) [EENESRAER

o, i, & School of Information Science and Technology

CS 110
Computer Architecture

Cache |

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/4/15

Administratives

Mid-term | score published. Please check if there are any
questions regarding your marks. Submit regrade request if
you have any concerns before this FRIDAY (Apr. 18th
23:59:59)!

Project 2.1 released, start early!!!
HW4 ddl TODAY! Submit your answer to gradescope.
Project 1.2 ddl Apr. 17th.

Lab 8 checking this week. Lab 9 will be released and checked
next week.

Outline

« Starting this lecture, we will improve the performance of our CPU

* Memory hierarchy (cache)
* Introduction to cache
* Principle of Locality
» Simple Cache
 Direct Mapped & Set-Associative Caches

Where were we”?

Application (e.g. browser)

Compiler
Software Assembler

Hardware Processor

Data & Control

Digital Design

Circuit Design

Transistors
Fabrication

Where were we”?

Processor

Enable?
Read/Write

Address

Write
Data

Read
Data

\)
\ 4

Processor-Memory

Interface

5

Where were we”?

i 1 1 1 rd
. ID M EX ' MEM 7 WB_ s peq
Ctrl. ® reg_en
instru. _
PC reg e ALU_ctrl re we |
d_in 1
+ ™ PC Imem. = = | “p '
Reg. £sl l ! wb_src
- rg? xlrsi] 1 addr. Data :
rd | Reg.file | Yirs2] memory |: d_out
Branch 1 alu result L1
A possible implementation pred. ; op2_srcrm Zero :
; | 1 ;
1 — r T
instru ; : '
. . imm. Gen. [—e® .
[31.20|11.1l] imm . :
' | sign-extended ' '
pc_src imm_ctrl N !
o— 4 \ f— 1S _beq
processer SUPER EXPENSIVE
Rough access time (ns) Components CPU TINY CAPACITY
. PROCESSOR
CFU CALRE FASTER
.. N SMALL CAPAGITY
LEVEL 2 (L2) CACHE A
o evesancacke
EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
1 OO PRICED REASONABLY

AVERAGE CAPACITY

Main Memory and More..

SOLID STATE MEMORY AVERAGE SPEED

g PRICED REASONABLY
i AVERAGE CAPACITY

SSD, Flash Drive _

NON-VOLATILE FLASH-BASED MEMORY

6 Solid State Drive

10 Hard Disk Drive [wommsons

/ ' CHEAP
i FILE-BASED MEMORY A LARGE CAPACTITY

Introduction to memory hierarchy

 The memories we have got due to the advance of material science

The Raspberry Wireless 1/0

Pi is a low-cost Storage I/0 (WIiFi
computer. (Micro SD Card) P seiere

Network I/O
(Ethernet)

« Cache Memory
on processor (“$”
stands for cache)

 Main Memory

« SD card as
secondary
memory

DRAM & SRAM

Dynamic Random Access Memory as main memory:

- Latency to access first word: ~10ns (~30-40 processor cycles),
each successive (0.5ns — 1ns)

- Each access brings 64 (depending on the actual hardware) bits
- $3/GiB

Data is impermanent:

- Dynamic: capacitors store bits, so needs periodic refresh to
maintain charge

- Volatile: when power is removed, loses data.

Contrast with SRAM (for caches that will be covered in the following
lectures, on-chip memory, also can be used for register file):

- Static (no capacitors) but still volatile
- Faster (0.5 ns)/more expensive/lower density

Storage/”Disk”/Secodary Memory

Usually attached as a peripheral I/O device and non-volatile.

Hard Disk Drive (HDD)

Access: <5-10ms
(10-20M proc. cycles)

$0.01-0.1/GB
Mechanical

Solid-State Drive (SSD)

- Access: 40-100pus
(~100k proc. cycles)

_ $0.05-0.5/GB

- Usually flash memory

Introduction to memory hierarchy

* Motivation: Large memories slow? Library Analogy
— Finding a book in a large library takes time
« Takes time to search a large card catalog — (mapping title/author to
index number)
* Round-trip time to walk to the stacks and retrieve the desired book.

