LA

i

g T
T A
;R R
- -
F ___..lE e
EN] F
N

EERESEAER

o School of Information Science and Technology

A
H

CS 110
Computer Architecture
Pipeline |l

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/4/8

Administratives

HW 4 ddl April 15th
Proj. 1.2 dd| April 17th

-riday discussion (teaching center 301) on datapath .

This week to check project 1.1 in lab sessions. TA will ask

questions about project 1.1. Lab 8 will be released today, to
check next week.

Mid-term | on this Thursday, 8am-10am, in the teaching center
301/303, ARRIVE EARLY to find your seats and get prepared!

Remember to bring your student ID cards. They will be checked
during the exam.

Outline

Starting this lecture, we will improve the performance of our CPU
Performance evaluation

Pipeline

Hazards
o Structural hazards
« Data hazards

 Control hazards

. Haads
40111, Detalled considerations

sw t4,0(t3) ID/EX reg. EX/MEMreg. MEM/WB reg.
lw t5,0(t6) IF/ID reg. Operands Result Result
addi t6,x0,1 Ctrl. signals (address) (for WB)
beq t0,t1,laber"StrUction ik — — g
E P . > WB .
. 5 EX MEM - WB i heq
| Ctrl. re9_en
instru. T is_beqL- t_ o
PC I > | ALU ctrl . re we |
PC | ‘ L _in ;
* _Reg. imem. rsl lrs1] t-_l_ : wh_src
rs2 | ;addr{ Data |
' Reg. T - : d_out_
rd so X! S2] memory 0
: —alu result p L
: 1 L
b pero r'L—
instrui imm. | 4
[31:20|11§:7: Gen. imm > >
pC_src : [(sign- exten%ed) : l
— imm_ctrl
O [
0 4 \ | 1s_beq
1

0x0:add t0O,tl,t2
Ox4:sw t4,0(t3)

0x8:lw t5,0(t6) D | d d "
eiitiese, Detalled considerations
0x10:beq t0,tl1, Label
0x14:beq_nextl
0x18:beq_next2
Oxlc:beq_next3
0x20:beq_next4
0x24:beq_next5

pc-0x?? IF =% D/ MEM = WB

Reg
file

Reg

Dmem file

Imem

] o

add

SW

lw

addi
beq .
beq_nextl :
beq_next2 :
beg_next3 :
beq_next4 :

. Hamards
Control hazards--solution 1

We can wailit ...

cC 1 cC 2 cC 3 cC 4 CC 5 CC 6 cC 7
IF

- [

nop

nop

nop

nop

Insert bubbles

Correct
Instru.

Control hazards -- solution 2

« Assume branch not taken (static)
« Extra control logics to deal with the cases that the branches are taken

— Flush the pipeline and restore the states

IF =i> D/ EX MEM > WB
l \
Reg = Reg
Imem P >E Dmem file
P
beq
beg_nextl
beq_next?2
: beq_next3
beq_next4 :

Speculation

Control hazards -- solution 2

« Assume branch not taken (static)

* Not optimal in some cases

int A[20];

int sum = 0;

for (int i=0; 1 < 20; i++)
sum += Al[i]l;

Assume x8 holds pointer to A

Assign x1@=sum

add x10, x0, x0 # sum=0

add x11, x8, x0 # ptr = A

addi x12,x11, 80 # end = A + 80

Loop:
lw x13,0(x11) # x13 = xptr
add x10,x10, x13 # sum += x13
addi x11,x11, 4 # ptr++

blt x11, x12, Loop # ptr < end

Wrong speculations except
the last branch

Control hazards -- solution 2

» Alternatively, dynamic branch prediction (when the program is running)

int A[20];

int sum = 0;

for (int i=0; 1 < 20; i++)
sum += Al[il:

Assume x8 holds pointer to A

Assign x10=sum

add x10, x0, x0 # sum=0

add x11, x8, x0 # ptr = A

addi x12,x11, 80 # end = A + 80

Loop:
lw x13,0(x11) # x13 = *ptr
add x10,x10, x13 # sum += x13
addi x11,x11, 4 # ptr++

blt x11, x12, Loop # ptr < end

Record the position of branch

Record if the branch is taken
for this branch

Predict if the branch will be
taken based on the current
record

Can be modeled as an FSM

Use one or more bits to
represent “(strong) taken” or
“(strong not taken)”

