
CS 110
Computer Architecture

Cache II Fully Associative Cache
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/4/17

Administratives

2

• Mid-term I score published. Please check if there are any
questions regarding your marks. Submit regrade request if
you have any concerns before this FRIDAY (Apr. 18th
23:59:59)! Score change after this date is not possible.

• Project 2.1 released, start early!!!

• HW4 ddl TODAY! Submit your answer to gradescope.

• HW5 will be released today, ddl Apr. 30th.

• Project 1.2 ddl TODAY!

• Lab 8 checking this week. Lab 9 will be released and checked
next week.

Block Alignment

3

• From now on, for ease of discussion,
we ASSUME A 16-BIT ADDRESS!!!

• Word blocks are aligned, so binary
address of all words in cache always
ends in 00two

• How to take advantage of this to save
hardware and energy?

• Don’t need to compare last 2 bits of
32-bit byte address (comparator can
be narrower)

==> Don’t need to store last 2 bits of 32-
bit byte address in Cache Tag (Tag
can be narrower)

Fully associative cache Replacement Policy Write Policy

Address DATA
0x1100 0
0x12F0 1234
0x1000 110
0x0400 100

Processor

0x12F0 16-bit
Address

32-bit
Data

Cache

Memory

16-bit
Address

32-bit
Data0x12F0 1234

A 32B Cache with 8B Block

4

• Blocks must be aligned in pairs,
otherwise could get same word
twice in cache;

• Tags only have even-numbered
words;

• Last 3 bits of address always
000two;

• Tags, comparators can be
narrower;

• Can get hit for either word in
block.

Address/tag DATA1 DATA0
0x1100 0 -10
0x12F0 1234 1000
0x1000 110 7
0x0400 100 20

Processor
0x12F016-bit

Address
32-bit
DataCache

Memory

16-bit
Address

64-bit
Data0x12F0

Fully associative cache Replacement Policy Write Policy

• lb t0, 0(t1)

lb Example

5

16-bit address

3-bit
offset

13-bit
tag

0x12F0t1

tag DATA
0x1100

0b 0001 0010 1111 0
0x1000
0x0400

Processor
0x12F016-bit

Address
32-bit
DataCache

Memory

16-bit
Address

64-bit
Data0x12F0

• High 13 bits are used to
compare to the tags;
• Hit!!!
• Fetch data in that cache

block
• Low 3 bits are used as

offset (0b000)

Fully associative cache Replacement Policy Write Policy

• Need to compare each tag
and thus #cache block
comparators to decide hit or
not;

• Comparators are expensive;
• Fully associative:

• Arbitrary memory address can
go to arbitrary cache blocks

Hardware Implementation

6

Address/tag DATA1 DATA0
0x1100 0 -10
0x12F0 1234 1000
0x1000 110 7
0x0400 100 20

Processor

0x12F0 16-bit
Address

32-bit
DataCache

Memory

16-bit
Address

64-bit
Data0x12F016-bit Address

3-bit
offset

13-bit
tag

Fully associative cache Replacement Policy Write Policy

• Cache size: total size of the cache (C)
• Cache block size: CB → decides the number of offset bits (b)

2b = CB

• Number of cache blocks (#cache block, N)
N * CB = C

• Bit width of memory address (w): 16-bit in our examples
• Bit width of Tag (t): t = w - b
• Hardware implication: comparators? actual storage requirement?

Terminology for Fully Associative Cache

7

w-bit address

b-bit
offset

t-bit
tag

Tag DATA
t-bit CB BytesN blocks

Fully associative cache Replacement Policy Write Policy

• Valid bit

Warm Up a Fully Associative Cache

8

Tag valid bit DATA
t-bit 0 CB Bytes

• We need an indicator (i.e., flag)

to tell if each entry is valid for

this particular program.

