
CS 110
Computer Architecture

Cache I
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/4/15

Administratives

2

• Mid-term I score published. Please check if there are any
questions regarding your marks. Submit regrade request if
you have any concerns before this FRIDAY (Apr. 18th
23:59:59)!

• Project 2.1 released, start early!!!

• HW4 ddl TODAY! Submit your answer to gradescope.

• Project 1.2 ddl Apr. 17th.

• Lab 8 checking this week. Lab 9 will be released and checked
next week.

Outline

3

• Starting this lecture, we will improve the performance of our CPU
• Memory hierarchy (cache)

• Introduction to cache
• Principle of Locality
• Simple Cache

• Direct Mapped & Set-Associative Caches
• Stores to Caches
• Cache Performance
• Cache Misses

• Multi-Level Caches
• Cache Configurations
• Cache Examples
• Other topics (advanced cache, coherence, inclusiveness,

etc.)

Where were we?

4

Application (e.g. browser)

Digital Design
Circuit Design

Instruction Set
Architecture

Transistors

Hardware

Software

Fabrication

Data & Control

Operating System
(e.g. Mac OSX)

Processor Memory I/O System

Compiler
Assembler

Where were we?

5

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic
Unit (ALU)

Memory

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory
Interface

Program

Data

Where were we?

6

rs1

IF
ID EX MEM WB

zero

Imem.

instru.

+ PC
Reg.

4

PC

Reg. file
x[rs1]

ALU

ALU_ctrl

x[rs2]

imm
(sign-extended)

op2_src

0
1

imm. Gen.instru
[31:20|11:7]

0
1alu result

wb_src
Data

memory
addr.

d_out

d_in
were

imm_ctrl

1
0

reg_en

pc_src

is_beq

Ctrl. reg_en
is_beq

rs2
rd

rd

Branch
pred.A possible implementation

Registers

Main Memory

Solid State Drive
Hard Disk Drive

1

100

10 6

Cache10

ComponentsRough access time (ns)

Introduction to memory hierarchy

7

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• The memories we have got due to the advance of material science

Storage I/O
(Micro SD Card)

Serial I/O
(USB)

Network I/O
(Ethernet)

Screen I/O
(HDMI)

Wireless I/O
(WiFi)

CPU+$s
Main

Memory

The Raspberry
Pi is a low-cost
computer.

Motherboard with CPU, I/O,
caches, etc., soldered on

• Cache Memory
on processor (“$”
stands for cache)

• Main Memory
• SD card as

secondary
memory

DRAM & SRAM

8

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Dynamic Random Access Memory as main memory:
– Latency to access first word: ~10ns (~30-40 processor cycles),

each successive (0.5ns – 1ns)
– Each access brings 64 (depending on the actual hardware) bits
– $3/GiB

• Data is impermanent:
– Dynamic: capacitors store bits, so needs periodic refresh to

maintain charge
– Volatile: when power is removed, loses data.

• Contrast with SRAM (for caches that will be covered in the following
lectures, on-chip memory, also can be used for register file):
– Static (no capacitors) but still volatile
– Faster (0.5 ns)/more expensive/lower density

Storage/”Disk”/Secodary Memory

9

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Solid-State Drive (SSD)
– Access: 40-100μs

(~100k proc. cycles)
– $0.05-0.5/GB
– Usually flash memory

• Hard Disk Drive (HDD)
– Access: <5-10ms

(10-20M proc. cycles)
– $0.01-0.1/GB
– Mechanical

Usually attached as a peripheral I/O device and non-volatile.

Introduction to memory hierarchy

10

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Motivation: Large memories slow? Library Analogy
– Finding a book in a large library takes time

• Takes time to search a large card catalog – (mapping title/author to
index number)

• Round-trip time to walk to the stacks and retrieve the desired book.
– Larger libraries makes both delays worse
– Electronic memories have the same issue, plus the technologies that

we use to store an individual bit get slower as we increase density
(SRAM versus DRAM versus Magnetic Disk)

However what we want is a large yet fast memory!

Processor-DRAM Gap (Latency)

11

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Slow DRAM access has
disastrous impact on
CPU performance!

