LSS

i) BRRFSHRAF R

AWy n W
o/ School of Information Science and Technology

CS 110
Computer Architecture
Pipeline

Instructors:
Siting Liu & Chundong Wang
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/4/3

Administratives

Again, all the deadlines are hard deadlines! Start early!
HW 4 ddl April 15th
Proj. 1.2 dd| April 17th

Next Monday discussion (teaching center 301) on mid-term |
review.

Next week lab to check project 1.1. TA will ask questions about
project 1.1.

Mid-term | on next Thursday, 8am-10am, in the teaching center
301/303

Outline

Starting this lecture, we will improve the performance of our CPU
Performance evaluation

Pipeline

Hazards

Performance

Performance

* Recall the great ideas in CA

« Performance measurement & improvement

Performance

“Iron law” of performance

« CPU (execution) time (ignore I/O, operating system overhead etc.)

Time Instructions Cycles Time
Program - Program Instruction Cycle
« (Can be obtained by proflllng or e Microarchitecture
hardware counter . Short as “CP|” implementation or
+ [SA (e.g., RIS(.D vs. CISC) | Microarchitecture circuit design/ISA
* The program itself implementation or
« Compiler circuit design/ISA

« Programming language « Compiler
« etc. Program

* Programming
language

“Iron law” Example

« Calculate average CPI

Program A A-instruction B-instruction C-instruction
CPI 2 2 4
Percentage 20% 40% 40%

« Calculate CPU (execution) time
« CPU frequency 2.5 GHz
* Program A has in total 10° instructions

“Iron law” Example

« Calculate average CPI

Program A A-instruction B-instruction C-instruction
CPI 2 2 4

Percentage 20% 40% 40%

Average CPIl = 2*20%+2*40%+4*40% = 2.8

« Calculate CPU (execution) time Differe_nt equation
+ CPU frequency 2.5 GHz if given IPC!
* Program A has in total 10° instructions

CPU time = Instruction count * Average CPI * Clock cycle
=106*2.8 * 1/2.5G
=1.12*108=1.12 ms

Performance

Performance

* Recall the great ideas in CA

« Parallelism (pipeline as a special case)

Check-out

Pipeline

Pipe that line!

=
t

gies

Pipe that line!

S
&
>

]
D)<

=)

?
Di< @ &<

Q

Simplify the CPU with 5 stages

F = D/ EX > MEM = WB
\
Reg = Reg
ime file >E bmem file
/
Instru. 8 :
Instruction Operands Result Write/read Dmem
Control signals (address) if required

Memory data

11

Instru.

Instru.

Instru.

Instru.

1

2

3

4

Time 1

Imem

Make an analogy

Time 2

1D

Reg
file

|F

Imem

Time 6

WB

Reg
file

MEM

Dmem

Time 3 Time 4 Time 5
—EX MEM WB
= Reg
= bmem file
/
D —EX MEM
Reg >
~F D
file - mem
/
IF D —EX
Reg >
Imas file =
/
IF ID
Imem §ﬁ§

|t

Time 7

WB

Reg
file

MEM

Dmem

Instru.

Instru.

Instru.

Instru.

1

2

3

4

Time 1

Imem

Make an analogy

Time 2

1D

Reg
file

|F

Imem

Time 6

WB

Reg
file

MEM

Dmem

Time 3 Time 4 Time 5
—EX MEM WB
= Reg
= bmem file
/
D —EX MEM
Reg >
~F D
file - mem
/
IF D —EX
Reg >
Imas file =
/
IF ID
Imem §ﬁ§

|t

Time 7

WB

Reg
file

MEM

Dmem

Previously for a single-cycle CPU

Time 1 Time 2
IF D ~EX MEM wB
Reg = Reg
Instru. 1 |Imem P >E Dmem [~
IF D ~EX MEM WB
Instru. 2 Imem Reg >lj: Dmem Reg
- file C file
/
IF 1D
Instru. 3 Imem F;ﬁg

Observations

Each instruction still take 5 stages/time slots to complete, no matter
pipelined or not

Period of the time slot is different

— Single-cycle CPU: tg + tp + tex + tyem + tws

— Pipelined CPU: max{t;, tp, tex, tvems twel

Use the “iron law” of performance, pipelined CPU is faster

Time Instructions Cycles Time

Program Program " Instruction Cycle

How to make the CPU pipelined?

