
CS 110
Computer Architecture

Pipeline II
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/4/8

Administratives

2

• HW 4 ddl April 15th
• Proj. 1.2 ddl April 17th

• Friday discussion (teaching center 301) on datapath .

• This week to check project 1.1 in lab sessions. TA will ask
questions about project 1.1. Lab 8 will be released today, to
check next week.

• Mid-term I on this Thursday, 8am-10am, in the teaching center
301/303, ARRIVE EARLY to find your seats and get prepared!
Remember to bring your student ID cards. They will be checked
during the exam.

Outline

3

• Starting this lecture, we will improve the performance of our CPU
• Performance evaluation
• Pipeline
• Hazards

• Structural hazards
• Data hazards
• Control hazards

rs1

Detailed considerations

4

IF ID EX MEM WB
Instruction

Operands
Ctrl. signals

Result
(address)

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file

x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.

Result
(for WB)

add t0,t1,t2
sw t4,0(t3)
lw t5,0(t6)
addi t6,x0,1

IF/ID reg.
ID/EX reg. EX/MEM reg. MEM/WB reg.

reg_en
is_beq

rs2
rd

rd

Performance Pipeline Hazards

add
sw

Detailed considerations

5

IF ID/DEC EX MEM WB

Dmem

A
LUImem Reg

file
Reg
file

lw
addi

beq_next1

0x0:add t0,t1,t2
0x4:sw t4,0(t3)
0x8:lw t5,0(t6)
0xc:addi t6,x0,1

beq_next2
beq_next3
beq_next4

beq

PC=0x00x40x80xc0x100x140x180x1c0x200x??

Performance Pipeline Hazards

Control hazards--solution 1

6

Performance Pipeline Hazards

beq

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Correct
Instru.

Imem

IF

Reg
file

ID

A
LU

EX

Dmem

MEM

Reg
file

WB

We can wait ...

nop

nop

NOP NOP NOP NOP NOP

NOP NOP NOP NOP

Insert bubbles

NOP

NOP NOP NOP NOP

NOP NOP NOP

nop

nop

Imem

IF

Reg
file

ID

Control hazards -- solution 2

7

Performance Pipeline Hazards

Speculation

• Assume branch not taken (static)
• Extra control logics to deal with the cases that the branches are taken

– Flush the pipeline and restore the states

IF ID/DEC EX MEM WB

Dmem

A
LUImem Reg

file
Reg
file

beq_next1
beq_next2

beq_next3
beq_next4

beq

Control hazards -- solution 2

8

Performance Pipeline Hazards

• Assume branch not taken (static)
• Not optimal in some cases

Assume x8 holds pointer to A
Assign x10=sum
add x10, x0, x0 # sum=0
add x11, x8, x0 # ptr = A
addi x12,x11, 80 # end = A + 80
Loop:

lw x13,0(x11) # x13 = *ptr
add x10,x10, x13 # sum += x13
addi x11,x11, 4 # ptr++

blt x11, x12, Loop # ptr < end

int A[20];
int sum = 0;
for (int i=0; i < 20; i++)
 sum += A[i];

Wrong speculations except
the last branch

Control hazards -- solution 2

9

Performance Pipeline Hazards

Assume x8 holds pointer to A
Assign x10=sum
add x10, x0, x0 # sum=0
add x11, x8, x0 # ptr = A
addi x12,x11, 80 # end = A + 80
Loop:

lw x13,0(x11) # x13 = *ptr
add x10,x10, x13 # sum += x13
addi x11,x11, 4 # ptr++

blt x11, x12, Loop # ptr < end

int A[20];
int sum = 0;
for (int i=0; i < 20; i++)
 sum += A[i];

• Alternatively, dynamic branch prediction (when the program is running)

• Record the position of branch
• Record if the branch is taken

for this branch
• Predict if the branch will be

taken based on the current
record

• Can be modeled as an FSM
• Use one or more bits to

represent “(strong) taken” or
“(strong not taken)”

Real stuff

10

D-Cache

Decode

Scheduler

Load/Store

Branch Prediction

I-Cache

L2
CacheFPU

ALU

AMD Zen 2 Core Diagram

[1] T. Singh et al., "2.1 Zen 2: The AMD 7nm Energy-
Efficient High-Performance x86-64 Microprocessor Core,"
IEEE International Solid- State Circuits Conference -
(ISSCC), 2020, pp. 42-44.