— Larger libraries makes both delays worse

— Electronic memories have the same issue, p/us the technologies that
we use to store an individual bit get slower as we increase density
(SRAM versus DRAM versus Magnetic Disk)

g . _.'"u Jﬂ’ : h [

[d

I TR

- 1 ‘ g(' :\v

/ I/‘- l
" 4 1
» ' - .l'
] N !

" \.l /

However what we want is a large yet fast memory! 10

Processor-DRAM Gap (Latency)

100,000 .
CPU Performance: 55% per year, Microprocessor executes
slowing down after 2004 ~1000 instructions in the
10,0000 ot st ot e sk esesa s e i el S Eien e e o g _
L same time as DRAM access
w
Q
Q{000 4 ﬁ
= O
£ cC
O 4]
= 004 e e
o o
=
o
10t e e s e e s T
: DRAM: 7% per year
1980 1985 1990 1995 2000 2005 2010
Microprocessor executes Slow DRAM access has
~one instruction in the same disastrous impact on
time as DRAM access CPU performance!

11

Library Analogy

Want to write a report for CA using library books

Go to library, look up relevant CA books, fetch from stacks, and
place on desk in library

If need more, check them out and keep on desk
— But don’t return earlier books since might need them (locality)

You hope this collection of ~10 books on desk enough to write the
report, despite 10 being only a tiny fraction of books available

12

GGreat Ideas

« Memory access is a bottleneck
« Make common case fast (quick access to frequently used data)
* Memory hierarchy/Principle of locality

Processor Super fast, super expensive,

Faster, expensive, small
capacity
DRAM chip —e.q. T
DDR3/4/5p J it Fast, reasonable cost,
HBM/HBM?2/3 average capacity

Virtual Memory

Solid-State Memory (Fash)

SSD, HDD/
Drives '

Magnetic Disks

13

GGreat Ideas

Memory access is a bottleneck
Make common case fast (quick access to frequently used data)
Memory hierarchy/Principle of locality

CPU
Core

aance o
Chlp CPU Cache grccesslor,
Oﬂ-Chip Level 1(L1) Cache ecreasing
SRAM Level 2 (L2) Cache Speed

Level 3 (L3) Cache
DRAM Ch|p -e.g. Physical Memory
DDR3/4/5
HBM/HBM2/3 Virtual Memory

Solid-State Memory (Fash)
SSD, HDD
Drives

Magnetic Disks

Size of memory at each level

14

GGreat Ideas

Memory access is a bottleneck
Make common case fast (quick access to frequently used data)
Memory hierarchy/Principle of locality

CPU
Core

« How do we make it fast?

Processor - Use a hierarchy.
chip
CPU Cache
AR Level 1(LT) Cache
glg:hr/]llp Sl « How do we make it
Level 3 (L3) Cache appear !!Iarge!!?
DRAM Chlp —e.g. Physical Memory o Principle Of
DDR3/4/5 locality: Cache
HBM/HBM2/3 —— the “right” data
| Solid-State Memory (Hash) nh 9 her levels.

SSD, HDD

Drives

Magnetic Disks

15

Intro

Hardware Implementation

Processor
Enable?

Read/Write

Address
Write
Data
Data

\ J
¥

Processor-Memory
Interface

16

Hardware Implementation

Processor

Control

Datapath
PC

Registers

Cache

Lines (Blocks) of data
copied from the main
memory (Copy of subset
of the main memory)

Memory

Program

Data

Processor-Memory

17

Y

Interface

Caching: the Basis of the Memory Hierarchy

A cache contains copies of data that are being used.
A cache works on the principles of temporal and spatial locality.

Temporal Locality Spatial Locality

Library
Analogy

Memory

If we use it now, chances are
ldea that we’ll want to use it again

sSOoon.

We keep a book on the desk

while we check out another

book.

If a memory location is

referenced, then it will tend to

be referenced again soon.

