru[19:15] 5 file 0 | T S 1
instrul[24:20] » xlrd] 1 | alu
| result
wb_src
P ALU_ctrl ,.
instru |. | aole. 0 T . V4
: — imm. Gen. : op2_src N LS
[31:20] _ imm ‘., Decided by ,/ _.-~
(sign—-extended) instruction
25



Imm. Gen.

31 25 24 20 19 15 14 12 11 76 0
funct? rs2 rsl funct3 rd opcode R-type
imm[11:0] rsl funct3 rd opcode I-type
imm|[11:5] rs2 rsl funct3|| imm|4:0] opcode S-type

* |-type immediate

ﬁ;fﬁ&ﬁ imm. Gen. imm[31:0]

v imm([31:12]

imm[11:0]

|
-



Imm. Gen.

31 25 24 20 19 15 14 12 11 76 0
funct? rs2 rsl funct3 rd opcode R-type
imm([11:0] rsl funct3 rd opcode I-type
imm|[11:5] rs2 rsl funct3|| imm|4:0] opcode S-type

» |-type & S-type immediate imm_ctrl

[31?28T£g:7] imm. Gen. imm[31:0]

instru[31]F- --------------------------------------- i
i 0 —o) B
nstru | imm[11:5]
[31:25] ! !
instru i |
[24:20] | 251 L imm[4:0]
instru ! 1 i
I A— Decided by

> . \
imm ctrl --------—--" instruction



e SW I'S2,

Datapath for S- type store

12 11

31 25 24 20 19 15 14
funct? rs2 rsl funct3 rd opcode R—type
imm([11:0] rsl funct3 rd opcode I-type
imm|[11:5] rs2 rsl funct3|| imm|4:0] opcode S-type

PC

Reg.

imm(rsl) : Store word at rs2 to memory addr.

= | + ] i
addr.= (number in rsl) + imm Something wrong!
instru [11'7] reg_en---.

PC | | Y re we
' Instruction Instruction ry \\\ | |
\\ in
memory I rsl x[rs1]y, <+ Data
V. ¢ rs2 | N Bddr d_out
f Reg. |X|rs2] ALU { memory 5
instru[19:15] 5 file 0 Y T D> .
instrul24:20] » x[rd] 1 h! alu
|\ result
\ wb_src
ke ALU_ctrl ,
instru ) 4
: .71 — imm. Gen. : op2_src S
[31:20]11:7] ~imm “.. Decided by _ __.- g
(sign—-extended) instruction
ad 28

imm_ctrl

-
-
_—
-—_
p—
--—-----------_—-_-_
——



Regfile modification

Extra control
signal reg_en

Extra
S control }%\\
Number of __|  °28C |  signal
register LLf ﬁf” with
oC one-hot 1
code
Output
(Address) decoder
or
demultiplexer 3
= 3
clk sel[4:0]

29



Datapath for B- type

31 30 25 24 15 14 12 11 0
funct7 rs2 rsl funct3 opcode R-type
imm [11:0] rsl funct3 rd opcode | I-type
imm[11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm|[12] | imm|[10:5] rs2 rsl funct3 | imm[4:1] [ imm[11] | opcode | B-type

 beq rsl,rs2,L(imm/label)

e Goto labelifx[rsl] ==

x [rs2]; otherwise,
instrul11:7] reg en

go to next statement

PC Wl | re we
N PC  Instruction Instruction ry | |
. in
>Reg memory | U rsi x[rsi] B Data
z/’ ’ rsz [ d_OU't
» f Reg. |x|rs2] ALU pddr 4 memory 5
instrul[19:15] 5 file 0 | T D>
: ’ x[rd] alu 1
instrul24:20] *» 1 —
| result
wb_src
> ALU_ctrl ;
instru | _ | olen. T . V4
. .71 — imm. Gen. ] op2_src N S
[31 . 2@ | 11: 7] | imm \\~> DECldEd by —’"’,z’
| (sign-extended) instruction
af 30

