
CS 110
Computer Architecture

Pipeline
Instructors:

Siting Liu & Chundong Wang
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/4/3

Administratives

2

• Again, all the deadlines are hard deadlines! Start early!
• HW 4 ddl April 15th
• Proj. 1.2 ddl April 17th

• Next Monday discussion (teaching center 301) on mid-term I
review.

• Next week lab to check project 1.1. TA will ask questions about
project 1.1.

• Mid-term I on next Thursday, 8am-10am, in the teaching center
301/303

Outline

3

• Starting this lecture, we will improve the performance of our CPU
• Performance evaluation
• Pipeline
• Hazards

Performance
• Recall the great ideas in CA

4

Performance Pipeline Hazards

• Abstraction (layers of representation/interpretation)

• Moore’s law (designing through trends)

• Make the common case fast

• Principle of locality (memory hierarchy)

• Parallelism (pipeline as a special case)

• Performance measurement & improvement

• Dependability via redundancy

“Iron law” of performance

Time
Program

=
Instructions
Program

⋅
Cycles

Instruction
⋅
Time
Cycle

• Can be obtained by profiling or
hardware counter

• ISA (e.g., RISC vs. CISC)
• The program itself
• Compiler
• Programming language
• etc.

• Short as “CPI”
• Microarchitecture

implementation or
circuit design/ISA

• Compiler
• Program
• Programming
language

• CPU (execution) time (ignore I/O, operating system overhead etc.)

• Microarchitecture
implementation or
circuit design/ISA

5

Performance Pipeline Hazards

“Iron law” Example
• Calculate average CPI

6

Program A A-instruction B-instruction C-instruction
CPI 2 2 4

Percentage 20% 40% 40%

• Calculate CPU (execution) time
• CPU frequency 2.5 GHz
• Program A has in total 106 instructions

“Iron law” Example
• Calculate average CPI

7

Program A A-instruction B-instruction C-instruction
CPI 2 2 4

Percentage 20% 40% 40%

• Calculate CPU (execution) time
• CPU frequency 2.5 GHz
• Program A has in total 106 instructions

Average CPI = 2*20%+2*40%+4*40% = 2.8

CPU time = Instruction count * Average CPI * Clock cycle
 = 106 * 2.8 * 1/2.5G
 = 1.12 * 10-3 = 1.12 ms

Different equation
if given IPC!

Performance
• Recall the great ideas in CA

8

Performance Pipeline Hazards

• Abstraction (layers of representation/interpretation)

• Moore’s law (designing through trends)

• Make the common case fast

• Principle of locality (memory hierarchy)

• Parallelism (pipeline as a special case)

• Performance measurement & improvement

• Dependability via redundancy

Pipe that line!

9

Performance Pipeline Hazards

RiceMeatVeggiesCheck-out

Pipe that line!

10

Performance Pipeline Hazards

RiceMeatVeggiesCheck-out

Instru. 1Instru. 2

Simplify the CPU with 5 stages

11

Performance Pipeline Hazards

IF ID/DEC EX MEM WB

Dmem

A
LUImem Reg

file
Reg
file

Instruction Operands
Control signals

Result
(address)

Write/read Dmem
if required
Memory data

Instru. 3Instru. 4Instru. 5Instru. 6

Make an analogy

12

Performance Pipeline Hazards

Instru. 1

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7

Instru. 2

Instru. 3

Instru. 4

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

... ...

Make an analogy

13

Performance Pipeline Hazards

Instru. 1

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7

Instru. 2

Instru. 3

Instru. 4

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

... ...

Previously for a single-cycle CPU

14

Performance Pipeline Hazards

Instru. 1

Time 1 Time 2

Instru. 2

Instru. 3

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

... ...

Imem

IF

Reg
file

ID
A

LU
EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

Observations

15

Performance Pipeline Hazards

• Each instruction still take 5 stages/time slots to complete, no matter
pipelined or not

• Period of the time slot is different
– Single-cycle CPU: tIF + tID + tEX + tMEM + tWB

– Pipelined CPU: max{tIF, tID, tEX, tMEM, tWB}
• Use the “iron law” of performance, pipelined CPU is faster

• How to make the CPU pipelined?

Time
Program

=
Instructions
Program

⋅
Cycles

Instruction
⋅
Time
Cycle

Insert pipeline registers

16

Performance Pipeline Hazards

IF ID EX MEM WB

Dmem

A
LUImem Reg

file
Reg
file

Instruction Operands
Control signals

Result
(address)

Write/read Dmem
if required
Memory data

clk

IF/ID reg. ID/EX reg. EX/MEM reg. MEM/WB reg.