• Valid bit : indicates i f data

stored at a cache line is valid;

• 1 = valid, 0 = invalid
• Cold start: Empty cache with

valid bit 0; initial state of the
cache

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at address 0x043F
• Tag: 0b 0000 0100 0011 11
• Offset: 11
• Check valid bits and compare the

tags: cache miss!
• Cache sends 0x043C to the main

memory;

Run Assemly to Heat the Cache

9

Tag valid bit DATA
0 11 10 01 00
0
0
0

4B cache block

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at address 0x043F
• Tag: 0b 0000 0100 0011 11
• Offset: 11
• Check valid bits and compare the

tags: cache miss!
• Cache sends 0x043C to the main

memory;
• Memory data (e.g. 0x12342587)

filled in the first cache block with tag
recorded and valid bit set 1;

Run Assemly to Heat the Cache (Cont’d)

10

Tag valid bit DATA
0x010F 1 12 34 25 87

0
0
0

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at address 0x043F
• Tag: 0b 0000 0100 0011 11
• Offset: 11
• Check valid bits and compare the

tags: cache miss!
• Cache sends 0x043C to the main

memory;
• Memory data (e.g. 0x12342587)

filled in the first cache block with tag
recorded and valid bit set 1;

• Use offset to index the 3rd byte from
the first cache block;

• Cache send 0x12 to the processor.

11

Tag valid bit DATA
0x010F 1 12 34 25 87

0
0
0

Run Assemly to Heat the Cache (Cont’d)

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at address 0x043F
• 2. Load byte at address 0x1234

• Tag: 0b 0001 0010 0011 01
• Offset: 00
• Check valid bits and compare the

tags: cache miss!
• Cache sends 0x1234 to the main

memory;
• Memory data (e.g. 0x87654321)

filled in the second cache block with
tag recorded and valid bit set to 1.

• Use offset to index ...

12

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21

0
0

Run Assemly to Heat the Cache (Cont’d)

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x43F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022

• Tag: 0b0...0 0010 00
• Offset: 10
• Check valid bits and compare the

tags: cache miss!
• Cache sends 0x0020 to the main

memory;
• Memory data (e.g. 0x12345678)

filled in the second cache block
with tag recorded and valid bit set
to 1;

• Use offset to index the 2nd byte;
• 13

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78

0

Run Assemly to Heat the Cache (Cont’d)

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C

• Tag: 0b 0000 0100 0011 11
• Offset: 00
• Check valid bits and compare the

tags: cache hit!
• Use offset to index the 0th byte;
• Cache sends 0x12342587 to

the processor;

14

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78

0

Run Assemly to Heat the Cache (Cont’d)

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43

• Assume memory [0x0F40] =
0xFFFFFFFF;

15

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78

0

Run Assemly to Heat the Cache (Cont’d)

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43

• Assume memory [0x0F40] =
0xFFFFFFFF;

16

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78
0x03D0 1 FF FF FF FF

Run Assemly to Heat the Cache (Cont’d)

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43

• Assume memory [0x0F40] =
0xFFFFFFFF;

• Cache is full
• If there is another cache miss, a

victim will be evicted from the
cache;

17

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78
0x03D0 1 FF FF FF FF

Block Replacement

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

18

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78
0x03D0 1 FF FF FF FF

Block Replacement (Cont’d)

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

• Cache miss and we need to
replace one cache block with the
data at 0x0120;

19

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78
0x03D0 1 FF FF FF FF

Block Replacement (Cont’d)

Fully associative cache Replacement Policy Write Policy

• Least recently used (LRU)
○ Replace the entry that has

not been used for the
longest time, i.e., has the
oldest previous access.

○ Pro: Temporal locality!
■ Recent past use implies

likely future use
○ Con: Complicated hardware

to keep track of access
history

20

Tag valid bit DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78
0x03D0 1 FF FF FF FF

Block Replacement Policy

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• 0 indicates the highest priority (the

most recently used);
• 3 indicates the least recently used.