imm_ctrl

-
-
————‘—_—
-



31

30

Datapath for B- type

25 24

15 14

12 11

0

funct7 rsZ rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode

imm[11:5] rs2 rsl funct3 imm|[4:0)] opcode
imm|[12] | imm|[10:5] rs2 rsl funct3 | imm|4:1] | imm[11] | opcode

 beq rsl,rs2,L(imm/label)

e Goto labelifx[rsl]==

e Recall in ALU

opl/x[rsl] -«
op2/x[rs2] -+

x[rsl]l==

Subtractor

=

T

ya

4

Zero

Result

x[rs2]«< x[rs1]l-x[rs2]==

R-type
I-type
S-type

B-type

opl

op2

ALU

x [rs2]; otherwise, go to next statement

result

ZEIo

ALU ctrl

31



Datapath for B- type

31 30 25 24 15 14 12 11 0
funct7 rs2 rsl funct3 opcode
imm|[11:0] rsl funct3 rd opcode

imm[11:5] rs2 rsl funct3 imm[4:0] opcode
imm|[12] | imm|[10:5] rs2 rsl funct3 | imm|4:1] | imm[11] | opcode

 beq rsl,rs2,L(imm/label)
« Goto labelifx[rsl]==

instru [11'7] reg_en

{

R-type
I-type
S-type

B-type

x[rs2]; otherwise, go to next instruction

PC | STy | 4 lin re we
1
. PC Instruction Instruction rq N | |
>Reg. memory J — rsl x[rs1] Zero Data | .
rams p, [ ou
| ¥ ." rs2 Reg. |X|rs2] ALU addr { memory 15
instru[19:15] ,: file 0 | T D>
instru[24:20] * x[rd] 1 | alu 1
PC=PC+4, when zero!=0 S | result wb_src
PC=PC+imm, when zero=0 ALUﬁftrl i
instru |, | o e T N //
: .71 — imm. Gen. , op2_src N
[31. 2@ | 11: 7] | imm \\~ DECldEd by —’"’,z’
| (sign—-extended) instruction
af 32

imm_ctrl

-
-
_—
-—_
p—
--—-----------_—-_-_
——



Datapath for B- type

{

imm_ctrl

-
-
_—
-—_
p—
--—--_--------_—-_-_
——

31 30 25 24 15 14 12 11 0
funct7 rs2 rsl funct3 opcode R-type
imm [11:0] rsl funct3 rd opcode | I-type
imm[11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm|[12] | imm|[10:5] rs2 rsl funct3 | imm[4:1] [ imm[11] | opcode | B-type
A Something
| wrong!
— 1Mm :
9 instru[11:7] reg_en
PC : t‘ ..... |_ g lkn re we
PC  Instruction instruction 4 N | |
Reg. memor
S | y’— -------- rsi x[rsi] 2971 pata 4 out
e p, [ ou
| = ." rs2 Reg. |x|rs2] ALL addrJ memory _0
instrul[19:15] ! file 0 | T D>
instrul24:20] * x[rd] 1 * alu 1
PC=PC+4, when zero!=0 S | . resutt wb_src
PC=PC+1imm, when zero=0 ALUﬂﬁtr j
instru | _ | . ola.. 0 T . V4
: .71 — imm. Gen. , op2_src N
[31:20(11:7] T i \, Decided by .
| (sign-extended) instruction
v 33



Datapath for B- type

{

imm_ctrl

-
-
_—
-—_
p—
--—-----------_—-_-_
——

31 30 25 24 15 14 1211 0
funct7 rs2 rsl funct3 opcode R-type
imm [11:0] rsl funct3 rd opcode | I-type
imm[11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm|[12] | imm|[10:5] rs2 rsl funct3 | imm[4:1] [ imm[11] | opcode | B-type
/ is_beq_instruction
4 P
— 1mm instru[11:7]reg en
PC Y | , re we
. instruction d_fin
PC  Instruction rd | |
Reg. memor
S | L) I— rsi x[rsi] 297°1 pata 4 out
R , _ ou
| i rs2 Reg. [x|rs2] ALL addrdmemory| 5
instru[19:15] ! file 0 | T D>
instrul24:20] * x[rd] 1 * alu 1
r 1t
PC=PC+4, when zero!=0 S ALUl . =su wb_src
: tr T
PC=PC+1imm, when zero=0 — i
instru | _ | . ola.. 0 T . V4
: .71 — imm. Gen. , op2_src N
[31.2@' 11-7] | imm \\~ DECldEd by ‘—’"’,z’
| (sign-extended) instruction
af 34