Critical path decided by the slowest stage

rs1

Detailed considerations

17

Performance Pipeline Hazards

IF ID EX MEM WB
Instruction

Operands
Ctrl. signals

Result
(address)

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file

x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.

Result
(for WB)

add t0,t1,t2
sw t4,0(t3)
lw t5,0(t6)
addi t6,x0,1
… …

IF/ID reg.
ID/EX reg. EX/MEM reg. MEM/WB reg.

reg_en
is_beq

rs2
rd

rd

rs1

Detailed considerations

18

Performance Pipeline Hazards

IF
EX MEM WB

Instruction
Operands

Ctrl. signals
Result

(address)

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file

x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.

Result
(for WB)

add t0,t1,t2
sw t4,0(t3)
lw t5,0(t6)
addi t6,x0,1
… …

IF/ID reg.
ID/EX reg. EX/MEM reg. MEM/WB reg.

reg_en
is_beq

rs2
rd

rd

rs1

Detailed considerations

19

Performance Pipeline Hazards

IF
MEM WB

Instruction

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file

x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.

add t0,t1,t2
sw t4,0(t3)
lw t5,0(t6)
addi t6,x0,1
… …

IF/ID reg.
ID/EX reg. EX/MEM reg. MEM/WB reg.

reg_en
is_beq

rs2
rd

rd

rs1

Detailed considerations

20

Performance Pipeline Hazards

IF
WB

Instruction

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file ALU

ALU_ctrl

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.

add t0,t1,t2
sw t4,0(t3)
lw t5,0(t6)
addi t6,x0,1
… …

IF/ID reg.
ID/EX reg. EX/MEM reg. MEM/WB reg.

reg_en
is_beq

rs2
rd

rd

rs1

Detailed considerations

21

Performance Pipeline Hazards

IF
WB

Instruction

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file ALU

ALU_ctrl

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.

add t0,t1,t2
sw t4,0(t3)
lw t5,0(t6)
addi t6,x0,1
… …

IF/ID reg.
ID/EX reg. EX/MEM reg. MEM/WB reg.

reg_en
is_beq

rs2
rd

rd

Hazards ahead!!!

22

Performance Pipeline Hazards

IF ID EX MEM

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file

x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.

add t0,t1,t2
sw t0,0(t3)
lw t5,0(t6)
addi t6,t0,1
… …

reg_en
is_beqWB

Operands
Ctrl. signals

Result
(address)

Result
(for WB)

ID/EX reg. EX/MEM reg.

rdInstruction
IF/ID reg.

rd

MEM/WB reg.

Hazards ahead!!!

23

Performance Pipeline Hazards

• A hazard is a situation in which a planned instruction cannot execute in
the “proper” clock cycle.

• Structural hazards
• Data hazards
• Control hazards

Structural hazards

24

Performance Pipeline Hazards

lw t0,0(t2)
sw t0,0(t3)
lw t5,0(t6)
addi t6,t0,1
… …

Instru. 1

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Instru. 2

Instru. 3

Instru. 4

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Structural hazards

25

Performance Pipeline Hazards

• Caused by hardware limitations. Two or more instructions in the pipeline
compete for a single physical resource

• Can be solved by
– Seperate instruction and data memory (real CPU uses instruction

cache and data cache)
– or using dual-port memory (input multiple addresses, output multiple

data) (general ways to solve structural hazards, add more hardware)
– Assume register file write at rising edge (in the textbook “the first half

clock cycle”), read arbitrarily (in the textbook “the second half clock
cycle”), and design the hardware with this feature

– Instructions take turns to use the physical resource (wait/stall)

Hazards ahead!!!

26

Performance Pipeline Hazards

• Structural hazards
• Data hazards
• Control hazards

Data hazards

27

Performance Pipeline Hazards

Instru. 1

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Instru. 2

Instru. 3

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

x2

x3

x1
updated

x5

x6

x4
updated

x1

x4

Read after write (RAW)

R-type

Data hazards -- solution 1

28

Performance Pipeline Hazards

Instru. 3 Imem

IF

Reg
file

ID

A
LU

EX

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

Instru. 1

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Instru. 2

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

x2

x3

x1
updated

x5

x6

x4
updated

x1

x4

We can wait ...
nop
nop

NOP NOP NOP NOP NOP

NOP NOP NOP NOP
Insert bubbles

R-type

Data hazards -- solution 2

29

Performance Pipeline Hazards

Instru. 1

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Instru. 2

Instru. 3

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

x2

x3

x1
updated

x5

x6

x4
updated

x1

x4

Forwarding or bypass

New
x1

New
x4

R-type

Data hazards -- solution 2

30

Performance Pipeline Hazards

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

x2

x3

x1
updated

x5

x6

x4
updated

x1

x4

Forwarding or bypass

New
x1

New
x4

Add registers to store the updated values
(actually can access from pipeline reg.)