Real stuff

|-Cache

Scheduler
FPU

Branch Prediction |2
Cache

Load/Store

10

Unit Zen Zen 2
Floating Point 128b 256b
LO Branch Target Buffer 8 entries 16 entries
L1 Branch Target Buffer 296 entries 912 entries
L2 Branch Target Buffer 4K entries 7K entries
Op Cache 2K ops 4K ops
Integer Physical 168 entries 180 entries
Register File

Integer Scheduler 84 entries 92 entries
AGEN 2 3
ROB 192 entries 224 entries
L2DTLB 1.5K 2K

L3 Cache Size 8MB 16MB

7.83 mmz2 per core

[1] T. Singh et al., "2.1 Zen 2: The AMD 7nm Energy-
Efficient High-Performance x86-64 Microprocessor Core,"
IEEE International Solid- State Circuits Conference -
(ISSCC), 2020, pp. 42-44.

Control hazards -- solution 3

« Use idea similar to forwarding to reduce the delay of branches

b b_ L =
D EX 1 MEM [WB o peq
|F reg_en
Ctrl.
instru. T is_beqL- t._ r
_JPC ALU_ctrl . re we |
a PC _@- L_| —I _1n E
™ [.Reg. jlmem. rs] | wlrs1] ol : wb_src
> rs2 | 1addr} pata | 4
Reg. : _out
rd fil memory I
o e ALU [p }
Branch| | —alu result p_ 1
A possible red.
implementation P Qzero F
= 2
instru; | imm. | §
[31:2@|11§:7_ Gen. | imm - L
pC_Src . Ict(rsllgn—extendied) : :
[@ 4 - O iy
\ | 1s_beq
1

11

Control hazards -- solution 3

« Use idea similar to forwarding to reduce the delay of branches

— D"
D EX M MEM /= WB i 1
|F reg_en
Ctrl. ®
instru. T is_beth [% t
_JPC _ ALU_ctri) re we
i PC o : L —I _in :
+ Reg . j Imem. & X rSl] t— | E Wb_SrC
Reg. : _out
rd| s memory 2
| [e ! g
Branch| | —alu result p_ 1
A possible red. :
implementation P Qzero '
||
instrui _ imm. | ¢
[31:2@|1¥:7- Gen. imm a
pPC_Src [(sign-extended) :
imm_ctrl

‘ 0 4 \ C is_beq
1

12

Summary on control hazards

* The delay in determining the proper instruction to fetch is
called a control hazard or branch hazard

13

LSS

i) BRRFSHRAF R

AWy n W
o/ School of Information Science and Technology

CS 110
Computer Architecture
Multi-issue

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/4/8

Outline

* QOverview on parallelism

* Multi-issue
« Static multi-issue (VLIW)
* Dynamic multi-issue (superscalar)

* Design cases in modern computer systems

15

Review

* QOverview on parallelism

* Instruction-level parallelism (ILP)
* Pipeline, deeper for faster clock, but potentially more hazards
* Today’s lecture (Multi-issue)

« Data-level parallelism (DLP)
- SIMD

* Thread-level parallelism (TLP)
« Multi-threading/Hardware hyper-threading

Time Instructions Cycles Time

Program Program Instruction C ycle

16

Single-issue

« Simplified 5-stage pipelined single-issue CPU datapath

|F 1D EX MEM WB
instruJ]
Reg. Dmem |
PC Imem. file I ALU T)
>
T - > T —

* At most 1 instruction is “issued” to the datapath at 1 clock cycle

average CP| 2 1

2 2

W‘

Multi-issue

- §- 4.

N]

v

eat Rice

A

Canteen analogy
(combined with pipelining)

Z

18

Hardware implementation

Multi-issue (Hardware)

* Multi-issue CPU datapath

|F 1D EX MEM WB
instrus. [
Reg. Dmem | —
PC Imem. file . ALU T
>
i o o L ~

Hardware has to be adapted
to avoid structural hazards

* Issue multiple instructions to the datapath in 1 clock cycle, average
CPIl can be smaller than 1.

19

Hardware implementation

Multi-issue (Hardware)

* Multi-issue CPU datapath

|F 1D EX MEM WB
instrus. [
Reg. Dmem | —
PC Imem. file I ALU T
>
i o o L ~

Hardware has to be adapted
to avoid structural hazards

* Issue multiple instructions to the datapath in 1 clock cycle, average
CPIl may be smaller than 1.