Microprocessor executes
~one instruction in the same
time as DRAM access

Microprocessor executes
~1000 instructions in the
same time as DRAM access

Library Analogy

12

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Want to write a report for CA using library books
• Go to library, look up relevant CA books, fetch from stacks, and

place on desk in library
• If need more, check them out and keep on desk

– But don’t return earlier books since might need them (locality)
• You hope this collection of ~10 books on desk enough to write the

report, despite 10 being only a tiny fraction of books available

Great Ideas

13

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Memory access is a bottleneck
• Make common case fast (quick access to frequently used data)
• Memory hierarchy/Principle of locality

Super fast, super expensive,
tiny capacity

Fast, reasonable cost,
average capacity

Faster, expensive, small
capacity

Processor
chip

DRAM chip –e.g.
DDR3/4/5
HBM/HBM2/3

SSD, HDD
Drives

Great Ideas

14

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Memory access is a bottleneck
• Make common case fast (quick access to frequently used data)
• Memory hierarchy/Principle of locality

Processor
chip

DRAM chip –e.g.
DDR3/4/5
HBM/HBM2/3

SSD, HDD
Drives

Increasing
distance from

processor,
decreasing

speedOn-chip
SRAM

Size of memory at each level

Great Ideas

15

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Memory access is a bottleneck
• Make common case fast (quick access to frequently used data)
• Memory hierarchy/Principle of locality

Processor
chip

DRAM chip –e.g.
DDR3/4/5
HBM/HBM2/3

SSD, HDD
Drives

On-chip
SRAM

● How do we make it fast?
○ Use a hierarchy.

● How do we make it
appear ”large”?
○ Principle of

locality: Cache
the “right” data
in higher levels.

16

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic Unit (ALU)

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory
Interface

Memory

Program

Data

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Hardware Implementation

17

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic Unit (ALU)

Memory

Program

Data

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Processor-Memory
Interface

Cache

Hardware Implementation

Lines (Blocks) of data
copied from the main
memory (Copy of subset
of the main memory)

18

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Caching: the Basis of the Memory Hierarchy
• A cache contains copies of data that are being used.
• A cache works on the principles of temporal and spatial locality.

Temporal Locality Spatial Locality

Idea
If we use it now, chances are
that we’ll want to use it again
soon.

If we use a piece of memory,
chances are we’ll use the
neighboring pieces soon.

Library
Analogy

We keep a book on the desk
while we check out another
book.

If we check out a book’s vol. 1
while we’re at it, we’ll also check
out vol. 2.

Memory

If a memory location is
referenced, then it will tend to
be referenced again soon.
Therefore, keep most recently
accessed data items closer to
the processor.

If a memory location is
referenced, the locations with
nearby addresses will tend to
be referenced soon. Move lines
consisting of contiguous words
closer to the processor.

Real Memory Reference Patterns

19

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journal 10(3):
168-192 (1971)

M
em

or
y

A
dd

re
ss

 (o
ne

 d
ot

 p
er

 a
cc

es
s)

Time

Address

Locality!!!

20

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Temporal locality (locality in time)
– If a memory location is referenced, then it will tend to be

referenced again soon
• Spatial locality (locality in space)

– If a memory location is referenced, the locations with nearby
addresses will tend to be referenced soon

// Sample code for CS110@Spring 2025 -- Chundong
for (i = 0, sum = 0; i < n; ++i)
{

sum += a[i];
}

Real Memory Reference Patterns

21

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journal 10(3):
168-192 (1971)

M
em

or
y

A
dd

re
ss

 (o
ne

 d
ot

 p
er

 a
cc

es
s)

Time

Address

Temporal
locality

Spatial
locality

Principle of Locality

22

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Principle of Locality: Programs access small portion of address space
at any instant of time (spatial locality) and repeatedly access that
portion (temporal locality)

• What program structures lead to temporal and spatial locality in
instruction accesses?

• In data accesses?

Memory Reference Pattern

23

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call subroutine

return

argument access

vector access

scalar accesses

...

Bane of Locality: Pointer Chasing

24

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Special data structures: linked list, tree, etc.
– Easy to append onto and manipulate...

• But they have horrid locality preferences
– Every time you follow a pointer it is to an unrelated location:

No spacial reuse from previous pointers
– And if you don't chase the pointers again you don't get temporal

reuse either

Cache Philosophy

25

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• The memory hierarchy presents the processor with the illusion of a
very large and fast memory by taking advantages of locality.

Typical Memory Hierarchy

26

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s
Size (bytes): 100’s 10K’s M’s G’s T’s

 Cost/bit: highest lowest

Third-Level
Cache

(SRAM)

• Principle of locality + memory hierarchy presents programmer with ≈ as much
memory as is available in the cheapest technology at the ≈ speed offered by
the fastest technology

Memory Hierarchy Management

27

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Instructions
• Either by assembly programers or generated by a compiler;
• Does not define how it is achieved.