CC 3 CC 4 CC 5

Data hazards -- solution 2

31

Performance Pipeline Hazards

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

x1
updated

x5

x6

x4
updated

x1

x4

Forwarding or bypass

New
x1

New
x4

CC 3 CC 4 CC 5

0
1

op1_src

Add registers to store the updated values
(actually can access from pipeline reg.)

Data hazards -- solution 2

32

Performance Pipeline Hazards

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

x1
updated

Forwarding or bypass

New
x1

CC 3 CC 4 CC 5

0
1

op1_src

• How to decide op1_src?
– Select the forwarded value or the value from ID/EX register
– 1. rd of the add instruction (may be the other type instructions)

equals rs1 in add (may be the other type instructions) instruction
– 2. Ignore write to x0
– 3. The first instruction must write the register and the third instruction

must read the register

Forwarding control logic

Add registers to store the updated values
(actually can access from pipeline reg.)

Data hazards -- solution 2

33

Performance Pipeline Hazards

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

add x1, x2, x3
add x7, x1, x4

... ...

x1
updated

Forwarding or bypass

New
x1

CC 3 CC 4 CC 5

0

2

op1_src

• How to decide op1_src?
– Select the forwarded value or the value from EX/MEM register
– 1. rd of the add instruction (may be the other type instructions)

equals rs1 in add (may be the other type instructions) instruction
– 2. Ignore write to x0
– 3. The first instruction must write the register and the second

instruction must read the register

Forwarding control logic

1

Data hazards

34

Performance Pipeline Hazards

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

lw x1,0(x3)
add x7,x1,x4

... ...

x1
updated

New
x1

Load type RAW

lw x1,0(x3)

add x7,x1,x4 Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WBx1

CC 3 CC 4 CC 5

Forwarding cannot solve this,
leading to a “load delay slot”

Data hazards -- solution 1

35

Performance Pipeline Hazards

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

lw x1,0(x3)
add x7,x1,x4

... ...

x1
updated

New
x1

Load type RAW

lw x1,0(x3)

add x7,x1,x4 Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB
x1

CC 3 CC 4 CC 5

nop NOP NOP NOP NOP NOP

Insert nop and forward x1

Data hazards -- solution 2 warm up

36

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Identify all the data hazards in the following code

Data hazards -- solution 2 warm up

37

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Identify all the data hazards in the following code

Data hazards -- solution 2 warm up

38

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Identify all the data hazards in the following code

Data hazards -- solution 2 warm up

39

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Identify all the data hazards in the following code

Data hazards -- solution 2 warm up

40

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Identify all the data hazards in the following code

Data hazards -- solution 2 warm up

41

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Identify all the data hazards in the following code
• Which of the hazards cannot be completely solved by forwarding?

Data hazards -- solution 2 warm up

42

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Identify all the data hazards in the following code
• Which of the hazards cannot be completely solved by forwarding?

Data hazards -- solution 2

43

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• Code scheduling: Put unrelated instruction into load delay slot
– No performance loss!

Code scheduling:

lw t1, 0(t0)
lw t2, 4(t0)
lw t4, 8(t0)
add t3, t1, t2
sw t3, 12(t0)
add t5, t1, t4
sw t5, 16(t0)

• Code scheduling can be accomplished by the compiler

Data hazards

44

Performance Pipeline Hazards

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

• How many clock cycles to complete the code before and after code
scheduling? Assume no instruction in the pipeline initially.

Code scheduling:

lw t1, 0(t0)
lw t2, 4(t0)
lw t4, 8(t0)
add t3, t1, t2
sw t3, 12(t0)
add t5, t1, t4
sw t5, 16(t0)

45

Summary on data hazards
• Instructions have data dependency
• Occurs when an instruction reads a register before a

previous instruction has finished writing to that register
(RAW)

• There can also be WAW/WAR hazards depending on the
pipeline design

• For load-type RAW data hazards, there is a load delay slot
unavoidable

• Can be solved by forwarding or code scheduling

Performance Pipeline Hazards

46

Question

Combinational logic in some stages takes 200 ps and in some
100 ps. Clk-Q delay is 30 ps, and setup-time is 20 ps. What is
the maximum clock frequency at which a pipelined design
with 10 stages can operate?

A: 10GHz
B: 5GHz
C: 6.7GHz
D: 4.35GHz
E: 4GHz

Question
IF = 400 ps ID = 200 ps EX = 200 ps MEM = 500 ps WB = 200 ps

What is the maximum frequency of this 5-stage RISC-V CPU
before/after pipelining?