20

Hardware implementation

Multi-issue (Hardware)

* Multi-issue CPU datapath

|F ID EX MEM WB
instrus. [=
i ALU 1
Reg. Dmem |
PC Imem. file I T e
> ALU
i o o L ~

Hardware has to be adapted
to avoid structural hazards

* Issue multiple instructions to the datapath in 1 clock cycle, average
CPIl may be smaller than 1.

21

Hardware implementation

Multi-issue (Hardware)

* Multi-issue CPU datapath

|F ID EX MEM WB
instrus. [= ~
Reg. > A *! Dmem F | —
PC Imem. file I T e
D> ALU
i o o L ~

Hardware has to be adapted
to avoid structural hazards

* Issue multiple instructions to the datapath in 1 clock cycle, average
CPIl may be smaller than 1.

22

Hardware implementation

Multi-issue (Hardware)

* In practice, we build different datapaths for different types of instructions
 E.Q.

|F ID EX MEM WB
instrus. [] x[rsi] i
eg. (T4 | AL ;
PC Imem. file i - i
D> : Y U VY O ER '.'_'_'_':
i X [rsZI] i
Imm. | |! x[rs1] i
Gen1. | L |
Ir:rr:] i imm .Addr. ome E
(d Gen2.| i P Gen > > i

— Arithmetic, logic and beq path

— Memory access (load & store) path
A.K.A., load-store unit (LSU) 23

Hardware implementation

Multi-issue (Hardware)

* In practice, we build different datapaths for different types of instructions
 E.Q.

|F 1D EX WB
instrus. [| x[rsi] i
-oi E
oo, 1t (M A ;
PC Imem. file | i
D> :, S A .::::::::_____________________________,I
i x [rsZI] i
Imm. | [} x[rs1] i
Gent. | L l
Ir:rr:] | imm .Addr. i |
(d Gen2.| i P Gen > P i
|F 1D EX MEM WB

— Arithmetic, logic and beq path

— Memory access (load & store) path
A.K.A., load-store unit (LSU) 24

Instruction scheduling

Multi-issue

» Ideally, issue two instructions with different type to ALU/mem datapaths

Instruciton type ccl cc2 cc3 «cc4 ccd cc6 cc7/

ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
. — =
instrus.] x[rsil] !
-OE :
i | i ALU ‘
i Perfect '__| R_eg. i :D‘ |
| Br. Pred. ! >PC imem. file | i1 L——"_ N
"""""" 5 x[rs3] i
Imm. | | x[rsl]
Geni. | L :
Imm | imm Addr. omem |
> Gen2. b 1| b > :
i L e e e e e o e e el 25

for (int i1=1000; 1>0; i=1-1)
x[1i] = x[1i] + s;

Instruction scheduling

Multi-issue

oLk WNBE

.Loop: 1w

addi s0,x0,s

t3,0(tl)
add t3,t3,s0
sw t3,0(tl)
addi tl,tl,-4

#initialize sO
#load array element
#add s to $t3
#store result

#tl =t1-4

bne tl1,t2,Loop #repeat loop if tl!=t2

Instruciton cci cc2 cchd cc6 cc7 cc8 cc9
1.addi IF 1D EX WB
2. lw IF 1D EX MEM WB
3.add IF 1D EX WB rEzAs,
4.sw IF 1D EX MEM WB
5.addi IF 1D EX WB
nop nop nop nop nop hop
6.bne IF ID EX WB
2. lw IF 1D EX MEM WB
3.add IF 1D EX WB
4.sw IF 1D EX MEM WB
5.addi IF 1D EX WB
nop nop hop nop nop hop

26

Multi-issue

for (int 1=1000; i>0; i=1-1) 1. addis0,x0,1 #initialize sO
x[1] = x[1] + s; 2.Loop:lw t3,0(tl) #load array element
3. add t3,t3,s0 #add s to $t3
4, sw 13,0(tl) #store result
5. additl,tl,-4 #t1l =tl1-4
6. bne tl1,t2,Loop #repeat loop if tl!=t2
Instruciton cci cc2 cc4 ccd cc6 cc/ cc8 cc9
1.addi IF ID EX WB
2. lw IF ID EX MEM\ :}’,\‘IE 15
nop nop nop nop | nop
nop nop nop nop \ nop _ nop .
3.add IF ID \Ex\":'w“BE" ding
4. 5w IF ID EX “MEM _WB
5.addi IF ID EX~ w8 7
nop nop nop nop\ nop nop
6.bne IF ID “EX WB
2. lw IF ID EX MEM WB