15

Insert pipeline registers

IF/ID reg. ID/EX reg. EX/MEM reg. MEM/WB reg.
F = D EX = MEM = WB
\
Reg = Reg
Imem P >E ®—| Dmem file
/
r P o o
clk
Instruction Operands Result Write/read Dmem
Control signals (address) if required

Memory data
Critical path decided by the slowest stage 16

add to,tl,t2

Detalled considerations

sw t4,0(t3) ID/EX reg. EX/MEMreg. MEM/WB reg.
lw F5,0(t6) IF/ID reg. Operands Result Result
addi t6,x0,1 1nctruction Ctrl. signals (address) (for WB)
...... . E: E: E: rd
H ID EX ™ MEM . WB is_beq
Cirl. q -
instru. . o >
reg_en : .
|PC %_ > | ALU ctrl . re we |
PC | L_| _1n E
+ Reg. imem. rol x{[rs1] tLq_—' : wb_src
> rs2| o addr} Data |1 4 oyt
rd f_eg. x|rs2] B memory _E — N
e ALU 0
N d s
5 b —alu result p
op2_srq5 Lizero b_
instrui _ imm. | 4
[31:20|1y:7_ Gen. imm > >
: I (sign—exten%%d) : l
imm_ctrl '
_ b .
0 4 \ | 1s_beq
1

pc_src

17

Detalled considerations

add to,tl,t2

sw t4,0(t3) ID/EX reg. EX/MEMreg. MEM/WB reg.
lw F5,0(t6) IF/ID reg. Operands Result Result
addi t6,x0,1 Instruction Ctrl. signals (address) (for WB)
...... = [[rd
E ' > = \WB
__add.ct r.'F EX MEM | is_beq
IF sSw Ctr) reg_en
instru. | E; o >
reg_en .
PC gr t2p | ALU ctrf o rewe .
H PC Imem —— 1 _&ln
+ Reg. ' rsi [tl P | 5 wb_src
> rs2 X 1addri{ pata |
" Reg. . + d_out
rd| ae [rs2] B AL memory _E 2
o S —*t2- dbi ;;}_
] —alu result p |

__111
- P pero >

op2_sré
. l - X
instru mm. | ¢
[31:20]11:: 7] Gen. imm > >
: [(sign—-extended) ' :
imm_ctrl]
O [
0 4 \ | 1s_beq
1

PC_Src 18

add to,tl,t2
sw t4,0(t3)

Detalled considerations

w t5,0(t6) IF/ID reg. ID/EXTteg. EX/MEMreg. MEM/WBreg.
addi t6,x0,1 -
...... Instruction TD/EX. rd= Xl— 5 - - L
I | ___Sw, ctrll‘aldd .ctrt7 MEM WB is_beq
1w Crl. reg_en
instru. E; [; >
reg_en 4ar . :
PC | aLu_t2. rewe
+ M RZC Imem. —— 3 = t—_&ln \
> rs2 | ol add.qlu:addr| pData q O"L\Ijt_src
d F;i?eg. x[rs21 P result 'memory - I
b S] ALU [T [PB ;]_
: “alu result p 1
; P fero >
instru imm. | o @ X
[31:2@|11§:7: Gen. imm - b
' [(sign- exten%éd) ! :
imm_ctrl
O [
Aﬁ 4 \ | 1s_beq
1

pc_src

19

add to,tl,t2
sw t4,0(t3)
lw t5,0(t6)
addi t6,x0,1

IF

PC

Reg.