Datapath for B- type

31 30 25 24 15 14 12 11 0
funct7 rsZ rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode
imm(12] | imm][10:5] rs2 rsl funct3 | imm|4:1] | imm[11] | opcode
is_beqg_instruction
Recall beq
imm[12]10:5] rs2 rsi 000 imm([4:1]11]

Truth table

R-type

[-type

S-type

B-type

1100011 BEQ

000 1100011

All the other cases

1
0

is_beq_instruction=1i[14]i[13]il[12]i[6]i[5]i[4]i[3]i[2]i[1]i[@]

35



L s
Datapath for B- type

31 30 25 24 15 14 12 11 0
funct7 rs2 rsl funct3 opcode R-type
imm [11:0] rsl funct3 rd opcode | I-type
imm[11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm|[12] | imm|[10:5] rs2 rsl funct3 | imm[4:1] [ imm[11] | opcode | B-type
. I _ : : imm_ctrl -----__ _
I-type & S/B-type immediate | \..___, Decided by
| instruction
instru : :
[31:2®|11:7] Imm. Gen. imm[31:0]

- ™~
- ~,
- -~
- -~
- -~
_—— ~
-

~

instrul[31] F=—==mmmmmmmmmmmm T

0 ——

1 timm[31:12]
instrul[30:25] ;1 imm[10:5]
instrul[24:20]

instrul[11:8]

Limm[4:1]

s e i o

imm_ctrl
instru[31] _
instrul7] imm[11]
instrul[20]
instrul7] imm[0Q] -
0




Datapath for B- type

{

31 30 25 24 15 14 12 11 0
funct7 rs2 rsl funct3 opcode R-type
imm [11:0] rsl funct3 rd opcode | I-type
imm[11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm|[12] | imm|[10:5] rs2 rsl funct3 | imm[4:1] [ imm[11] | opcode | B-type
/ is_beq_instruction
o—* instrul11:7:
. 1Nnstru A
1 1mm .
N--.  reg_en
PC . . \‘ I d lkn re we
N PC  Instruction Instruction rq N | |
Reg. memor
S | L) I— rsi x[rsi] 297°1 pata 4 out
= p ; ou
¥ ." rs2 Reg. |X|rs2] ALU addr { memory 15
instrul[19:15] ,: file 0 | T D>
instru[24:20] * x|[rdl] 1 | alu 1
result
PC=PC+4, when zero!=0 S ALUl frl s wb_src
. CTr I
PC=PC+1imm, when zero=0 — i
instru | | L [ .ol TS - V4
: .71 —imm. Gen. F&— op2_src \ s’
[31:20]11:71 o 1mm “., Decided by . .-~
| (sign-extended) instruction €
v 37

imm_ctrl

-
-
_—
-—_
p—
--—-----------_—-_-_
——



Datapath for the other types

opcode | U-type

imm_ctrl

-
-
-
——
-
————————————————————
——————

31:12]
imm |20 imm|10:1] imm|11] imm|19:12] opcode
/ ! is_beg_instruction
4 P
imm instrul11:7]
A reg_en
PC . . 1 | d ln re we
: 1nstruction —
eg. [ memory -
J L Ip— rsi X[rs1] 29
¢ rs2 4d d out
/ Reg. ALU add 4 memory .
instru[19:15] | file 0 |
instrul[24:20] * x [rd] 1 |
| result
wb
> ALU_ctrl
instru | | L .ol TR s
: .71 — imm. Gen. -&— op2_src ,/
[31-20'11-7] . lmm DECldEd by ‘,"”’¢
(sign—-extended) instruction
. 4

