,E EEMNESEARERE

1‘5:— ,;E School of Information Science and Technology

CS 110
Computer Architecture
Cache |l Fully Associative Cache

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/4/17

Administratives

Mid-term | score published. Please check if there are any
questions regarding your marks. Submit regrade request if
you have any concerns before this FRIDAY (Apr. 18th
23:59:59)! Score change after this date is not possible.

Project 2.1 released, start early!!!

HW4 ddl TODAY! Submit your answer to gradescope.
HWS will be released today, ddl Apr. 30th.

Project 1.2 ddl TODAY!

Lab 8 checking this week. Lab 9 will be released and checked
next week.

Fully associative cache

Block Alignment

 From now on, for ease of discussion, Processor
we ASSUME A 16-BIT ADDRESS!!!

 Word blocks are aligned, so binary
address of all words in cache always

16-bit

0Xx12F0 Address

ends in 00, Address

 How to take advantage of this to save 0x1100 :
hardware and energy? Cache 0x12F0 1234

. Don’.t need to compare last 2 bits of gz;ggg 1;2
32-bit byte address (comparator can
7 nartowen) 012F0 | pigress 1234 ‘Data

==> Don’t need to store last 2 bits of 32-
bit byte address in Cache Tag (Tag
can be narrower)

Fully associative cache

A 32B Cache with 8B Block

* Blocks must be aligned in pairs,
otherwise could get same word
twice in cache;

« Tags only have even-numbered
words;

 Last 3 bits of address always
000;0;

« Tags, comparators can be
narrower;

 Can get hit for either word in
block.

Processor

Address/tag DATAT1

0x1100 0 -10
Ox12F0 1234 1000
0x1000 110]
0x0400 100 20
16-bit 64-bit
OX12F0 | Aqdress Data

Fully associative cache

Lb Example

« 1b t0, 0(t1)
t1 0Ox12F0

* High 13 bits are used to
compare to the tags;
« Hit!l!

« Fetch data in that cache
block

 Low 3 bits are used as
offset (0b000)

N A
Y Y’
13-bit 3-bit
tag offset

Processor
O0x12F0

Cache

0x1100

0b 0001 0010 1111 @

0x1000

0x0400

16-bit
OX12F0 | Address
v

64-bit
Data

Fully associative cache

Hardware Implementation

* Need to compare each tag

and thus #cache block Processor
comparators to decide hitor 5, 15| 16-bit
not: Address Cache Data
« Comparators are expensive; aadiessitagibaliat
B 0x1100 0 -10
* Fully associative: Ox12F0 1234 1000
« Arbitrary memory address can ' 0x1000 110 7
to arbitrary cache blocks 4
o g X040 | 100 20
. v 16-bit 64-bit
16-b5@ddress Ox12F0 Address Data
s N
_ A
e Y’
13-bit 3-bit 6

tag offset

Fully associative cache

Terminology for Fully Associative Cache

» (Cache size: total size of the cache (C)
« Cache block size: Cz — decides the number of offset bits (b)
2b = Cpg

* Number of cache blocks (#cache block, N)

N*Cg=C
 Bit width of memory address (w): 16-bit in our examples
« Bitwidth of Tag (t):t=w-b
« Hardware implication: comparators? actual storage requirement?

Tag DATA
A .
' N N blocks \[t-bit Cs Bytes
~ ~~——’
t-bit b-bit k
Vi

tag offset

Fully associative cache

Warm Up a Fully Associative Cache

« Valid bit Tag valid bit DATA
t-bit 0 Cg Bytes

 We need an indicator (i.e., flag)

to tell if each entry is valid for

this particular program.

 Valid bit: indicates if data

stored at a cache line is valid;

« 1 = valid, 0 = invalid

« Cold start: Empty cache with
valid bit O: initial state of the
cache

Fully associative cache

Run Assemly to Heat the Cache
4B cache block

- 1. Load byte at address 0x043F e valiellen DATA

0 11 |10 | 01 | 00
- Tag: 0b 0000 0100 0011 11

0
o Offset: 0
0

« Check valid bits and compare the

tags: cache miss!

« (Cache sends 0x043C to the main
memory;

Fully associative cache

Run Assemly to Heat the Cache (Cont’d)

+ 1. Load byte at address 0x043F Tag valid bit DATA
0x010F 1 12 | 34 | 25 | 87
« Tag: 0b 0000 0100 0011 11 2
« Offset: 0
« Check valid bits and compare the)

tags: cache miss!