Detalled considerations

_lp_c

ID/EX reg. EX/MEM reg.
F/ID reg. / g / 9. MEM/WB reg.
InstructionIp/EX. rd=30_ X S5 — rd
s == == — WB
sw.ctrliadd. ct r'q__ is_beq
Tw.ctrl reg_en
- Ctrl. \ B
inst rua.‘lld:l L [_ L
regren X p ALU_ t4 - o re we
1n
Imem. o] -
A 0 o] pata z hsre
- Reg. P [sw.addr d_out
rd| o " 'memory 2
o S B Lngd.alu j‘
: > M1°Y result
op2_srq5 SW.zero Lize%dd-zem%—
instru L | imm. | ¢ o g X
[31:20|1y:7_ Gen. imm > >
: I (sign—exten%%d) : :
imm_ctrl '
_ b .
\ | 1s_beq

pc_src

20

i 0.1 D€lalled considerations

sw t4,0(t3)

w t5,0(t6) IF/ID reg. ID/EX reg. EX/MEMreg. MEM/WB reg.
addi t6,x0,1
llllll InstructlonID/Ex rd= 3@_ 30E X — y
IF | Sadi. Ctrl W.ctrl[] sw.ctrU W is_beq
Ctrl. reg_en
instru. o d >
PC " xPlawexpy rewe
+ [PC Imem _o— = ‘&l” :
Reg. ' rsl 16 o | : wb_src
> rs2 | - addr| T4 4 out
d Fﬁg- 72l lw.addr memory -
e e RS iy
t0=alu “alu result b 1
. ﬁ 11y
r':eS 1t op2_srq: L:zem R b_
instrui imm. | o 1 0 i)
[31:20|11§:7: Gen. imm - >
I [(sign- exten%ed) : :
imm_ctrl

Aﬁ 4 \ 'O is_beq
1

PC_Src 51

. Haads
add 10 t1.12 Hazards ahead!!!

sw t0,0(t3) ID/EX reg. EX/MEMreg. MEM/WB reg.
lw F5,0(t6) IF/ID reg. Operands Result Result
add1 tG,t@,l Instruction Ctrl. signals (addFESS) (fOI’ WB)
...... . E: E: E: rd
IF ID EX I MEM M WB g peq
Ctrl. reg_en
instru. t; >
PC ALU_ctrl re we
| PC d_in :
+ >Reg. P ; wh_src
'a '
' - d_out\
ALU [g
—alu resu® b_ L
P pero >
instrui _ imm. | 4
[31:20|1y:7_ Gen. imm > >
' I (sign—exten%%d) ! :
imm_ctrl '

Aﬁ 4 \ 'O is_beq
1

pc_src B

. Mamrds
Hazards ahead!!!

A hazard is a situation in which a planned instruction cannot execute in
the “proper” clock cycle.

Structural hazards

Data hazards
Control hazards

23

. Hamards
W 0.0(t2) Structural hazards

sw t0,0(t3)
lw t5,0(t6)
addi t6,t0,1

""" CC1 CC 2 CcC 3 CC 4 CC 5 CC 6 cC 7
IE D —EX MEM WB
Instru. 1 | Imem il >E Dmem | il
/
I D —EX MEM WB
Reg > Reg
Instru. 2 Imem fla > Dmem file
/
I D —EX MEM WB
Reg > Reg
Instru. 3 Imem fla = Dmem file
IF D —EX MEM
Instru. 4 Reg >
Imem fla — Dmem
_” /

24

. Hamards
Structural hazards

Caused by hardware limitations. Two or more instructions in the pipeline
compete for a single physical resource

Can be solved by

— Seperate instruction and data memory (real CPU uses instruction
cache and data cache)

— or using dual-port memory (input multiple addresses, output multiple
data) (general ways to solve structural hazards, add more hardware)

— Assume register file write at rising edge (in the textbook “the first half
clock cycle”), read arbitrarily (in the textbook “the second half clock
cycle”), and design the hardware with this feature

— Instructions take turns to use the physical resource (wait/stall)

25

. Mamrds
Hazards ahead!!!

e Structural hazards
« Data hazards
« (Control hazards

26

. Haads
Data hazards

add x1, x2, x3
add x4, x5, x6

add x7, x1, x4 R-type
CC 1 CC 2 cC 3 CC 4 CC 5 CC o CC 7
IF D XZ% MEM WB
Reg >>r Reg x1
Instru. 1 | Imem file C brem file |updated
X3| _—
x5 —
Reg > Reg x4
Instru. 2 Imas file :C bmem file ppdated
X6 __—
IF EX MEM WB
ID Xl\
Reg > Reg
Instru. 3 Imem file >C Dmem file
x4 __—