21

Tag VB LRU DATA
0x010F 1 12 34 25 87
0x048D 1 87 65 43 21
0x0008 1 12 34 56 78
0x03D0 1 FF FF FF FF

LRU Implementation

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

22

Tag VB LRU DATA
0
0
0
0

LRU Example

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

23

Tag VB LRU DATA
0x010F 1 0 12 34 25 87

0
0
0

LRU Example (Cont’d)

LRU
0

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

24

Intro Locality Simple Cache Directly-Mapped Caches Set-associative Caches

Tag VB LRU DATA
0x010F 1 1 12 34 25 87
0x048D 1 0 87 65 43 21

0
0

LRU Example (Cont’d)

LRU
1
0

LRU
0

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

25

Tag VB LRU DATA
0x010F 1 2 12 34 25 87
0x048D 1 1 87 65 43 21
0x0008 1 0 12 34 56 78

0

LRU Example (Cont’d)

LRU
1
0

LRU
0

LRU
2
1
0

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022

• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120 26

Tag VB LRU DATA
0x010F 1 0 12 34 25 87
0x048D 1 2 87 65 43 21
0x008 1 1 12 34 56 78

0

LRU Example (Cont’d)

LRU
1
0

LRU
0

LRU
2
1
0

LRU
0
2
1

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

27

Tag VB LRU DATA
0x010F 1 1 12 34 25 87
0x048D 1 3 87 65 43 21
0x0008 1 2 12 34 56 78
0x03D0 1 0 FF FF FF FF

LRU Example (Cont’d)

LRU
1
0

LRU
0

LRU
2
1
0

LRU
0
2
1

LRU
1
3
2
0

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

28

Tag VB LRU DATA
0x010F 1 1 12 34 25 87
0x048D 1 3 87 65 43 21
0x0008 1 2 12 34 56 78
0x03D0 1 0 FF FF FF FF

LRU Example (Cont’d)

LRU
1
0

LRU
0

LRU
2
1
0

LRU
0
2
1

LRU
1
3
2
0

Fully associative cache Replacement Policy Write Policy

• Add extra information to record
cache usage;
• We can use index to indicate its

priority;
• LRU = 0 indicates the highest

priority (the most recently used);
• LRU = 3 i nd i ca tes t he l eas t

recently used.

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120

29

Tag VB LRU DATA
0x010F 1 12 34 25 87

0x0008 1 12 34 56 78
0x03D0 1 FF FF FF FF

Question: What is in the tag/VB/LRU

LRU

Fully associative cache Replacement Policy Write Policy

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120
• 7. Load halfword at 0x043E

30

Tag VB LRU DATA
0x010F 1 2 12 34 25 87
0x0048 1 0 so me wo rd
0x0008 1 3 12 34 56 78
0x03D0 1 1 FF FF FF FF

Question: What is in the tag/VB/LRU

Fully associative cache Replacement Policy Write Policy

31

The Other Replacement Policies
• Least recently used (LRU)

○ Replace the entry that has not been used for the longest time, i.e.,
has the oldest previous access.

○ Pro: Temporal locality!
■ Recent past use implies likely future use

○ Con: Complicated hardware to keep track of access history
● Most Recently Used (MRU)

○ Replace the entry that has the newest previous access.
● First In, First Out (FIFO)

○ Replace the oldest line in the set (queue).
● Last In, First Out (LIFO)

○ Replace the newest line in the set (stack).
● Random

Reasonable approximations
to LRU, MRU without add
too much hardware.

Works surprisingly okay (when
given a low temporal locality
workload)

LRU is ideal for temporal locality.
In practice, FIFO/LIFO/Random
are the most common.

Fully associative cache Replacement Policy Write Policy

32

What about Write?
● Write Policies

• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120
• 7. Store byte 0x0 to 0x0F43

Tag VB LRU DATA
0x010F 1 2
0x0048 1 0
0x0008 1 3
0x03D0 1 1

Fully associative cache Replacement Policy Write Policy

33

What about Write?
• Write Policies
• 1. Load byte at 0x043F
• 2. Load byte at 0x1234
• 3. Load halfword at 0x0022
• 4. Load word at 0x043C
• 5. Load byte at 0x0F43
• 6. Load word at 0x0120
• 7. Store byte 0x0 to 0x0F40

• Cache HIT!