« (Cache sends 0x043C to the main
memory;

« Memory data (e.g. 0x12342587)
filled in the first cache block with tag
recorded and valid bit set 1;

10

Fully associative cache

Run Assemly to Heat the Cache (Cont’d)

+ 1. Load byte at address 0x043F Tag valid bit DATA
0x010F 1 12 | 34 | 25 | 87
« Tag: 0b 0000 0100 0011 11 2
« Offset: 0
 Check valid bits and compare the)

tags: cache miss!

« (Cache sends 0x043C to the main
memory;

« Memory data (e.g. 9x12342587)
filled in the first cache block with tag
recorded and valid bit set 1;

« Use offset to index the byte from
the first cache block;

« (Cache send 0x12 to the processor.

11

Fully associative cache

Run Assemly to Heat the Cache (Cont’d)

+ 1. Load byte at address 0x043F Tag valid bit DATA
Ox010F 1 12 | 34 | 25 | 87
« 2. Load byte at address 0x1234 Ox048D) 87 | 65 | 43 | 21
« Tag: 0b 0001 0010 0011 01 0
e Offset: 0

« Check valid bits and compare the
tags: cache miss!

« (Cache sends 0x1234 to the main
memory;

« Memory data (e.g. 9x87654321)
filled in the second cache block with
tag recorded and valid bit set to 1.

« Use offset to index ...

12

Fully associative cache

Run Assemly to Heat the Cache (Cont’d)

« 1. Load byte at 0x43F Tag valid bit DATA
+ 2. Load byte at 0x1234 Ox0I0F | 1 [is |34] 20 [S/
0x048D | 1 87 | 65 | 43 | 21
3. Load halfword at 9x0022 0x0008 7 o
« Tag: 0b0...0 0010 00 0

Offset:

Check valid bits and compare the
tags: cache miss!

Cache sends 0x0020 to the main
memory;

Memory data (e.g. 0x12345678)
filled in the second cache block
with tag recorded and valid bit set
to 1;

Use offset to index the 2nd byte;

13

Fully associative cache

Run Assemly to Heat the Cache (Cont’d)

+ 1. Load byte at 0x043F Tag valid bit DATA

Ox010F 1 12 | 34 | 25 | 87
« 2.Load byte at 0x1234 0x048D 1 37 | 65 | 43 | 21
« 3. Load halfword at 0x0022 0x0008 1 12 | 34 | 56 | 78
e 4. Load word at 9x043C 0

Tag: 0b 0000 0100 0011 11
Offset:

Check valid bits and compare the
tags: cache hit!

Use offset to index the Oth byte;

Cache sends 0x12342587 to
the processor;

14

Fully associative cache

Run Assemly to Heat the Cache (Cont’d)

+ 1. Load byte at 0x043F Tag valid bit DATA
Ox010F 1 12 | 34 | 25 | 87

« 2.Load byte at 0x1234 0x048D 1 37 | 65 | 43 | 21

« 3. Load halfword at 0x0022 0x0008 1 12 | 34 | 56 | 78

4. Load word at 0x043C 0

5. Load byte at 9x0F43

Assume memory[0OxO0F40] =
OxFFFFFFFF;

15

Fully associative cache

Run Assemly to Heat the Cache (Cont’d)

+ 1. Load byte at 0x043F Tag valid bit DATA
Ox010F 1 12 | 34 | 25 | 87
« 2.Load byte at 0x1234 0x048D 7 37 | 65 | 43 | 21
« 3. Load halfword at 9x0022 0x0008 1 12 | 34 | 56 | 78
4. Load word at 0x043C 0x03D0 | 1 FF | FF | FF | FF

« 5. Load byte at 0x0F43

Assume memory[0OxO0F40] =
OxFFFFFFFF;

16

Replacement Policy

Block Replacement

1. Load byte at 0x043F
2. Load byte at 0x1234
3. Load halfword at 9x0022
4. Load word at 9x043C
5. Load byte at 0x0F43

« Assume memory[0OxO0F40] =
OxFFFFFFFF;

Cache is full

 |f there is another cache miss, a
victim will be evicted from the
cache;

