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Administratives
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• Mid-term I score published. Please check if there are any 
questions regarding your marks. Submit regrade request if 
you have any concerns before this FRIDAY (Apr. 18th 
23:59:59)!

• Project 2.1 released, start early!!!

• HW4 ddl TODAY! Submit your answer to gradescope.

• Project 1.2 ddl Apr. 17th.

• Lab 8 checking this week. Lab 9 will be released and checked 
next week.



Outline
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• Starting this lecture, we will improve the performance of our CPU
• Memory hierarchy (cache)

• Introduction to cache
• Principle of Locality
• Simple Cache 

• Direct Mapped & Set-Associative Caches
• Stores to Caches
• Cache Performance
• Cache Misses

• Multi-Level Caches
• Cache Configurations
• Cache Examples
• Other topics (advanced cache, coherence, inclusiveness, 

etc.)



Where were we?
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Application (e.g. browser)
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Compiler
Assembler



Where were we?
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Where were we?
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Introduction to memory hierarchy
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• The memories we have got due to the advance of material science

Storage I/O
(Micro SD Card)

Serial I/O
(USB)

Network I/O
(Ethernet)

Screen I/O
(HDMI)

Wireless I/O
(WiFi)

CPU+$s
Main 

Memory

The Raspberry 
Pi is a low-cost 
computer. 

Motherboard with CPU, I/O, 
caches, etc., soldered on

• Cache Memory 
on processor ( “$”  
stands for cache)

• Main Memory
• SD card as 

secondary 
memory



DRAM & SRAM

8

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Dynamic Random Access Memory as main memory:
– Latency to access first word: ~10ns (~30-40 processor cycles), 

each successive (0.5ns – 1ns)
– Each access brings 64 (depending on the actual hardware) bits
– $3/GiB

• Data is impermanent:
– Dynamic: capacitors store bits, so needs periodic refresh to 

maintain charge
– Volatile: when power is removed, loses data.

• Contrast with SRAM (for caches that will be covered in the following 
lectures, on-chip memory, also can be used for register file):
– Static (no capacitors) but still volatile
– Faster (0.5 ns)/more expensive/lower density



Storage/”Disk”/Secodary Memory
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Solid-State Drive (SSD)
– Access: 40-100μs

(~100k proc. cycles)
– $0.05-0.5/GB
– Usually flash memory

• Hard Disk Drive (HDD) 
– Access: <5-10ms

(10-20M proc. cycles)
– $0.01-0.1/GB
– Mechanical

Usually attached as a peripheral I/O device and non-volatile.



Introduction to memory hierarchy
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Motivation: Large memories slow? Library Analogy
– Finding a book in a large library takes time

• Takes time to search a large card catalog – (mapping title/author to 
index number)

• Round-trip time to walk to the stacks and retrieve the desired book.
– Larger libraries makes both delays worse
– Electronic memories have the same issue, plus the technologies that 

we use to store an individual bit get slower as we increase density 
(SRAM versus DRAM versus Magnetic Disk)

However what we want is a large yet fast memory! 



Processor-DRAM Gap (Latency)
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Slow DRAM access has 
disastrous impact on 
CPU performance! 

Microprocessor executes 
~one instruction in the same 
time as DRAM access

Microprocessor executes 
~1000 instructions in the 
same time as DRAM access



Library Analogy
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Want to write a report for CA using library books
• Go to library, look up relevant CA books, fetch from stacks, and 

place on desk in library
• If need more, check them out and keep on desk

– But don’t return earlier books since might need them (locality)
• You hope this collection of ~10 books on desk enough to write the 

report, despite 10 being only a tiny fraction of books available 



Great Ideas
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Memory access is a bottleneck 
• Make common case fast (quick access to frequently used data)
• Memory hierarchy/Principle of locality

Super fast, super expensive, 
tiny capacity

Fast, reasonable cost, 
average capacity

Faster, expensive, small 
capacity

Processor 
chip

DRAM chip –e.g. 
DDR3/4/5
HBM/HBM2/3

SSD, HDD
Drives



Great Ideas
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Memory access is a bottleneck 
• Make common case fast (quick access to frequently used data)
• Memory hierarchy/Principle of locality

Processor 
chip

DRAM chip –e.g. 
DDR3/4/5
HBM/HBM2/3

SSD, HDD
Drives

Increasing 
distance from 

processor,
decreasing  

speedOn-chip 
SRAM

Size of memory at each level



Great Ideas
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Memory access is a bottleneck 
• Make common case fast (quick access to frequently used data)
• Memory hierarchy/Principle of locality

Processor 
chip

DRAM chip –e.g. 
DDR3/4/5
HBM/HBM2/3

SSD, HDD
Drives

On-chip 
SRAM

● How do we make it fast?
○ Use a hierarchy.