38




Controller

Control signals

* This is a datapath that supports R-type & I-type arithmetic and logic
operations, lw, sw and beq

Control signals
instrul11:7]
A reg_en
PC . . 1 | d lin re we
N PC Instruction | 1MSTruction rq N |
Reg. memor
J L J— rsi x[rsi]
7 Data d Out
rs2] addr{ memory T

‘-——n

> -
<o ¢ Irs2
Reg. |X

instru[19:15] file 0 _ALU T >

instru[24:20] x[rd] 1 B alu 1
ol— 4 | €0 result wb Src
1 > ALU ctrl -

L op2_src

Pete Lnstru — imm. Gen
[31:20]11:7] ' ' imm
(sign—-extended)

imm_ctrl b
is_beq_instruction

NG

39




Datapath working example

0x0 — addi x1,x0,-1 instrull1l:7]
A
PC Xl ‘\‘u regren d lin re we
N PC | Instruction ruction g -
Reg. '
K eg memory 0 [rs1] o
, rs2 b— . d_out
| Reg. [xIrs2] ALy FIgr1 memory 5
instpe(19:15] | fle o0 T >
insfrul24:20] * x[rd] 1 = ~TT 1
T efro result
o4 | wb _src
1 > ALU ctrl
pc_src instru ‘
: .71 — imm. Gen. op2_src
[31:20(11:7]1 | imm
| (sign-extended)
imm_ctrl ——
\ - is_beq
0x0: addi x1, x0, -1
reg en re we alu ctd imm_ctd wb_src op2 src is beq ¢x4: ori x2, x0, 128
POx8: add x3, x1, x2
Oxc: sw X3, 0(x3)
addi 1 @ © add I-type 1 1 0 0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12 40



Controller

Datapath working example

0x0 addi x1,x0,-1 instru[11:7] DEC

A  reg_en
PC . Xl 3 g|_ d lin re we
PC Instruction | 1NSTrUCT1ON rq |
+ ‘ T
Sk memo | - rsl x0 —f———x[rsi] Data
//’ r Is?2 [ d_OUt
4 f > X [rs2] ALU addr{ memory 5
instrul[19:15] | file ) T >
instru[24:20] * x[rd] 1 | 7 alu 1
g €0 result
0} — 4 -1 | wh_src
1 >/ . ALU_ctrl
[~ g
pc_src instru —imm. Gen . | Q op2_src
[31:20'11:7] ) ) imm
| (sign-extended)
imm_ctrl .

is_beq

—
N
0x0: addi x1, x0, -1
reg en re we aluctd imm ctd wb_src op2.src is_beq Ux4: ori x2, x0, 128
POx8: add x3, x1, x2
Oxc: sw X3, 0(x3)
addi 1 @ © add I-type 1 1 @  0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12 41



Controller

Datapath working example

0x0 addi x1,x0,-1 instrul11:7] DEC EX
A
PC x1 reﬂren |, rewe
. . 1 1
N PC  Instruction Instruction g i
>Beg. memory | — rs1 x0 - Sate
//’ r Is?2 L [ d_OUt
» / Reg. |X!| {1 memory 5
instru[19:15] | file |—e— >
instrul24:20] * x[rdl | alu 1
0l— 4 -1 o result
| wb _src
1 > ALU ctrl

pC_Src : ‘
Instru — imm. Gen. op2_src

| (sign-extended)

imm ctrl
NG

is_beq

0x0: addi x1, x0, -1
reg en re we alu ctd imm_cid wb_src op2 src is beq 0x4: ori x2, x0, 128
POx8: add x3, x1, x2
Oxc: sw X3, 0(x3)
addi 1 @ © add I-type 1 1 0 0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12 42



Datapath working example

Ox0 addi x1,x0,-1 instrul[11:7] DEC EX
A r
PC . Xl 1 eg|_en d lin re we
N PC | Instruction Instruction rq N
Req. ' :
St memony | rsl x0 x[rs1] -1 | p

o | ata

¥ ¢ s2 ' addr.