Tag valid bit DATA
Ox010F 1 12 | 34 | 25 | 87
0x048D 1 87 | 65 | 43 | 21
0x0008 1 12 | 34 | 56 | /8
0x03D0 1 FF | FF | FF | FF

17

Replacement Policy

Block Replacement (Cont’d)

1. Load byte at 0x043F
2. Load byte at 0x1234
3. Load halfword at 9x0022
4. Load word at 9x043C
5. Load byte at 0x0F43
6. Load word at 9x0120

Tag valid bit DATA
Ox010F 1 12 | 34 | 25 | 87
0x048D 1 87 | 65 | 43 | 21
0x0008 1 12 | 34 | 56 | /8
0x03D0 1 FF | FF | FF | FF

18

Replacement Policy

Block Replacement (Cont’d)

1. Load byte at 0x043F
2. Load byte at 0x1234
3. Load halfword at 9x0022
4. Load word at 9x043C
5. Load byte at 0x0F43
6. Load word at 9x0120

Cache miss and we need to
replace one cache block with the
data at 0x0120;

Tag valid bit DATA
Ox010F 1 12 | 34 | 25 | 87
0x048D 1 87 | 65 | 43 | 21
0x0008 1 12 | 34 | 56 | /8
0x03D0 1 FF | FF | FF | FF

19

Replacement Policy

Block Replacement Policy

Least recently used (LRU)

o Replace the entry that has
not been used for the
longest time, i.e., has the
oldest previous access.

o Pro: Temporal locality!

« Recent past use implies
likely future use

o Con: Complicated hardware
to keep track of access
history

Tag valid bit DATA
Ox010F 1 12 | 34 | 25 | 87
0x048D 1 87 | 65 | 43 | 21
0x0008 1 12 | 34 | 56 | /8
0x03D0 1 FF | FF | FF | FF

20

Replacement Policy

LRU Implementation

Add extra information to record
cache usage;

We can use index to indicate its
priority;

O indicates the highest priority (the
most recently used);

3 indicates the least recently used.

Tag VB LRU DATA

0x010F | 1 12 [34 | 25 | 87
0x048D | 1 87 | 65 | 43 | 21
0x0008 | 1 12 (34|56 | 78
0x03D0 | 1 FF | FF | FF | FF

21

Replacement Policy

L RU Example

Add extra information to record
cache usage;

We can use index to indicate its
priority;

LRU = 0 indicates the highest
priority (the most recently used);

LRU = 3 indicates the least
recently used.

1. Load byte at 0x043F
2. Load byte at 0x1234
3. Load halfword at 9x0022
4. Load word at 0x043C
5. Load byte at 0x0F43
6. Load word at 9x0120

Tag

VB LRU
0

DATA

0
0
0

Replacement Policy

LRU Example (Cont’d)

Add extra information to record Tag VB LRU DATA
cache usage; 0x010F | 1 0 |12 34|25
We can use index to indicate its 0
priority; 0
LRU = 0 indicates the highest 0

priority (the most recently used);

LRU = 3 indicates the least
recently used.

1. Load byte at 0x043F LRU
2. Load byte at 0x1234
3. Load halfword at 9x0022
4. Load word at 0x043C
5. Load byte at 0x0F43
6. Load word at 9x0120

Directly-Mapped Caches

LRU Example (Cont’d)

Add extra information to record Tag VB LRU DATA

cache usage; O0x010F | 1 1 |12|34 |25

« We can use index to indicate its | 9x048D | 1 0 87 | 65|43
priority; 0

* LRU = 0 indicates the highest 0

priority (the most recently used);

e LRU = 3 indicates the least
recently used.

1. Load byte at @x043F
0 1
2. Load byte at 0x1234
’ _

3. Load halfword at 9x0022
4. Load word at 0x043C
5. Load byte at 0x0F43
6. Load word at 9x0120

Replacement Policy

LRU Example (Cont’d)

Add extra information to record Tag VB LRU DATA
cache usage; 0x010F | 1 2 12|34 |25
« We can use index to indicate its | 0x048D| 1 1 87|65 |43

priority; 0x0008 | 1 @ |12 |34 |56
* LRU = 0 indicates the highest 0

priority (the most recently used);

e LRU = 3 indicates the least
recently used.