● How do we make it 
appear ”large”?
○ Principle of 

locality: Cache 
the “right” data 
in higher levels.



16

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic Unit (ALU)

Enable?
Read/Write

Address

Write 
Data

Read 
Data

Processor-Memory 
Interface

Memory

Program

Data

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Hardware Implementation
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Processor

Control

Datapath
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Memory

Program

Data

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Processor-Memory 
Interface

Cache

Hardware Implementation

Lines (Blocks) of data 
copied from the main 
memory (Copy of subset 
of the main memory)
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Caching: the Basis of the Memory Hierarchy
• A cache contains copies of data that are being used.
• A cache works on the principles of temporal and spatial locality.

Temporal Locality Spatial Locality

Idea
If we use it now, chances are 
that we’ll want to use it again 
soon.

If we use a piece of memory, 
chances are we’ll use the 
neighboring pieces soon.

Library 
Analogy

We keep a book on the desk 
while we check out another 
book.

If we check out a book’s vol. 1 
while we’re at it, we’ll also check 
out vol. 2.

Memory

If a memory location is 
referenced, then it will tend to 
be referenced again soon. 
Therefore, keep most recently 
accessed data items closer to 
the processor.

If a memory location is 
referenced, the locations with 
nearby addresses will tend to 
be referenced soon. Move lines 
consisting of contiguous words 
closer to the processor.



Real Memory Reference Patterns
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journal 10(3): 
168-192 (1971)
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Locality!!!
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Temporal locality (locality in time)
– If a memory location is referenced, then it will tend to be 

referenced again soon
• Spatial locality (locality in space)

– If a memory location is referenced, the locations with nearby 
addresses will tend to be referenced soon

// Sample code for CS110@Spring 2025 -- Chundong
for (i = 0, sum = 0; i < n; ++i) 
{

sum += a[i];
}



Real Memory Reference Patterns
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journal 10(3): 
168-192 (1971)
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Principle of Locality
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Principle of Locality: Programs access small portion of address space 
at any instant of time (spatial locality) and repeatedly access that 
portion (temporal locality)

• What program structures lead to temporal and spatial locality in 
instruction accesses? 

• In data accesses?



Memory Reference Pattern
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine 
call subroutine 

return

argument access

vector access

scalar accesses

... ... ...



Bane of Locality: Pointer Chasing
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Special data structures: linked list, tree, etc.
– Easy to append onto and manipulate... 

• But they have horrid locality preferences
– Every time you follow a pointer it is to an unrelated location: 

No spacial reuse from previous pointers
– And if you don't chase the pointers again you don't get temporal 

reuse either 



Cache Philosophy
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• The memory hierarchy presents the processor with the illusion of a 
very large and fast memory by taking advantages of locality.



Typical Memory Hierarchy
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache

Speed (cycles):  ½’s             1’s                           10’s                          100’s               1,000,000’s
Size (bytes): 100’s                10K’s                        M’s                          G’s                       T’s

 Cost/bit:     highest                                                                                  lowest

Third-Level
Cache

(SRAM)

• Principle of locality + memory hierarchy presents programmer with ≈ as much 
memory as is available in the cheapest technology at the ≈ speed offered by 
the fastest technology



Memory Hierarchy Management
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Instructions
• Either by assembly programers or generated by a compiler;
• Does not define how it is achieved.

Load
Store



Memory Hierarchy Management
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Hardware cache controller

• With cache, the datapath/core does not directly access the main memory;
• Instead the core asks the caches for data with improved speed;
• A hardware cache controller is deviced to provide the desired data
(with various strategies that will be covered in future lectures).