.' Reg. |Xx|rs2] ALU memory
instru[19:15] i fle |l—e<07 T >
instrul24:20] * x[rd] 1 1 | alu

ol— 4 B ] | ero result
1 > ALU ctrl
pc_src instru |
[31:20]11:7] —|'mm. Gen.
| (sign-ex ——
imm_ctrl ——
\ L 1s_beq
0x0: addi x1, x0, -1
reg en re we alu ctd imm_ctd wb_src op2 src is beq ¢x4: ori x2, x0, 128
POx8: add x3, x1, x2
Oxc: sw x3, 0(x3)
addi 1 @ © add I-type 1 1 0 0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12 43

WB



Controller

Datapath working example

ori

0x4 ori x2,x0,128 instrul[11l:7] DEC EX
A
PC . X2 ‘\‘u regren d lin re we
N PC | Instruction Instruction g N
Reg. memory ' !
> I Es% X0 x[rsi] 128 Data |4 oot
< l’, > Reg X FSZ] ALU addr. memory _0
instru[19:15] ,.: fle |l—e<07 T >
instru[24:20] * x[rd] 1 | alu 1
0— 4 128 | T | ero result
‘ wb_src
1 > ALU ctrl
pc_src instru . l op2 Src
[31:20|11:7] —|imm. Gen. s Pes WB
| (sign-extended)
imm_ctrl ——
\ L is_beq
P0x0: addi x1, x0, -1
reg_en ‘re we alu ctd imm ctd wb_src op2 src is beq 9x4: ori x2, x0, 128
POx8: add x3, x1, x2
Oxc: sw x3, 0(x3)
1 0 or I-type 1 1 0 0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12 44



Controller

Datapath working example

0x8 add x3,x1,x2 ]ﬂstﬂﬁﬂl 71 DEC EX
PC X3 % regl_en i, re we
. . 1 l
N PC | Instruction Instruction g 1 N
Reg. memor ' - )
S y’_ -------- rsl x1 x[rsl] 127 Data
’z/ ’ r52 X2 — [ addr d_OUt
. ! Reg. |X|rs2] ALY {memory| T
instru[19:15] ; file o0 T >
instrul[24:20] * x[rd] 128 alu 1
ol— 4 B | 20 result
[ wb_src
1 > ALU ctrl
pc_src instru ‘ o
— p2_src
[31:20]11:7] —|mm. Gen. imm WB
| (sign-extended)
imm_ctrl ——
\ L is_beq
P0x0: addi x1, x0, -1
reg en re we alu ctd imm_ctd wb_src op2 src is beq ¢x4: ori x2, x0, 128
0x8: add x3, x1, x2
Oxc: sw x3, 0(x3)
1 © add X 1 0 0 0x10: 1w x5, 0(x3)

add

0x14:beq

X3, X5, =12 45




Datapath working example

SwW

@xc SwW X3 Q(X3) 1nstru[11 7] DEC X MEM
A reg_en
PC | | . | i re we
N PC | Instruction Instruction rq N
Reg. memory ' 127 !
> | P rsl x3 x[rsi] 127 Data
-2 oy — d_out
¥ ¢ s2 X3 ' addr. -
: Reg. X[rs2] ALU memory 5
instru[19:15] ! f'- 0 >
' 127 * 1
instrul24:20] * x[rd] 0 alu
1’ zelro 1
| | result
o— 4 wb_src
1 > ALU ctrl
pc_src instru _l_ '
a1 .71 —imm. Gen. op2_src
[31:20]11:7] —|'Mmm.en imm
| (sign-extended)
imm_ctrl ——
\ L is_beq
P0x0: addi x1, x0, -1
reg en re we alu ctd imm_ctd wb_src op2 src is beq ¢x4: ori x2, x0, 128
POx8: add x3, x1, x2
Oxc: sw x3, 0(x3)
0 1 add S-type X 1 0 0x10:lw x5, 0(x3)
0x14:beq x3, x5, -12 46