1. Load byte at 0x043F LRU
0 1
2. Load byte at 0x1234
y m» o B

3. Load halfword at 9x0022
4. Load word at 0x043C
5. Load byte at 0x0F43
6. Load word at 9x0120

S L N

Replacement Policy

LRU Example (Cont’d)

Add extra information to record
cache usage;

1. Load byte at 0x043F
2. Load byte at 0x1234
3. Load halfword at 9x0022

4.

S.
6.

We can use index to indicate its
priority;

LRU = 0 indicates the highest
priority (the most recently used);

LRU = 3 indicates the least
recently used.

_oad word at 9x043C

_oad byte at Ox0F43

_oad word at 0x0120

Tag VB LRU DATA
Ox010F | 1 0 12 | 34 | 25| 87
Ox048D | 1 2 8765|143 |21

0x008 | 1 1 12 1 34 | 56|78
0
LRU LRU
0 1 2 0
» o | w1 | WO
0 1

26

Replacement Policy

LRU Example (Cont’d)

Add extra information to record Tag VB LRU DATA
cache usage; O0x010F | 1 1 (12|34 25|87
« We can use index to indicate its | 9x048D | 1 3 87 |165|43 |21
priority; 0x0008 | 1 2 1234|5678
« LRU = 0 indicates the highest | gx03D0 | 1 0 FF | FF | FF | FF
priority (the most recently used);
« LRU = 3 indicates the least
recently used.
1. Load byte at 0x043AiGUR LRU LRU LRU
0 1 2 0 1
2. Load byte at 0x1234
y m o | 1 2 | = | 3
3. Load halfword at 0x¢ 0 1 >
4. Load word at 0x043 0

5. Load byte at 0x0F43
6. Load word at 0x0120

27

Replacement Policy

LRU Example (Cont’d)

Add extra information to record Tag VB LRU DATA
cache usage; O0x010F | 1 1 (12|34 25|87
« We can use index to indicate its | @x048D | 1 3 87 65|43 |21
priority; 0x0008 | 1 2 1234|5678
* LRU = 0 indicates the highest | gxp3D0 | 1 0 FF | FF | FF | FF
priority (the most recently used);
« LRU = 3 indicates the least
recently used.
1. Load byte at 0x043AiGUR LRU LRU LRU
0 1 2 0 1
2. Load byte at 0x1234
y m o = 1 2 | mp | 3
3. Load halfword at 0x¢ 0 1 5
4. Load word at 0x043 0

5. Load byte at 0x0F43
6. Load word at 0x0120

28

Replacement Policy

Question: What is in the tag/VB/LRU

Add extra information to record
cache usage;

We can use index to indicate its
priority;

LRU = 0 indicates the highest
priority (the most recently used);

LRU = 3 indicates the least
recently used.

1. Load byte at 0x043F
2. Load byte at 0x1234
3. Load halfword at 9x0022
4. Load word at 0x043C
5. Load byte at 0x0F43
6. Load word at 9x0120

Tag VB LRU DATA

0x010F | 1 12 |34 | 25 | 87

0x0008 | 1 12 |34 |56 | 78

0x03D0 | 1 FF | FF | FF | FF
LRU

29

Replacement Policy

Question: What is in the tag/VB/LRU

:
2
3
4.
S
6
7

. Load byte at 0x0F43
. Load word at 0x0120
. Load halfword at Ox043E

. Load byte at 0x043F Tag VB LRU DATA
Ox010F | 1 2 12 | 34 | 25| 87
-Load byte at 0x1234 0x0048 | 1 @ |[so|me|wo|rd
. Load halfword at 0x0022 0x0008 | 1 | 3 |12/34!|56]78
_oad word at 0x043C 0x03D0 | 1 1 |FF|FF|FF|FF

30

Replacement Policy

The Other Replacement Policies

_ LRU is ideal for temporal locality.
Temporal |Qca||’[y In practice, FIFO/LIFO/Random
are the most common.

Most Recently Used (MRU)
o Replace the entry that has the newest previous access.

First In, First Out (FIFO) A
o Replace the oldest line in the set (queue). . Reasonable approximations
Last In, First Out (_”:O) to LRU, MRU without add
_ _ too much hardware.
- Replace the newest line in the set (stack). |
Random

Works surprisingly okay (when
given a low temporal locality

workload)
31

Write Policy

What about Write?