Data request

Data 



Memory Hierarchy Management
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

Operating system
• By the operating system (virtual memory)
• Virtual to physical address mapping assisted by the hardware 
(‘translation lookaside buffer’ or TLB, also a cache)
• By the programmer (files)



Memory with/without Cache Example
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Memory access without cache:

1. Processor issues address 0x12F0 to memory
2. Memory reads 1234 @ address 0x12F0

3. Memory sends 1234 to Processor
4. Processor loads 1234 into register t0

Load word instruction: 
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0



Memory with/without Cache Example
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Memory access with cache:

1. Processor issues address 0x12F0 to memory
2. Cache checks if data @address 0x12F0 is in it

– if it is in the cache, cache hit and read 1234
– if not matched, called cache miss and 

• Cache sends address to 0x12F0 the memory
• Memory read address 0x12F0 and send 1234 to cache
• Due to limited size, cache replace some data with 1234

3. Cache sends 1234 to Processor
4. Processor loads 1234 into register t0

Load word instruction: 
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0



Typical Values
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

● L1 cache
○ size: tens of KB
○ hit time: complete in one 

clock cycle
○ miss rates: 1-5%

● L2 cache
○ size: hundreds of KB
○ hit time: few clock cycles
○ miss rates: 10-20%

● The L2 miss rate is the fraction of L1 misses that also miss in L2.
○ Why so high? (more later)



Detailed Considerations
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Memory access with cache:

1. Processor issues address 0x12F0 to memory
2. Cache checks if data @address 0x12F0 is in it

– if it is in the cache, cache hit and read 1234
– if not matched, called cache miss and 

• Cache sends address to 0x12F0 the memory
• Memory read address 0x12F0 and send 1234 to cache
• Due to limited size, cache replace some data with 1234

3. Cache sends 1234 to Processor
4. Processor loads 1234 into register t0

Load word instruction: 
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

How?



Cache Terminology
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Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

• Cache line/block: a single entry in cache
• Cache line/block size: #byte per cache line/block
• Capacity: total #byte that can be stored in a cache

Block 1
Block 2
Block 3

... ...

#byte per cache line/block

Total 
#byte 

A small cache 



Cache “Tag”
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• Need a wag to tell if the cache have copy of location in memory so that 
can decide on hit or miss;

• On cache miss, put memory address of block in “tag address” of cache 
block;

• Previous example: address used as tag.

Address DATA
0x1100 0
0x12F0 1234
0x1000 110
0x4000 100

Load word instruction: 
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

A small cache 

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches



Example: Anatomy of a 16 Byte Cache
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• Cache capacity: 16 B; Block size: 4 B;
• Thus 4 cache blocks; 

Address DATA
0x1100 0
0x12F0 1234
0x1000 110
0x4000 100

Load word instruction: 
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Processor

0x12F0 32-bit
Address

32-bit
Data

Cache

Memory

32-bit
Address

32-bit
Data• Compare address: HIT! 

• Fetch the data from cache 

1234

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches



Example: Anatomy of a 16 Byte Cache
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• Cache capacity: 16 B; Block size: 4 B;
• Thus 4 cache blocks; 

Address DATA
0x1100 0
0x9527 3721
0x1000 110
0x4000 100

Load word instruction: 
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Processor

0x12F0 32-bit
Address

32-bit
Data

Cache

Memory

32-bit
Address

32-bit
Data• Compare address: MISS! 

• Replace the data in the cache 
– Must “evict” one resident block to make 

room (Policy covered in later lectures)

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches



Cache Replacement
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• Cache capacity: 16 B; Block size: 4 B;
• Thus 4 cache blocks; 

Address DATA
0x1100 0
0x12F0 1234
0x1000 110
0x4000 100

Load word instruction: 
lw t0 0(t1)

0x12F0t1

Memory[0x12F0] = 1234

1234t0

Processor

0x12F0 32-bit
Address

32-bit
Data

Cache

Memory

32-bit
Address

32-bit
Data• Compare address: MISS! 

• Replace the data in the cache 
– Must “evict” one resident block to make 

room (Policy covered in later lectures)
– Replace “victim” with new memory block 

at address 0x12F0

0x12F0 1234

• Fetch 1234 from cache

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches



Summary
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• Cache is added to improve the read/write efficiency; 
• It is transparent to the programmer while the management is 

automatically done by a cache controller;
• It exploits locality to make the memory looks big and fast.