7.83 mm2 per core

Performance Pipeline Hazards

Control hazards -- solution 3

11

Performance Pipeline Hazards

• Use idea similar to forwarding to reduce the delay of branches

rs1

IF ID EX MEM WB

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file

x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.
reg_en
is_beq

rs2
rd

rd

op2_src
Branch
pred.A possible

implementation

Control hazards -- solution 3

12

Performance Pipeline Hazards

• Use idea similar to forwarding to reduce the delay of branches

rs1

IF ID EX MEM WB

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg.
file

x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm.
Gen.

instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr. d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl.
reg_en
is_beq

rs2
rd

rd

Branch
pred.A possible

implementation

13

Summary on control hazards
• The delay in determining the proper instruction to fetch is

called a control hazard or branch hazard

Performance Pipeline Hazards

CS 110
Computer Architecture

Multi-issue
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/4/8

Outline

15

• Overview on parallelism
• Multi-issue

• Static multi-issue (VLIW)

• Dynamic multi-issue (superscalar)

• Design cases in modern computer systems

Review

16

• Overview on parallelism
• Instruction-level parallelism (ILP)

• Pipeline, deeper for faster clock, but potentially more hazards
• Today’s lecture (Multi-issue)

• Data-level parallelism (DLP)
• SIMD

• Thread-level parallelism (TLP)
• Multi-threading/Hardware hyper-threading

Time
Program =

Instructions
Program ⋅

Cycles
Instruction ⋅

Time
Cycle

Single-issue

17

• Simplified 5-stage pipelined single-issue CPU datapath

• At most 1 instruction is “issued” to the datapath at 1 clock cycle

average CPI 1≥

IF ID EX MEM

Imem.

instru.

PC
Reg.
file ALU

Dmem

WB

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue

18

RiceMeatVeggiesCheck-out Rice Meat Veggies Check-out

Canteen analogy
(combined with pipelining)

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue (Hardware)

19

IF ID EX MEM

Imem.

instrus.

PC ALU
Dmem

WB

• Multi-issue CPU datapath

• Issue multiple instructions to the datapath in 1 clock cycle, average
CPI can be smaller than 1.

Reg.
file

Hardware has to be adapted
to avoid structural hazards

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue (Hardware)

20

IF ID EX MEM

Imem.

instrus.

PC ALU
Dmem

WB

• Multi-issue CPU datapath

• Issue multiple instructions to the datapath in 1 clock cycle, average
CPI may be smaller than 1.

Reg.
file

Hardware has to be adapted
to avoid structural hazards

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue (Hardware)

21

IF ID EX MEM

Imem.

instrus.

PC
ALU

Dmem

WB

• Multi-issue CPU datapath

• Issue multiple instructions to the datapath in 1 clock cycle, average
CPI may be smaller than 1.

Reg.
file

ALU

Hardware has to be adapted
to avoid structural hazards

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue (Hardware)

22

IF ID EX MEM

Imem.

instrus.

PC
ALU

Dmem

WB

• Multi-issue CPU datapath

• Issue multiple instructions to the datapath in 1 clock cycle, average
CPI may be smaller than 1.

Reg.
file

ALU

Hardware has to be adapted
to avoid structural hazards

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue (Hardware)

23

IF ID EX MEM

Imem.

instrus.

PC

Addr.
Gen.

Dmem

WB

• In practice, we build different datapaths for different types of instructions
• E.g.

Reg.
file

ALU

Imm.
Gen1.
Imm.
Gen2.

x[rs1]

x[rs1]

x[rs2]

imm.

Arithmetic, logic and beq path

Memory access (load & store) path
A.K.A., load-store unit (LSU)

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue (Hardware)

24

IF ID EX

MEM

Imem.

instrus.

PC

Addr.
Gen.

Dmem

WB

• In practice, we build different datapaths for different types of instructions
• E.g.

Reg.
file

ALU

Imm.
Gen1.
Imm.
Gen2.

x[rs1]

x[rs1]

x[rs2]

imm.

WBIF ID EX
Arithmetic, logic and beq path

Memory access (load & store) path
A.K.A., load-store unit (LSU)

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue

25

instrus.

PC

Addr.
Gen.

Dmem

Reg.
file

ALU

Imm.
Gen1.
Imm.
Gen2.

x[rs1]

x[rs1]

x[rs2]

imm.

Instruciton type cc1 cc2 cc3 cc4 cc5 cc6 cc7
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB

• Ideally, issue two instructions with different type to ALU/mem datapaths

Perfect
Br. Pred. Imem.

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue

26

for (int i=1000; i>0; i=i-1)
 x[i] = x[i] + s;

1。 addi s0,x0,s #initialize s0
2.Loop:lw t3,0(t1) #load array element
3. add t3,t3,s0 #add s to $t3
4. sw t3,0(t1) #store result
5. addi t1,t1,-4 #t1 =t1-4
6. bne t1,t2,Loop #repeat loop if t1!=t2

Instruciton cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9
1.addi IF ID EX WB
2.lw IF ID EX MEM WB
3.add IF ID EX WB
4.sw IF ID EX MEM WB
5.addi IF ID EX WB
nop nop nop nop nop nop
6.bne IF ID EX WB
2.lw IF ID EX MEM WB
3.add IF ID EX WB
4.sw IF ID EX MEM WB
5.addi IF ID EX WB
nop nop nop nop nop nop

Hazards!