IIFDa’capa’ch worklng example

x5 4 reg_en
PC et ‘ | i re we
PC | Instruction nstruction rg N
t Reg. memory ' 127 !
S e rsl x3 x[rsi] 127 Data |4 oyt
- , L ; ou
| = ',: rs2 Reg. |X _rﬁ] ALY addr 4 memory _0
instru[19:15] ,: file (—e—0 T >
instrul[24:20] * x[rd] 1] © — alu 1
ol— 4 ] | €0 result wb Src
1 > ALU_ctrl -
pc_src instru _l_ '
Iy 1 —{imm. Gen. op2_sre
[31:20]11:7] —|'MmM. €N 0 . WB

| (sign-extended)

imm ctrl
NG

is_beq

P0x0: addi x1, x0, -1
reg en re we alu ctd imm_cid wb_src op2 src is beq 0x4: ori x2, x0, 128
POx8: add x3, x1, x2
Oxc: sw X3, 0(x3)
lw 1 1 0 add I-type 0 1 0 0x10:1lw x5, 0(x3)
0x14:beq x3, x5, -12 47



Controller

Datapath working example

0x14  peq x3,x5,-12 instrul[11:7] DEC EX
A reg_en
PC | | \ | i, rewe
PC | Instruction Instruction rq N
+ Reg. memory ' 127
S | I rsl x3 x[rsil Data
-2 — d_out
» ¢ rs2 x5 rs?2 addr -
wB . ! Reg. |x|rs2] ALU {memory |
instru[19:15] ; file l—e—<0) T >
instrul[24:20] * x[rd] 1| 127 I alu 1
T | 2€Iro resylt
o— 4 0 wb_src
11— =12 > ALU_ctri
pc_src instru i !
: .71 — imm. Gen. - op2_src
[31:20]11:7] —|imm. Gen 12 WB
| (sign-extended)
imm_ctrl ——
\ L is_beq
P0x0: addi x1, x0, -1
reg en 're we aluctd imm ctd wb src op2 src is beq 9x4: ori x2, x@, 128
POx8: add x3, x1, x2
Oxc: sw x3, 0(x3)
beq @ 0 0 X B-type X 0 1 0x10:1lw x5, 0(x3)
0xl4:beq x3, x5, =12 48



Controller

instrull11:7]

PC . o 4y Fewe
A PC  Instruction Instruction rq 7
Reg. memory. | - rsi x[rsil] Dat
= ata d OUt
¥ ¢ Irs2 ' addrJ -

, Reg. |x|rs2] ALU memory | T
instru[19:15] i file 0 | T >
instrul24:20] * x[rd] 1 I alu ]

0l — 4 | “[° result
S wb _src
1 ALU_ctrl
pc_src instru : ‘
[31:20]11:7] —|imm. Gen. o OPeSTe
| (sign-extended)
imm_ctrl
— / O
\ is_beq
Input Output
Generate control signals guiding the datapath to reg_en
execute instructions e
] [ [ ] We
The Inputs are instructions, the outputs are the . alu ctrl
control signals SEIH iam ctrl
Once the type of instruction is determined, the wh_src
control signal is determined U S

is_beq




Controller

Controller

instrull11:7]

PC . ®---—s re%_en dlin TEWE
N PC | Instruction 1nsEru. rd -
LReg. memoryf/ ------- - rsl x[rsi] Data |4 o+
% rs2 Reg X r52] ALU addr J memory ] 0
instru[19:15]J file ) , T > }
instrul[24:20] x[rd] 1 7 alu 1
o— 4 | zefo result o
1 > ALU_ctrl Wh_sTc
pc_src instru : ‘
[31:20]11:7] —|imm. Gen. o OPASTe
(sign—-extended)
imm_ctrl RS wh_src
\ is_beq Ao_ctrt
imm_ctrl reqg en | is_bfq op2] src
Controller
+ Can be modeled by an FSM 0x0: addi x1, x0, -1
Ox4: ori1 x2, x0, 128
@ 0x8: add x3, x1, x2
@ Oxc: sw  x3, 0(x3)
0 o 0x10:lw x5, 0(x3) 50
0x14:beq x3, x5, -12