Therefore, keep most recently
accessed data items closer to

the processor.

18

If we use a piece of memory,
chances are we’ll use the
neighboring pieces soon.

If we check out a book’s vol. 1
while we’re at it, we’ll also check
out vol. 2.

If a memory location is
referenced, the locations with
nearby addresses will tend to
be referenced soon. Move lines
consisting of contiguous words
closer to the processor.

Real Memory Reference Patterns

Address

Memory Address (one dot per access)

274 § 0 E :E:E_ T EEEEs e e e e
- - - L]
S e o s S el ol . - £ I #_;__
N -
20r = TR NI IR A s s s i eny summamee B . 4 - m%
4 s g el L o el 1‘
B all Pt i FTLL Lt [Lt 1] L d 4
= tr'n'lmlﬂunmnIulhrlu:uunm:nllnul P e neas: "”"'l_ I I s = . e Camm o — B m-vl-ll:
1845 i
2 i e
(]
Time

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journal 10(3):
168-192 (1971)

19

Locality!!!

« Temporal locality (locality in time)

— |f a memory location is referenced, then it will tend to be
referenced again soon

« Spatial locality (locality in space)

— If a memory location is referenced, the locations with nearby
addresses will tend to be referenced soon

// Sample code for CS110@Spring 2025 -- Chundong
for (1 = 0, sum = 0; i < n; ++1i)
{

sum += af[i];

}

Real Memory Reference Patterns

Address

Memory Address (one dot per access)

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Systems Journal 10(3):

168-192 (1971)

Iy - o =
: o B

[

e — o . - ELLLE
N e e o s S A o ‘I--"-ﬂw ’
A e L Ll - i
- - B
.

g Spatial 1
321" § . T T

P Iocal Ity Pi u-q w'

i k- - ‘Tﬁhf-m

30

- h'll.lL‘lr' jfﬂ. '_'

R L, sl] ;nt L

........
C L T R P T P R L P R R o el SRR

e S S E——— L SR 1 (29
4'1.‘,1'. .rll 0¥ l.."-.d. B qla il wh e e g

J--‘\l-r'i"lrlll'-lll'lrﬂ FPEL W A T

i L —-_-.--1.1. ma‘rh#—n‘.—.—“.'._ln
d ¥ - 4F

. L S Sty el e .-:'s"-r'“;:-':‘,.'.':"f,' el

e il i -

T el e i P e iy e B

.
L) - -
B o i S | . R 9NN — . ﬂ";'_
[]

20r = IRNI IR s s peny unmemmatae] 1 ¢ f - m%
4 ..l-l! g l e L 1.-! d *
E i AL gt ¢ et ¥ Y| -
- :I:r'n'lH*l'I'r':l'!llmﬂ'lIuliﬂu:uunmmuﬂm TR l:ljllﬂr | |- . o ——wl'
Ia l L] H

Temporal

locality

21

Principle of Locality

Principle of Locality. Programs access small portion of address space
at any instant of time (spatial locality) and repeatedly access that

portion (temporal locality)
What program structures lead to temporal and spatial locality in

instruction accesses?

In data accesses?

22

Memory Reference Pattern

Address n loop iterations

Instruction
fetches

Stack
accesses

Data
accesses

/\ °
o
o ° o ° o ° o ° o ° ° ° °
o o o o °
° o
o
subroutine

subroutine
call

= ~ return
ﬁo e © o o o o o\
e
o. - -~/ © \e ¢ o o

o argument access © o o o

Time

23

Bane of Locality: Pointer Chasing

« Special data structures: linked list, tree, etc.
— Easy to append onto and manipulate...

« But they have horrid locality preferences

— Every time you follow a pointer it is to an unrelated location:
No spacial reuse from previous pointers

— And if you don't chase the pointers again you don't get temporal
reuse either

Simple Cache

Cache Philosophy

 The memory hierarchy presents the processor with the illusion of a
very large and fast memory by taking advantages of locality.