27

cooNOUVT A WNM

addi

: lw

w
w
w
add
add
add
add

. Sw
. Sw

. Sw

. Sw

. addi
. bne

s0,x0,s
t3,0(tl)
t4,-4(tl)
t5,-8(tl)
t6,-12(tl)
t3,t3,s0
t4,t4,s0
t5,t5,s0
t6,t6,s0
t3,0(tl)
t4,-4(tl)
t5,-8(tl)
t6,-12(tl)
tl1l,tl,-16
t1l,t2,L

Instruction scheduling

Multi-issue

* Loop unrolling & register renaming to optimize (also will be used in SIMD)

Instruciton cci cc2 c¢c3 occ4 «c¢ccd occ6 cc/ cc8 ce9
1.addi IF ID EX WB

2. lw t3 IF ID EX MEM\ WB

nop nop nop nop \ nop

3. lw t4 IF ID EX \MEM\ WB

6.add t3 IF ID MEX | WB

4.1w t5 IF ID EX \MEM\ WB

7.add t4 IF ID MEX | WB

5. lw 6 IF ID EX \MEM\ WB
8.add t5 IF ID MEX | WB
10.sw t3 IF ID EX \MEM WB
9.add t6 IF ID MEX WB
11.sw t4 IF ID EX MEM
14.addi IF ID EX
12.sw t5 IF ID EX
15.bne IF ID
13.sw t6 IF ID

28

Instruction scheduling

Static vs. Dynamic multi-issue

 Static multi-issue « Dynamic multi-issue
» Package instructions into issue » Package instructions into issue slots
slots and detect hazards and detect hazards dynamically
statically (at compile time mostly) (during execution by hardware mostly)
 Hardware may also « Compiler may also help avoiding
detect/resolve hazards hazards
« Also called VLIW (very long » Also called superscalar

instruction word)

Instruciton type ccl cc2 cc3 cc4d «ccd cc6 cc7
ALU or branch IF 1D EX WB

Load or store IF ID EX MEM WB

ALU or branch IF ID EX WB
Load or store IF ID EX MEM WB
ALU or branch IF ID EX WB

Load or store IF ID EX MEM WB

29

Instruction scheduling

Hardware implementation of superscalar

Instruction fetch
and decode unit

y y y
Reservation Reservation Reservation
station station station
y y y
g h ‘Floating' " Load-

Integer .
ALU point store
L D _unit _unit
|

More in CS211 CAII

Commit unit with
reorder buffer

30

Multi-issue Pitfalls

* Multi-issue is not multi-core; Multiple MUl

. . —_— -
e Multi-issue is not SIMD; canteens utti-core
« Multi-issue can be combined

with pipelining, SIMD,

multi/hyper-threading, etc. to =ach canteen

| ypP g, ete. contains multiple ——> Multi-issue
improve the performance of queues.

the processor;

Advancements

Multi-issue Advancements-GPU

One streaming multi-processor inside an H100 GPU

 Multi-issue can be combined .
with SIMD; | R

Warp Scheduler (32 thread/cik) Warp Scheduler (32 thread/elk)

° I n Fe rm i a n d I at e r N V I D I A : Dispatch Unit (32 threadicik) Dispatch Unit (32 threadicik)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

]

‘ a P U rC h I‘t Ct r' th FP32 FP32 FPE4 FP3Z FP32 FPEd
a e u eS y e FP3Z FP32 FPE4 FP3Z2 FP32 FP&4
FP32 FP32 FPE4 FP32 FP32 FP&4
. FP3Z FP32 FPE4 FP3Z FPIZ FPE4
h I FP32 FP32 FPE4 FP32 FPaZ FPE4
SC e u e r I SS u e S FP3Z FP32 FPG4 FPiZ FP3Z FPE4
FP3Z FP3Z FPE4 FP32 FP32 FP&4