Controller

instrull11:7]

PC | e il g lin e we
N PC | Instruction 1ns:ru. rd -

Reg. memoryf/ ------- - rsl x[rsi] Data |4 out

< ¥ rs2 Reg. [x rs2] ALU addrd memory _@
instru[19:15] J file ) | T > }

instrul24:20] x[rd] 1 | alu E

0— 4 |  ZfrO result )
1 > ALU_ctrl o re
pc_src instru l
: .71 —imm. Gen. op2_src
[31. 20 | 11: 7] imm en imm
(sign—-extended)
imm_ctrl o
P _ re| we
reg_en| 1s_b1zq

Controller

« Can be modeled by an FSM

« Can be implemented by a
Mealy machine

51



Controller

PC

Controller

instrull11:7]

>Reg.

pc_src

reg_en
PC . ¥ | dlin TEWE
| Instruction 1ns:ru. rd -
memory J) - rsl x[rsi] Data
. ’ rg?2 d_OUt
¥ Reg. [x|rs2] ALy P9grimemory | T
instru[19:15]J file ) | T > }
instrul24:20] x[rd] 1 | alu E
| Z€ro result b
> ALU_ctrl wh_sr¢
instru l
—1 op2_src
[31:2011:7] —|!mm. Gen. imm P43
(sign—-extended)
imm_ctrl o
- _ re| we
reg_en| 1s_b1zq
Controller

« Can be modeled by an FSM

optional

« Can also be implemented by
read-only memory (ROM),

52



Full stack explained

High Level Language
Program (e.g., C)
Compiler

Assembly Language
Program (e.g., RISC-V)

Assembler

Machine Language
Program (RISC-V)

Machine
Interpretation

temp

v [Kk]

v[k+1} =

lw
lw
SW
SwW

0000
1010
1100
0101

= vI[kl;

= v[k+1];

10,
t1,
t1,
10,

1001
1111
0110
1000

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

PC .
| | Instruction | 1N

1100 0110 1010
0101 1000 0000
1010 1111 0101
0000 1001 1100

instrul11:7]
s

stru. r

memory

-

Logic Circuit Description
(Circuit Schematic Diagrams)

instru[19:15]
instrul24:20]

1111 0101 1000
1001 1100 0110
1000 0000 1001
0110 1010 1111

reg_en

rsi

f rs2

x [ patd

file

D

Reg.

x[rs1] |

x re2l
Jr

ALU

ALU_ctrl

dji
{1
hddr.

T

re we

Data d
memory

out

alu
€roresult

ol

wb_src

instru -
[31:20]11:7]

imm. Gen.

imm_ctrl

—

imm

(sign-extended)

O

op2_src

N

reg_enl

is

q

reIweI

Controller

53



Datapath timing analysis

instrul[11l:7]

. reg_en re we
¢ .| instru o I d_jin
N PC | Instruction = . rd | |
>Reg. memor;i’_ ________ rsl E x[rsl] Data |4 oyt
4 'f rs2 Reg X :r52] ALU addr. memory N 0
instru[19:15] i file 0 T >
instrul24:20] * X [rd] 1 | | alu 1
0 4 | Z¢r0 result b
) > ALU_ctrl "o

pc_src instru \
imm. Gen. op2_src

[31:20|11:7] imm
| (sign-extended)

imm_ctrl

™\
N

( )
\ | 1s_beq
Assume the control

Lcik-to—q T Ladd + Lsetup signal is fast

tclk—to—q + Limem + treg + Tmux + tatu + Tmux + tsetup

LiF Lprc LEX Lwgs
R-type datapath

54



Datapath timing analysis

instrul[11l:7]