Tag VB LRU DATA

Write Policies

. Load byte at 0x043F Ox010F | 1 5
_oad byte at 0x1234 0x0048 | 1 0
_oad halfword at 0x0022 0x0008 | 1 | 3

0x03D0 | 1 1

_oad word at 0x043C
_oad byte at O0x0F43
_oad word at 0x0120
7. Store byte 0x0 to Ox0OF43

o oA 0N =

32

What about Write?

Write Policies

. Load byte at 0x043F
_oad byte at 0x1234
_oad halfword at 0x0022
_oad word at 0x043C
_oad byte at O0x0F43
_oad word at 0x0120

7. Store byte Ox0 to Ox0F40
Cache HIT!

o oA 0N =

Write Policy

Tag VB LRU DATA
Ox010F 1 2
0x0048 1 0
0x0008 1 3
Ox03D0 1 1
Memory
Ox0F40

33

Write Policy

Write-back vs. Write-through

. Store instructions write to Tag VB LRU DATA
memory, which changes values. 0x010F | 1 2

« Hardware needs to ensure that |0x0048| 1 0
cache and memory have |0x0008| 1 3
consistent information. 0x03D0 | 1 1

o Write-through
o Write to the cache and memory at the same time. :
_ _ Simple to
e (more writes to memory — longer time) implement
o Write-back (not the write back phase in pipeline)
o Write data in cache and set a dirty bit to 1.

« When this block gets replaced from the cache

(and “back” to memory), write to memory. (typically) lower
traffic to memory

34

Write Policy

Write-back in a LRU Fully Associative Cache

« Store byte 0x0 to Ox0F40

— Cache hit!
Tag VB LRU Dirty DATA
* Write-back OX010F | 1 | 2 0
— Write data in cache and set a dirty bit | 9x0048 | 1 0 0
to1. Ox0008 | 1 | 3 0
— When this block gets evicted |0x03D0 | 1 | 1 1 00

(replacement) from the cache (and

“back” t o 1 Cache hit w/write-back:
ack” to memory), write to memory. update cache line, and wait until this

block is replaced before writing back
to memory

35

Write Policy

Write-back in a LRU Fully Associative Cache

« Store byte 0x0 to Ox0F40
— Cache hit!

 Write-back

— Write data in cache and set a dirty bit
to 1.

— When this block gets evicted
(replacement) from the cache(and
“pack” to memory), write to memory.

— Update LRU

Tag VB LRU Dirty DATA

0x010F | 1 | 2 0
0x0048 | 1 | 1 0
0x0008 | 1 | 3 0
0x03D0 | 1 | 0 1 00

Cache hit w/write-back:

update cache line, and wait until this
block is replaced before writing back
to memory

36

Write Policy

Write with Cache Miss—Write-Allocate

- 7. Store byte 0x0 to OxFF40 Tag VB LRU Dirty DATA
Cache miss! 0x010F | 1 | 2 0
T ARIE e 0x0048 | 1 | 1 | 0
* Write-allocate 0x0008 | 1 | 3 | 0
— Allocate in cache a space to deal 0x03D0 | 1| © 0
with this write (cache block replace- ‘
ment)
— Update LRU Tag VB LRU Dirty DATA
_ Set dirty bit and implement write- | 0X010F | 1 | 2 | ©
back policy; or write-through 0x0048 | 1 | 3 | ©
Ox3FDO | 1 | © 1 0
0x03D0 | 1 | 1 0

37

Write Policy

No-Write-Allocate (Write Around)

7. Store byte OxFF40, 0x0

— Cache miss!

Non-write-allocate

« The data is directly write to the
main memory without loading it
into the cache;

Advantage: avoid evicting data that
may be used later;

Disadvantages: access the main
memory each time, may increase the
latency;

Tag VB LRU Dirty DATA
Ox010F | 1 | 2 0
Ox0048 | 1 | 1 0
0x0008 | 1 | 3 0
Ox03D0 | 1 | 0O 0

38

Write Policy

Summary

Fully associative cache

— Data can go to each cache block (placement policy);

— Address is divided and used as tag and offset;

— Cache contains tag, valid bit, LRU, Dirty bit (if applicable), data;

— Address is compared to the tags in parallel to decide cache miss/hit;
— Cache block replacement policies;

— Write policies.

39