. . FR3Z FPa2 FP&4 TENSOR CORE FP32 FP32 FPE4 TENSOR CORE

P 2 I NT FP3Z FP3Z FPE4 4™ GENERATION FP32 FP32 FPE4 4" GENERATION
I n S ru C I O n S O r FP3Z FP32 FP&4 FP32 FP32 FPE4

FP3z FP32 FPE4 FP3Z FP32 FP64
FP3Z FP32 FPE4 FR32 FPa2 FPE4

L] []
FP32 FP32 FPE4 EP32 FPa2 EPE4
S I n g e = po I n FP3a: FPa2 FPe4 FP32 FPaz FPE4
FP3Z FP32 FPE4 FP32 FP32 FPE4
FP32 FPa2 FPE4 FP32 FP32 FPBE4

iInstructions or 2 e R
* 1 mixed INT or FPU or —rererer e —

Dispatch Unit (32 threadiclk) Dispatch Unit (32 thread/clk)

load or store or SFU Rocistor il (16384 x 3251 Resistor File (16384 320
. . INT32 FP32 FP32 FPB4 INT32 FP32 FP32 FPiEd

INT32 FP3Z FP32 FPE4 INT3Z FP32 FP32 FPE4
I n S r u C I O n S INT32 FP32 FP32 FPBE4 INT32 FP32 FP32 FPi&4

INT32 FP32 FP32 FPB4 INT32 FP32 FP32 FPE4
INT22 FP32 FP32 FPE4 INT32 FP32 FP32 FPB4
INT3Z2 FP3Z FPi2 FPB&4 INT32 FP3Z FP3Z FPiE4
INT32 FP32 FP3Z FPE4 INT32 FP32 FP32 FPE4
INT32 FP32 FP32 FPBE4 TENSOR CORE INT32 FP32 FP32 FP&4 TENSOR CORE
INT32 FP32 FP32 FPE4 4™ GENERATION INTa2 FP32 FP32 FP84 4" GENERATION
INT22 FP32 FP32 FP&4 INT32 FP32 FP32 FPE4
INT32 FP3z FP32 FPB4 INT32 FP32 FP32 FPiE4
INT22 FP32 FP32 FPE4 INT32 FP32 FP32 FPE4
INT32 FP3z FPaz2 FPE4 INT32Z FP32 FP32 FPB4
INT32 FP3Z FP32 FPB&4 INTI2 FP3Z FP32 FPE4
INT32 FP32 FP3Z FPB4 INT32 FP32 FP32 FPB4
INT32 FP3z FP32 FPE4 INT32 FP32 FP32 FPi4

Lo Loy Lo Lo Lo Loy Lo Lo Loy Loy Lo LoV Lo Loy Lo Lo
&T 5T sT 5T 5T 5T 5T 5T SFU -1 8T 5T -1 sT T sT BT SFU

Tensor Memory Accelerator

Credit to Nvidia
More in EE219 Al computing systems 32

Multi-issue Advancements-CPU

Multi-issue can be combined
with multi/hyper-threading;

Thread-level parallelism (TLP)

« To tolerate latency (e.g., cache
miss)

* To further improve throughput

« To reduce context switch penalty

Types of Multithreading

* Fine-grained: threads scheduled
cycle by cycle

« Corase-grained: threads
scheduled on events (e.g., cache
misses)/time quantum

« SMT: simultaneous multi-
threading

More in CS211 CA I

64K I-Cache 4 way

INTEGER

2x AGUs

Branch Prediction

Micro-op Queue

instructions micro-ops

Vertically Threaded = 6 ops dispatched

FLOATING
POINT

Integer Rename Floating Point Rename

Schedulers Scheduler

Integer Physical Register File FP Register File

4x ALUs MUL ADD MUL ADD

512K
L2 (1+D) Cache
8 Way

Store Queue
Load Queue

32K D-Cache
8 Way

Credit to AMD

AMD CPU (Zen architecture) that

supports simultaneous multithreading -

Summary

Instruction-level parallelism
* Pipeline
* Insert pipeline registers to execute the instructions stage by stage;
« Multiple instructions co-exist in the pipeline to realize parallelism;
* Induce (structural/data/control) hazards;
« Strategies to deal with the hazards (insertion of bubbles, forwarding,
hardware re-design, code scheduling, branch prediction, etc.);
* Multi-issue
« Multiple datapaths to execute multiple instructions in parallel;
* Need to consider hazards as well;
« Static vs. Dyanmic multi-issue

34