Read after write (RAW)

27

add x1,
add x4,
add x7,

X2, X3
x5, x6
x1l, x4

CC 1
IF

Instru. 1 Imem

Instru. 2

We can wailt ...

nop
nop
Insert bubbles

Instru. 3

R-type

CC 2 CC 3

ID EX
x2| T —

Reg :>£i

file C
X3|

|F ID
Imem Eﬁg
NOP

CC 4
MEM

Dmem

. Hamds
Data hazards -- solution

CC 5
WB

x5

X6

\ ¥ /

Reg
file

MEM

NOP

NOP

Dmem

NOP

NOP
IF

Imem

CC 6 cC 7
x1
updated
WB
Reg x4
file updated
NOP NOP
NOP NOP
ID —EX
x1 >
Reg
file =
x4 /2.(

add x1,
add x4,
add x7,

Instru. 1

Instru. 2

Instru. 3

Forwarding

Data hazards -- solution 2

x2, X3
x5, x6
x1l, x4

CC 1
IF

Imem

or bypass

CC 5
WB

Reg
file

EX New MEM

R-type
CC 2 CC 3 CC 4
D —EX_New_MEM
X2 x1
Reg =
file = bmem
X3|
IF ID
XSN\\\\'x4
Reg =
Ime file e
x6| . __—
IF ID
Imem I?ﬁg

Dmem

\:: My 7

CC 6 CC 7
x1
updated
WB
Reg x4
file updated
MEM WB
Dmem Reg
file

29

Data hazards -- solution 2

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

IF

lmem

Add registers to store the updated values

(actual

ID

Reg
file

|F

Imem

Forwarding or bypass

pipeline reg.)

1y can access from
CcC 3 cC 4 CC 5
b2 _New MEM B we
= 1
>1j: Dmem Reg
C file
ID EX New MEM
x5 x4
Reg >
file = bmem
x6| . __—
IF ID Po i
Reg >
Ime file =
x4

x1
updated

WB
Reg x4
file updated
MEM WB

Dmem Reg

file

30

Data hazards -- solution 2

add x1, x2, x3
add x4, x5, x6
add x7, x1, x4

|F ID
Imem Reg
file
|F
Imem

Forwarding or bypass

(actpally can access from
opl]src CC 3 cC 4 CC 5
0
E j% B mem O we
1
>1j: Dmem Reg
C file
1
ID EX New MEM
x5 x4
Reg >
file = bmem
x6| . __—
IF ID Po il
Reg >
Imell file =
x4

Add registers to store the updated values
pipeline reg.)

x1
updated

WB
Reg x4
file updated
MEM WB

Dmem Reg

file

31

Data hazards -- solution 2

dd x1, x2, x3 .
:dd 14, §5' 16 Add registers to store the updated values

add x7, x1, x4 (actpally can access from pipeline reg.)
opl]src CC 3 cC 4 CC 5
0
IF ID E j% elw vEM O we
Reg >>r Reg x1
" file c bmem fle |updated
—1

« How to decide opl_src?
— Select the forwarded value or the value from ID/EX register

— 1. rd of the add instruction (may be the other type instructions)
equals rslin add (may be the other type instructions) instruction

— 2. Ignore write to x0

— 3. The first instruction must write the register and the third instruction
must read the register

Forwarding or bypass Forwarding control logic

32

Data hazards -- solution 2

add x1, x2, x3

" now " om Dpl_src CC 3 CC 4 _ CC 5
0
IF ID P a2 elw MEM O we
Reg {2 > Reg x1
imem s = Dmem fle |updated
o —

« How to decide opl_src?
— Select the forwarded value or the value from EX/MEM register

— 1. rd of the add instruction (may be the other type instructions)
equals rslin add (may be the other type instructions) instruction

— 2. Ignore write to x0

— 3. The first instruction must write the register and the second
instruction must read the register