. reg_en re e
PC - T | d_Jin
A PC | Instruction 1ns:ru. rd N | |
Reg.
Reg memor;i’_ ________ rs% E x[rsi] Data |4 oyt
. 'f I'S Reg X :r52] ALU addr. memory N 0
instru[19:15] i file 0 T >
instrul24:20] * X [rd] 1 | | alu 1
0 4 | Z¢r0 result b
) > ALU_ctrl "o

pc_src instru ‘
Limm. Gen. op2_src

[31:20]11:7] imm
| (sign-extended)

imm_ctrl

™\
N

is_beq

—
NG

tclk—to—q +Lada + tsetup tIF + tDEC + tEX + tWB

tclk—to—q + tImem + treg + talu + tmux + tsetup
MmaX

tclk—to—q +Timem + timm + tmux + talu + Tmux + tsetup

I-type arithmetic & logic datapath
95



Datapath timing analysis

instrul[11l:7]

. reg_en re e
PC - T | d_Jin
A PC | Instruction 1ns:ru. rd N | |
Reg.
Reg memor;i’_ ________ rs% E x[rsi] Data |4 oyt
. 'f I'S Reg X :r52] ALU addr. memory - 0
instru[19:15] i file 0 T >
instrul24:20] * X [rd] 1 | = alu 1
0 4 | Z¢r0 result b
) > ALU_ctrl "o

pc_src instru ‘
Limm. Gen. op2_src

[31:20]11:7] imm
| (sign-extended)

imm_ctrl

™\
N

is_beq

/_
N
tclk—to—q+tadd+tsetup tIF+tDEC +tEX +tMEM +tWB
tclk—to—q +Limem + treg +Latu + tDmem + tmux + tsetup

MaX
tclk—to—q +Timem + timm + tmux + Latu + LDmem + Emux + tsetup

I-type load datapath

56



Datapath timing analysis

instrul[11l:7]

. reg_en re e
PC - T | d_lin
A PC | Instruction 1ns:ru. rd 1 | |
Reg.
Reg memor;i’_ ________ rs% b x[rsi] Data |4 oyt
. 'f I'S Reg X .I"SZ] ALU addr. memory N 0
instru[19:15] i file 0 T >
instrul24:20] * X [rd] 1 | = alu 1
0 4 | Z¢€ro result b
1 > ALU_ctrl wh_sr¢

pc_src instru ‘
Limm. Gen. op2_src

[31:20]11:7] imm
| (sign-extended)

imm_ctrl b
N

is_beq

tclk—to—q + Eada + tsetup

tir+ tppc +tex +t
tclk—to—q 4+ Bnmem 4 treg + L pmem } IF DEC EX MEM
MaXx

tclk—to—q + tImem + treg + talu + tDmem
tclk—to—q +Timem + timm + tmux + talu + LDmem

S—-type datapath 57



Datapath timing analysis

instrul[11l:7]

. reg_en re e
PC : TS | d_lin
A PC  Instruction 1ns£ru. rd 7 | |
Reg.
_REY memoy;_ ________ rs% x[rsi] Data |4 out
. 'f I'S Reg X :rSZ] ALU addr., memory N 0
instru[19:15] i file 0 T >
instrul24:20] * X [rd] 1 | — alu 1
0 4 S result b
i > ALU_ctrl wh_sre

pc_src instru ‘
imm. Gen. op2_src

[31:20]11:7]1 imm
| (sign-extended)

imm_ctrl b
N

is_beq
Lir +fprc +tEX +twsn

tclk—to—q + tImem L treg + tmux + talu L tand L tmux + tadd + tsetup

maxX
tclk—to—q +trmem + timm + Umux + tadd + tsetup }

B-type datapath

58



Summary

We have built a single-cycle CPU

It supports R-type, I-type arithmetic & logic and load (lw),
S-type sw and beq

Datapath and controller are built seperately

Different instruction activates different parts or steps/stages
(IF/DEC/EXE/MEM/WB) of the datapath, thus has different

delays. The longest delay (critical path) is used to estimate
maximum frequency

Nearly no CPU uses single-cycle design today.