CPU
Core

CPU Cache
Level 1(L1) Cache

Level 2 (L2) Cache

Level 3 (L3) Cache

Physical Memory

Virtual Memory

S@hd—StaTeMemmry(FtashQ

Magnetic Disks

25

Simple Cache

Typical Memory Hierarchy

On-Chip (CPU) Components Loem™ ™
Controller | .= Secondary
,,,,,,,, Main | | Memory
Datapath | .-~ Second- Third-Level Memory (DiSk
P Tinstr. Cache Level Cache (DRAM) Or Flash)
RegFile Cache (SRAM)
| Data Cache | | (SRAM)
Speed (cycles): ¥2’s 1'S 10’S 100’s 1,000,000’S
Size (bytes): 100’s 10K’s M’s G's T’s
Cost/bit: highest < > lowest

* Principle of locality + memory hierarchy presents programmer with = as much
memory as is available in the cheapesttechnology at the = speed offered by
the fastesttechnology 26

Simple Cache

Memory Hierarchy Management

On-Chip (CPU) Components

Controller

Datapath

RegFile {

f‘
-
"
I’
I’
I’
-

-
. -
- -
. -
- ’
- -

. ==
. -
. =
. -
. =
. -
. =

Instr. Cache

Data Cache

Third-Level
Cache
(SRAM)

Instructions

L
. - .
- ’
. ’
- ’
- =

Main
Memory
(DRAM)

Secondary
Memory
(Disk
Or Flash)

» Either by assembly programers or generated by a compiler;
* Does not define how it is achieved.

~—~ 0 [o

Simple Cache

Memory Hierarchy Management

On-Chip (CPU) Components Loem™ ™
Controller | Secondary
‘‘‘‘‘‘‘‘ Main Memory
Datapath |_..-~~"" Second-| | Third-Level | | | Memory (Disk
|Instr. Cache| | Level Cache (DRAM) | | Or Flash)
RegFile Cache (SRAM)
| Data Cache | | (SRAM)

Data request Hardware cache controller

With cache, the datapath/core does not directly access the main memory;
Instead the core asks the caches for data with improved speed,;
A hardware cache controller is deviced to provide the desired data

with various strategies that will be covered in future lectures).

28

Simple Cache

Memory Hierarchy Management

On-Chip (CPU) Components

Controller [_.=7

Datapath | _-="="" Second
Instr. Cache| | Level

RegFile Cache

| Data Cache | | (SRAM)

Third-Level
Cache
(SRAM)

(‘translation lookaside buffer’ or TLB, also a cache)

By the operating system (virtual memory)
Virtual to physical address mapping assisted by the hardware

By the programmer (files)

L
. - .
- ’
. ’
- ’
- =

Main
Memory
(DRAM)

Secondary
Memory
(Disk
Or Flash)

Operating system

Simple Cache

Memory with/without Cache Example

Load word instruction: t0 1234

lw t0 0(t1) 1 X 12FD

Memory [0x12FQ] = 1234

Memory access without cache:

1. Processor issues address 0x12F0Q to memory
2. Memory reads 1234 @ address 0x12F0

Input

Output

3. Memory sends 1234 to Processor el | ;
4. Processor loads 1234 into register 10 roemon nieess

30

Simple Cache

Memory with/without Cache Example

Load word instruction: t0 1234
lw t0 0(tl
(t1) t1 Ox12F0
Memory [0x12FQ] = 1234

Memory access with cache:

A

. Processor issues address 0x12F@ to memory

2. Cache checks if data @address 0x12F0Q is in it

W

— ifitis in the cache, cache hit and read 1234
— if not matched, called cache miss and

Processor

Input

Output

« (Cache sends address to 0x12F0 the memory
 Memory read address 0x12F0 and send 1234 to cache
* Due to limited size, cache replace some data with 1234