Tag VB LRU DATA
0x010F 1 2
0x0048 1 0
0x0008 1 3
0x03D0 1 1

Memory

... ...

0x0F40

Fully associative cache Replacement Policy Write Policy

34

Write-back vs. Write-through
Tag VB LRU DATA

0x010F 1 2
0x0048 1 0
0x0008 1 3
0x03D0 1 1

● S t o r e i n s t r u c t i o n s w r i t e t o
memory, which changes values.

● Hardware needs to ensure that
c a c h e a n d m e m o r y h a v e
consistent information.

● Write-through
● Write to the cache and memory at the same time.
● (more writes to memory → longer time)

● Write-back (not the write back phase in pipeline)
● Write data in cache and set a dirty bit to 1.
● When this block gets replaced from the cache

(and “back” to memory), write to memory.

Simple to
implement

(typically) lower
traffic to memory

Fully associative cache Replacement Policy Write Policy

35

Write-back in a LRU Fully Associative Cache

Tag VB LRU Dirty DATA
0x010F 1 2 0
0x0048 1 0 0
0x0008 1 3 0
0x03D0 1 1 1 00

• Store byte 0x0 to 0x0F40
– Cache hit!

• Write-back
– Write data in cache and set a dirty bit

to 1.
– W h e n t h i s b l o c k g e t s e v i c t e d

(replacement) from the cache (and
“back” to memory), write to memory. Cache hit w/write-back:

update cache line, and wait until this
block is replaced before writing back
to memory

Fully associative cache Replacement Policy Write Policy

36

Write-back in a LRU Fully Associative Cache

Tag VB LRU Dirty DATA
0x010F 1 2 0
0x0048 1 1 0
0x0008 1 3 0
0x03D0 1 0 1 00

• Store byte 0x0 to 0x0F40
– Cache hit!

• Write-back
– Write data in cache and set a dirty bit

to 1.
– W h e n t h i s b l o c k g e t s e v i c t e d

(replacement) from the cache(and
“back” to memory), write to memory. Cache hit w/write-back:

update cache line, and wait until this
block is replaced before writing back
to memory– Update LRU

Fully associative cache Replacement Policy Write Policy

37

Write with Cache Miss—Write-Allocate
Tag VB LRU Dirty DATA

0x010F 1 2 0
0x0048 1 1 0
0x0008 1 3 0
0x03D0 1 0 0

• 7. Store byte 0x0 to 0xFF40
– Cache miss!

• Write-allocate
– Allocate in cache a space to deal

with this write (cache block replace-
ment)

– Update LRU
– Set dirty bit and implement write-

back policy; or write-through

Fully associative cache Replacement Policy Write Policy

Tag VB LRU Dirty DATA
0x010F 1 2 0
0x0048 1 3 0
0x3FD0 1 0 1 0
0x03D0 1 1 0

38

No-Write-Allocate (Write Around)

Tag VB LRU Dirty DATA
0x010F 1 2 0
0x0048 1 1 0
0x0008 1 3 0
0x03D0 1 0 0

• 7. Store byte 0xFF40,0x0
– Cache miss!

• Non-write-allocate

• The data is directly write to the
main memory without loading it
into the cache;

• Advantage: avoid evicting data that
may be used later;

• Disadvantages: access the main
memory each time, may increase the
latency;

Fully associative cache Replacement Policy Write Policy

39

Summary

• Fully associative cache
– Data can go to each cache block (placement policy);
– Address is divided and used as tag and offset;
– Cache contains tag, valid bit, LRU, Dirty bit (if applicable), data;
– Address is compared to the tags in parallel to decide cache miss/hit;
– Cache block replacement policies;
– Write policies.

Fully associative cache Replacement Policy Write Policy