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue

27

for (int i=1000; i>0; i=i-1)
 x[i] = x[i] + s;

Instruciton cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9
1.addi IF ID EX WB
2.lw IF ID EX MEM WB
nop nop nop nop nop
nop nop nop nop nop nop
3.add IF ID EX WB
4.sw IF ID EX MEM WB
5.addi IF ID EX WB
nop nop nop nop nop nop
6.bne IF ID EX WB
2.lw IF ID EX MEM WB
... ...
... ...

Forwarding

Forwarding

Forwarding

1. addi s0,x0,1 #initialize s0
2.Loop:lw t3,0(t1) #load array element
3. add t3,t3,s0 #add s to $t3
4. sw t3,0(t1) #store result
5. addi t1,t1,-4 #t1 =t1-4
6. bne t1,t2,Loop #repeat loop if t1!=t2

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue

28

Instruciton cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9
1.addi IF ID EX WB
2.lw t3 IF ID EX MEM WB
nop nop nop nop nop
3.lw t4 IF ID EX MEM WB
6.add t3 IF ID EX WB
4.lw t5 IF ID EX MEM WB
7.add t4 IF ID EX WB
5.lw t6 IF ID EX MEM WB
8.add t5 IF ID EX WB
10.sw t3 IF ID EX MEM WB
9.add t6 IF ID EX WB
11.sw t4 IF ID EX MEM
14.addi IF ID EX
12.sw t5 IF ID EX
15.bne IF ID
13.sw t6 IF ID

1. addi s0,x0,s
2.L:lw t3,0(t1)
3. lw t4,-4(t1)
4. lw t5,-8(t1)
5. lw t6,-12(t1)
6. add t3,t3,s0
7. add t4,t4,s0
8. add t5,t5,s0
9. add t6,t6,s0
10. sw t3,0(t1)
11. sw t4,-4(t1)
12. sw t5,-8(t1)
13. sw t6,-12(t1)
14. addi t1,t1,-16
15. bne t1,t2,L

• Loop unrolling & register renaming to optimize (also will be used in SIMD)

 Intro. Hardware implementation Instruction scheduling Advancements

Static vs. Dynamic multi-issue

29

• Static multi-issue
• Package instructions into issue

slots and detect hazards
statically (at compile time mostly)

• Hardware may also
detect/resolve hazards

• Also called VLIW (very long
instruction word)

Instruciton type cc1 cc2 cc3 cc4 cc5 cc6 cc7
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB

• Dynamic multi-issue
• Package instructions into issue slots

and detect hazards dynamically
(during execution by hardware mostly)

• Compiler may also help avoiding
hazards

• Also called superscalar

 Intro. Hardware implementation Instruction scheduling Advancements

Hardware implementation of superscalar

30

Instruction fetch
and decode unit

Reservation
station

Reservation
station

Reservation
station

Commit unit with
reorder buffer

Integer
ALU

Floating
point
unit

Load-
store
unit

More in CS211 CA II

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue Pitfalls

31

• Multi-issue is not multi-core;
• Multi-issue is not SIMD;
• Multi-issue can be combined

with pipelining, SIMD,
multi/hyper-threading, etc. to
improve the performance of
the processor;

Multiple
canteens

Each canteen
contains multiple

queues.

Multi-core

Multi-issue

Multi-issue Advancements-GPU

32

• Multi-issue can be combined
with SIMD;

• In Fermi and later NVIDIA
GPU architectures, the
scheduler issues
• 2 INT instructions or 2

single-point FP
instructions or

• 1 mixed INT or FPU or
load or store or SFU
instructions

One streaming multi-processor inside an H100 GPU

Credit to Nvidia
More in EE219 AI computing systems

 Intro. Hardware implementation Instruction scheduling Advancements

Multi-issue Advancements-CPU

33

• Multi-issue can be combined
with multi/hyper-threading;

• Thread-level parallelism (TLP)
• To tolerate latency (e.g., cache

miss)
• To further improve throughput
• To reduce context switch penalty

• Types of Multithreading
• Fine-grained: threads scheduled

cycle by cycle
• Corase-grained: threads

scheduled on events (e.g., cache
misses)/time quantum

• SMT: simultaneous multi-
threading

Credit to AMD
AMD CPU (Zen architecture) that

supports simultaneous multithreadingMore in CS211 CA II

 Intro. Hardware implementation Instruction scheduling Advancements

Summary

34

• Instruction-level parallelism
• Pipeline

• Insert pipeline registers to execute the instructions stage by stage;
• Multiple instructions co-exist in the pipeline to realize parallelism;
• Induce (structural/data/control) hazards;
• Strategies to deal with the hazards (insertion of bubbles, forwarding,

hardware re-design, code scheduling, branch prediction, etc.);
• Multi-issue

• Multiple datapaths to execute multiple instructions in parallel;
• Need to consider hazards as well;
• Static vs. Dyanmic multi-issue