Forwarding or bypass Forwarding control logic

33

Data hazards

lw x1,0(x3)
adi;%7i%{,x4 Load type RAW

cC 3 CC 4 CC 5
New
IF ID —EX MEM Xx1 WwB
Reg > Reg x1

lw x1,0(x3) | Imem file =T brem file |updated

/

Reg > Reg
add x7,x1,x4 Imem file = C Dmem file
/

Forwarding cannot solve this,
leading to a “load delay slot”

34

Data hazards -- solution

lw x1,0(x3)
add_ _X_7 '_X_l_' x4 Load type RAW

cC 3 CC 4 CC 5
IF ID —EX MEM WB
Reg > Reg x1
lw x1,0(x3) | Imem file > Dmem file |updated
/
x1
nop NOP NOP NOP NOP NOP
IF ID \%¥g\ MEM WB
X
Reg > Reg
add x7,x1,x4 Imem eila :>E§ Dmem file
/

Insert nop and forward x1
35

Data hazards -- solution 2 warm up

|dentify all the data hazards in the following code

Original Order:

lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

36

Data hazards -- solution 2 warm up

» Identify all the data hazards in the following code

Original Order:

w @ 0(t0)
lw , iit@)
add t3, t2
sw t3, (t0)
lw t4, 8(t0)

add t5, t1, t4
sw t5, 16(t0)

37

Data hazards -- solution 2 warm up

» Identify all the data hazards in the following code

Original Order:

E%%B 0(t0)
t
add (ii}
(

sw t3,

lw t4, 8(t0)
add t5, tl, t4
sw t5, 16(t0)

38

Data hazards -- solution 2 warm up

» Identify all the data hazards in the following code

Original Order:

0(t0)

L

, 8(t0)
add t5, t1, t4
SW t5, 16(t@)

39

Data hazards -- solution 2 warm up

» Identify all the data hazards in the following code

Original Order:

0(t0)
T
o
8(t0
add t5, t1,

SW t5, 16(t@)

40

Data hazards -- solution 2 warm up

» Identify all the data hazards in the following code
* Which of the hazards cannot be completely solved by forwarding?

Original Order:

41

Data hazards -- solution 2 warm up

|dentify all the data hazards in the following code
Which of the hazards cannot be completely solved by forwarding?

Original Order:

0(t0)
(f;b 4(t0
add
sw t3, 12(t

8(t®
add t5 t1,

sw t5, 16(t@)

42

Data hazards -- solution 2

« (Code scheduling: Put unrelated instruction into load delay slot

— No performance loss!

Original Order: Code scheduling:
0(t0) lw t1, 0(t0)
4(t i lw t2, 4(t0)

add lw t4, 8(t0)

sw t3 12(t add t3, t1, t2
8(t0 sw t3, 12(t0)

add t5 t1, add t5, t1, t4

sw t5, 16(t@) sw t5, 16(t0)

« (Code scheduling can be accomplished by the compiler

43

How many clock cycles to complete the code before and after code
scheduling? Assume no instruction in the pipeline initially.

Original Order:

t1,
t2,
13,
13,
t4,
t5,
t5,

0(t0)
4(t0)
t1, t2
12(t0)
8(t0)
t1l, t4
16(t0)

Data hazards

Code scheduling:

t1,
t2,
t4,
13,
13,
t5,
t5,

0(t0)
4(t0Q)
8(t0)
t1, t2
12(t0)
t1, t4
16(t0)

44

Summary on data hazards

Instructions have data dependency

Occurs when an instruction reads a register before a
previous instruction has finished writing to that register
(RAW)

There can also be WAW/WAR hazards depending on the
pipeline design

For load-type RAW data hazards, there is a load delay slot
unavoidable

Can be solved by forwarding or code scheduling

Question

Combinational logic in some stages takes 200 ps and in some
100 ps. Clk-Q delay is 30 ps, and setup-time is 20 ps. What is
the maximum clock frequency at which a pipelined design
with 10 stages can operate?

A: 1T0GHz
B: 5GHz

C: 6./GHz
D: 4.35GHz
E: 4GHz

Question

IF =400 ps ID=200ps EX=200ps MEM =500 ps WB =200 ps

What is the maximum frequency of this 5-stage RISC-V CPU
before/after pipelining?