Cache sends 1234 to Processor
Processor loads 1234 into register t0

Processor-Memory Interface

1/0-Memory Interfaces

31

Simple Cache

Typical Values

On-Chip (CPU) Components [_.-==""
Controller | =T
"""""""" | Main
Datapath | ...-"~"~ Second- Thgd-lF]evel Memory
' |Instr. Cache| | Level ache (DRAM)
RegFile Cache (SRAM)
| Data Cache | | (SRAM)
ST S
e« L1 cache e L2 cache
o size: tens of KB o size: hundreds of KB
o hit time: complete in one o hit time: few clock cycles
clock cycle o miss rates: 10-20%

o mMiss rates: 1-5%

Secondary

Memory
(Disk
Or Flash)

e The L2 miss rate is the fraction of L1 misses that also miss in L2.

o Why so high? (more later)

32

Simple Cache

Detailed Considerations

Load word instruction: t0 1234

lw t0 0(t1) 1 X 19F0
“~mory[0x12FQ] = 1234

Memory access w How?

A

. Processor issues address ¢ 1.: v (0 memory

2. Cache checks if data @address 0x12F0Q is in it

nall

— ifitis in the cache, cache hit and read 1234
— if not matched, called cache miss and

« (Cache sends address to 0x12F@ the memory

Input

« Memory read address 0x12F0 and send 1234 to cache

* Due to limited size, cache replace some data with 1234

Cache sends 1234 to Processor
Processor loads 1234 into register 10

Output

cessor-Memory Interface

1/0-Memory Interfaces

33

Simple Cache

Cache Terminology

« Cache line/block: a single entry in cache
« Cache line/block size: #byte per cache line/block
« (Capacity: total #byte that can be stored in a cache

#byte per cache line/block

A
s R

Block 1

Total Block 2 A small cache
#byte Block 3

34

Simple Cache

Cache “Tag”

Need a wag to tell if the cache have copy of location in memory so that
can decide on hit or miss;

On cache miss, put memory address of block in “tag address” of cache
block;

Previous example: address used as tag.

Load word instruction: A small cache
lw t0 0(t1)
to 1234 0x1100 0
t1 Ox12F0 O0x12F0 1234
0x1000 110
Memory [0x12F0Q] = 1234 0x4000 100

35

Simple Cache

Example: Anatomy of a 16 Byte Cache

« Cache capacity: 16 B; Block size: 4 B;

« Thus 4 cache blocks; Processor

_oad word instruction: 0x12FQ | 32Dt 1734| 32-bit
Address Data

lw t0 0(t1)
Address
t0 1234 0x1100 0
Cachel 0x12F0 1234
tH ox12F0 0x1000 110
Memory [0x12FQ] = 1234 0x4000 100
32-bit 32-bit
 Compare address: HIT! Address Data

 Fetch the data from cache

36

Simple Cache

Example: Anatomy of a 16 Byte Cache

Cache capacity: 16 B; Block size: 4 B;

"hus 4 cache blocks;

_oad word instruction:
w to 0(t1)
t0 1234
t1 Ox12F0 Cache

Memory [0x12FQ0] = 1234

Compare address: MISS!

Replace the data in the cache

Must “evict” one resident block to make
room (Policy covered in later lectures)

Ox12F0

Processor

32-bit
Address

Address
0x1100 0
0x9527 3721
0x1000 110
0x4000 100
32-bit 32-bit
Address Data

37

Simple Cache

Cache Replacement

« Cache capacity: 16 B; Block size: 4 B;

« Thus 4 cache blocks: Processor

32-bit
Address

_oad word instruction: Ox12F0

lw to 0(t1)
Address
t0 1234 0x1100]
1 Cache| ©0x12F0 1234
0x12F0 0x1000 110
Memory [0x12FQ] = 1234 0x4000 100
32-bit 32-bit
 Compare address: MISS! Ox12F0 Address 1234 Data

 Replace the data in the cache

— Must “evict” one resident block to make
room (Policy covered in later lectures) . Fetch 1234 from cache

— Replace “victim” with new memory block
at address 0x12F0 38

Summary

Cache is added to improve the read/write efficiency;

It is transparent to the programmer while the management is
automatically done by a cache controller;

It exploits locality to make the memory looks big and fast.