Load
Store

Memory Hierarchy Management

28

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Hardware cache controller

• With cache, the datapath/core does not directly access the main memory;
• Instead the core asks the caches for data with improved speed;
• A hardware cache controller is deviced to provide the desired data
(with various strategies that will be covered in future lectures).

Data request

Data

Memory Hierarchy Management

29

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Operating system
• By the operating system (virtual memory)
• Virtual to physical address mapping assisted by the hardware
(‘translation lookaside buffer’ or TLB, also a cache)
• By the programmer (files)

Memory with/without Cache Example

30

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Memory access without cache:

1. Processor issues address 0x12F0 to memory
2. Memory reads 1234 @ address 0x12F0

3. Memory sends 1234 to Processor
4. Processor loads 1234 into register t0

Load word instruction:
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Memory with/without Cache Example

31

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Memory access with cache:

1. Processor issues address 0x12F0 to memory
2. Cache checks if data @address 0x12F0 is in it

– if it is in the cache, cache hit and read 1234
– if not matched, called cache miss and

• Cache sends address to 0x12F0 the memory
• Memory read address 0x12F0 and send 1234 to cache
• Due to limited size, cache replace some data with 1234

3. Cache sends 1234 to Processor
4. Processor loads 1234 into register t0

Load word instruction:
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Typical Values

32

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

● L1 cache
○ size: tens of KB
○ hit time: complete in one

clock cycle
○ miss rates: 1-5%

● L2 cache
○ size: hundreds of KB
○ hit time: few clock cycles
○ miss rates: 10-20%

● The L2 miss rate is the fraction of L1 misses that also miss in L2.
○ Why so high? (more later)

Detailed Considerations

33

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Memory access with cache:

1. Processor issues address 0x12F0 to memory
2. Cache checks if data @address 0x12F0 is in it

– if it is in the cache, cache hit and read 1234
– if not matched, called cache miss and

• Cache sends address to 0x12F0 the memory
• Memory read address 0x12F0 and send 1234 to cache
• Due to limited size, cache replace some data with 1234

3. Cache sends 1234 to Processor
4. Processor loads 1234 into register t0

Load word instruction:
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

How?

Cache Terminology

34

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Cache line/block: a single entry in cache
• Cache line/block size: #byte per cache line/block
• Capacity: total #byte that can be stored in a cache

Block 1
Block 2
Block 3

... ...

#byte per cache line/block

Total
#byte

A small cache

Cache “Tag”

35

• Need a wag to tell if the cache have copy of location in memory so that
can decide on hit or miss;

• On cache miss, put memory address of block in “tag address” of cache
block;

• Previous example: address used as tag.

Address DATA
0x1100 0
0x12F0 1234
0x1000 110
0x4000 100

Load word instruction:
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

A small cache

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Example: Anatomy of a 16 Byte Cache

36

• Cache capacity: 16 B; Block size: 4 B;
• Thus 4 cache blocks;

Address DATA
0x1100 0
0x12F0 1234
0x1000 110
0x4000 100

Load word instruction:
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Processor

0x12F0 32-bit
Address

32-bit
Data

Cache

Memory

32-bit
Address

32-bit
Data• Compare address: HIT!

• Fetch the data from cache

1234

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Example: Anatomy of a 16 Byte Cache

37

• Cache capacity: 16 B; Block size: 4 B;
• Thus 4 cache blocks;

Address DATA
0x1100 0
0x9527 3721
0x1000 110
0x4000 100

Load word instruction:
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Processor

0x12F0 32-bit
Address

32-bit
Data

Cache

Memory

32-bit
Address

32-bit
Data• Compare address: MISS!

• Replace the data in the cache
– Must “evict” one resident block to make

room (Policy covered in later lectures)

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Cache Replacement

38

• Cache capacity: 16 B; Block size: 4 B;
• Thus 4 cache blocks;

Address DATA
0x1100 0
0x12F0 1234
0x1000 110
0x4000 100

Load word instruction:
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Processor

0x12F0 32-bit
Address

32-bit
Data

Cache

Memory

32-bit
Address

32-bit
Data• Compare address: MISS!

• Replace the data in the cache
– Must “evict” one resident block to make

room (Policy covered in later lectures)
– Replace “victim” with new memory block

at address 0x12F0

0x12F0 1234

• Fetch 1234 from cache

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Summary

39

• Cache is added to improve the read/write efficiency;
• It is transparent to the programmer while the management is

automatically done by a cache controller;
• It exploits locality to make the memory looks big and fast.

